Please wait a minute...
物理化学学报  2019, Vol. 35 Issue (2): 215-222    DOI: 10.3866/PKU.WHXB201803061
论文     
表面缺陷与钯的沉积对硫化镉纳米晶粒的光催化制氢性能的影响
刘志明,刘国亮*(),洪昕林*()
Influence of Surface Defects and Palladium Deposition on the Activity of CdS Nanocrystals for Photocatalytic Hydrogen Production
Zhiming LIU,Guoliang LIU*(),Xinlin HONG*()
 全文: PDF(3206 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

近年来,光解水制氢的发展引起了人们的高度关注。CdS是一种具有可见光响应的很有潜力光催化剂,但由于光生电子/空穴对的快速复合和表面上的析氢反应速率低,所以它仅表现出有限的光解水制氢活性。对CdS表面结构和性能的影响的研究仍然非常有限。在本工作中,我们制备了三种具有不同形貌的CdS纳米晶体(长棒状,短棒状和三角片状)用于光解水制氢。随着纵横比的增加,非极性表面暴露面积增大,表面缺陷程度也随之增加,而表面缺陷可以捕获光生电子/空穴,从而降低其复合机会。我们发现氢的生产率可能与表面缺陷的程度有关。另外,这些缺陷可以用来固定Pd粒子形成异质结结构,有利于光生电荷的分离。在1% (w,质量分数) Pd的协助下,所有CdS催化剂的氢气产率都大大提高。值得注意的是,sr-CdS/Pd的制氢产率达到了7884 μmol·h-1·g-1,与文献报道的最高值相当。希望本文能够为了解晶体结构和性能对光催化的影响提供认识。

关键词: CdS纳米晶体光催化制氢表面缺陷异质结Pd促进作用    
Abstract:

The development of the photocatalytic production of hydrogen from water splitting has attracted immense attention in recent years. CdS is a potential photocatalyst with a visible light response, though it still suffers from a limited activity for hydrogen production due to the fast recombination of photo-induced electron/hole pairs and the low reaction rate of hydrogen evolution on the surface. Studies on the effect of CdS surface structure and properties on hydrogen production are still very limited. In this work, we prepared three CdS nanocrystals with different morphologies: long rod, short rod, and triangular plate. The prepared samples were well characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) specific surface area analysis, X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy, and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). From the results of TEM, XRD and XPS, we find that the three CdS nanocrystals with different morphologies were successfully synthesized. From the PL spectra, we conclude that the area of exposed nonpolar surface and degree of surface defects increase with an increase in aspect ratio. We also performed the photocatalytic hydrogen production reaction using the three CdS crystals. Long rod-like CdS (lr-CdS) exhibits the highest photocatalytic activity, with a hydrogen production rate of 482 μmol·h-1·g-1, which is 2.6 times that of short rod-like CdS (sr-CdS) (183 μmol·h-1·g-1) and 8.8 times that of triangular plate-like CdS (tp-CdS, 55 μmol h-1·g-1). It is found that lr-CdS shows a higher hydrogen production rate than sr-CdS and tp-CdS. We find that the hydrogen production rate is related to the degree of surface defects. Surface defects can trap the photo-induced electrons/holes, thus decreasing their probability of recombination. In addition, these defects can be used to anchor Pd particles to form a heterojunction structure that facilitates the separation of photo-induced charges. Therefore, we also compared three CdS/Pd nanocrystals synthesized with the three abovementioned morphologies with respect to hydrogen production. With 1% (w, mass fraction) Pd, the hydrogen production rate was greatly enhanced compared to all the CdS catalysts. Compared to the unpromoted CdS, the reaction rate is enhanced 43.1, 10.7 and 6.0 times over those of sr-CdS, lr-CdS and tp-CdS, respectively. Notably, the hydrogen production rate with short rod-like CdS/Pd reaches 7884 μmol·h-1·g-1, which can be favorably compared with the ever-increasing values reported in the literature. Hopefully, this work provides knowledge on the effect of crystal surface structure and properties on photocatalysis.

Key words: CdS nanocrystal    Photocatalytic hydrogen production    Surface defects    Heterojunction structure    Pd promotion
收稿日期: 2018-01-24 出版日期: 2018-03-06
中图分类号:  O643  
基金资助: 国家自然科学基金(21373153)
通讯作者: 刘国亮,洪昕林     E-mail: liugl@whu.edu.cn;hongxl@whu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘志明
刘国亮
洪昕林

引用本文:

刘志明,刘国亮,洪昕林. 表面缺陷与钯的沉积对硫化镉纳米晶粒的光催化制氢性能的影响[J]. 物理化学学报, 2019, 35(2): 215-222, 10.3866/PKU.WHXB201803061

Zhiming LIU,Guoliang LIU,Xinlin HONG. Influence of Surface Defects and Palladium Deposition on the Activity of CdS Nanocrystals for Photocatalytic Hydrogen Production. Acta Phys. -Chim. Sin., 2019, 35(2): 215-222, 10.3866/PKU.WHXB201803061.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201803061        http://www.whxb.pku.edu.cn/CN/Y2019/V35/I2/215

Fig 1  XRD patterns of lr-CdS, sr-CdS and tp-CdS.
Fig 2  TEM (up) and the corresponding HR-TEM (down) images of (a, b) tp-CdS, (c, d) sr-CdS and (e, f) lr-CdS. Inset of the figure b is the fast Fourier transform pattern.
Fig 3  XPS spectra of (a) Cd 3d and (b) S 2p for lr-CdS, sr-CdS and tp-CdS.
Fig 4  XPS spectra of (a) Cd 3d and (b) S 2p for lr-CdS, sr-CdS and tp-CdS.
Fig 5  Photoluminescence spectra of lr-CdS, sr-CdS and tp-CdS.
Sample SBET/(m2 g-1) HPR/(μmol h-1 g-1) Normalized HPR/(μmol h-1 m-2) HPR after Pd deposition/(μmol h-1 g-1)
tp-CdS 19.8 55 2.78 589
sr-CdS 35.9 183 5.10 7884
lr-CdS 78.1 482 6.17 2873
Table 1  3.2 Photocatalytic hydrogen production test
Fig 6  Proposed mechanism on surface defects induced enhancement of hydrogen production rate over CdS catalysts.
Fig 7  (a) TEM image and (b) high resolution XPS spectrum of Pd 3d region for the PdS/sr-CdS nanocomposite.
Fig 8  Proposed mechanism on the Pd-CdS heterojunction induced enhancement of hydrogen production rate.
1 Chen J. ; Shen S. H. ; Guo P. H. ; Wang M. ; Wu P. ; Wang X. X. ; Guo L. J. Appl. Catal. B-Environ. 2014, 152-153, 335.
doi: 10.1016/j.apcatb.2014.01.047
2 Acar C. ; Dincer L. ; Naterer G. F. Int. J. Energy Res. 2016, 40, 1449.
doi: 10.1002/er.3549
3 Xu Y. ; Xu R. Appl. Surf. Sci. 2015, 351, 779.
doi: 10.1016/j.apsusc.2015.05.171
4 Wang F. M. ; Shifa T. A. ; Zhan X. Y. ; Huang Y. ; Liu K. L. ; Cheng Z. Z. ; Jiang C. ; He J. Nanoscale 2015, 7, 19764.
doi: 10.1039/c5nr06718a
Osterloh F. E. Chem. Soc. Rev. 2013, 42, 2294.
doi: 10.1039/c2cs35266d
6 Ni M. ; Leung M. K. H. ; Leung D. Y. C. ; Sumathy K. Renew. Sust. Energ. Rev. 2007, 11, 401.
doi: 10.1016/j.rser.2005.01.009
7 Hisatomi T. ; Kubota J. ; Domen K. Chem. Soc. Rev. 2014, 43, 7520.
doi: 10.1039/c3cs60378d
8 Chen X. B. ; Shen S. H. ; Guo L. J. ; Mao S. S. Chem. Rev. 2010, 110, 6503.
doi: 10.1021/cr1001645
9 Tong H. ; Ouyang S. X. ; Bi Y. P. ; Umezawa N. ; Oshikiri M. ; Ye J. H. Adv. Mater. 2012, 24, 229.
doi: 10.1002/adma.201102752
10 Liao C. H. ; Huang C. W. ; Wu J. C. S. Catalysts 2012, 2, 490.
doi: 10.3390/catal2040490
11 Kudo A. ; Miseki Y. Chem. Soc. Rev. 2009, 38, 253.
doi: 10.1039/b800489g
12 Banerjee S. ; Pillai S. C. ; Falaras P. ; O'Shea K. E. ; Byrne J. A. ; Dionysiou D. D. J. Phys. Chem. Lett. 2014, 5, 2543.
doi: 10.1021/jz501030x
13 Asahi R. ; Morikawa T. ; Irie H. ; Ohwaki T. Chem. Rev. 2014, 114, 9824.
doi: 10.1021/cr5000738
14 Irie H. ; Miura S. ; Kamiya K. ; Hashimoto K. Chem. Phys. Lett. 2008, 457, 202.
doi: 10.1016/j.cplett.2008.04.006
15 Ouyang S. X. ; Ye J. H. J. Am. Chem. Soc. 2011, 133, 7757.
doi: 10.1021/ja110691t
16 Shenawi-Khalil S. ; Uvarov V. ; Kritsman Y. ; Menes E. ; Popov I. ; Sasson Y. Catal. Commun. 2011, 12, 1136.
doi: 10.1016/j.catcom.2011.03.014
17 Hu C. C. ; Lee Y. L. ; Teng H. J. Phys. Chem. C 2011, 115, 2805.
doi: 10.1021/jp1105983
18 Yun H. J. ; Lee H. ; Kim N. D. ; Lee D. M. ; Yu S. ; Yi J. ACS Nano 2011, 5, 4084.
doi: 10.1021/nn2006738
19 Li C. X. ; Han L. J. ; Liu R. J. ; Li H. H. ; Zhang S. J. ; Zhang G. J. J. Mater. Chem. 2012, 22, 23815.
doi: 10.1039/c2jm35415b
20 Bao N. Z. ; Shen L. M. ; Takata T. ; Domen K. Chem. Mater. 2008, 20, 110.
doi: 10.1021/cm7029344
21 Silva L. A. ; Ryu S. Y. ; Choi J. ; Choi Y. ; Hoffmann M. R. J. Phys. Chem. C 2008, 112, 12069.
doi: 10.1021/jp8037279
22 Yu J. G. ; Yu Y. F. ; Cheng B. RSC Adv. 2012, 2, 11829.
doi: 10.1039/c2ra22019a
23 Jin J. ; Yu J. G. ; Liu G. ; Wong P. K. J. Mater. Chem. A 2013, 1, 10927.
doi: 10.1039/c3ta12301d
24 Zhang K. ; Guo L. J. Catal. Sci. Technol. 2013, 3, 1672.
doi: 10.1039/c3cy00018d
25 Yang J. H. ; Wang D. ; Han H. X. ; Li C. Acc. Chem. Res. 2013, 46, 1900.
doi: 10.1021/ar300227e
26 Shi H. Y. ; Yan R. S. ; Bertolazzi S. ; Brivio J. ; Gao B. ; Kis A. ; Jena D. ; Xing H. G. ; Huang L. B. ACS Nano 2013, 7, 1072.
doi: 10.1021/nn303973r
27 Tongay S. ; Suh J. ; Ataca C. ; Fan W. ; Luce1 A. ; Kang J. S. ; Liu J. ; Ko C. ; Raghunathanan R. ; Zhou J. ; et al Sci. Rep. 2013, 3, 2657.
doi: 10.1038/srep02657
28 Chen W. ; Chen K. B. ; Peng Q. ; Li Y. D. Small 2009, 5, 681.
doi: 10.1002/smll.200801359
29 Wang X. L. ; Feng Z. C. ; Fan D. Y. ; Fan F. T. ; Li C. Cryst. Growth Des. 2010, 10, 5312.
doi: 10.1021/cg101166t
30 Yan H. J. ; Yang J. H. ; Ma G. J. ; Wu G. P. ; Zong X. ; Lei Z. B. ; Shi J. Y. ; Li C. J. Catal. 2009, 266, 165.
doi: 10.1016/j.jcat.2009.06.024
31 Yang J. H. ; Yan H. J. ; Wang X. L. ; Wen F. Y. ; Wang Z. J. ; Fan D. Y. ; Shi J. Y. ; Li C. J. Catal. 2012, 290, 151.
doi: 10.1016/j.jcat.2012.03.008
32 Tauc J. ; Grigorovici R. ; Vancu A. Phys. Stat. Sol. 1966, 15, 627.
doi: 10.1016/0160-9327(66)90041-X
33 Zhang H. ; Cai J. M. ; Wang Y. T. ; Wu M. Q. ; Meng M. ; Tian Y. ; Li X. G. ; Zhang J. ; Zheng L. R. ; Jiang Z. ; et al Appl. Catal. B- Environ. 2018, 220, 126.
doi: 10.1016/j.apcatb.2017.08.046
34 Cai J. M. ; Wu M. Q. ; Wang Y. T. ; Zhang H. ; Meng M. ; Tian Y. ; Li X. G. ; Zhang J. ; Zheng L. R. ; Gong J. L. Chem 2017, 2, 877.
doi: 10.1016/j.chempr.2017.05.006
35 Wang Y. T. ; Cai J. M. ; Wu M. Q. ; Zhang H. ; Meng M. ; Tian Y. ; Ding T. ; Gong J. L. ; Jiang Z. ; Li X. G. ACS Appl. Mater. Interfaces 2016, 8, 23006.
doi: 10.1021/acsami.6b05777
36 Cai J. M. ; Wang Y. T. ; Zhu Y. M. ; Wu M. Q. ; Zhang H. ; Li X. G. ; Jiang Z. ; Meng M. ACS Appl. Mater. Interfaces 2015, 7, 24987.
doi: 10.1021/acsami.5b07318
37 Peng T. Y. ; Li K. ; Zeng P. ; Zhang Q. G. ; Zhang X. G. J. Phys. Chem. C 2012, 116, 22720.
doi: 10.1021/jp306947d
38 Cheng F. Y. ; Yin H. ; Xiang Q. J. Appl. Surf. Sci. 2017, 391, 432.
doi: 10.1016/j.apsusc.2016.06.169
39 Jia T. T. ; Kolpin A. ; Ma C. S. ; Chan R. C. T. ; Kwok W. M. ; Tsang S. C. E. Chem. Commun. 2014, 50, 1185.
doi: 10.1039/c3cc47301e
40 Xiang Q. J. ; Cheng F. Y. ; Lang D. ChemSusChem 2016, 9, 996.
doi: 10.1002/cssc.201501702
41 Zeng P. ; Zhang Q. G. ; Peng T. Y. ; Zhang X. H. Phys. Chem. Chem. Phys. 2011, 13, 21496.
doi: 10.1039/c1cp22059d
42 Du X. H. ; Li Y. ; Yin H. ; Xiang Q. J. Acta Phys. -Chim. Sin. 2018, 34, 414.
doi: 10.3866/PKU.WHXB201708283
杜新华; 李阳; 殷辉; 向全军. 物理化学学报, 2018, 34, 414.
doi: 10.3866/PKU.WHXB201708283
43 Zhang C. ; Wu Z. J. ; Liu J. J. ; Piao L. Y. Acta Phys. -Chim. Sin. 2017, 33, 1492.
doi: 10.3866/PKU.WHXB201704141
张驰; 吴志娇; 刘建军; 朴玲钰. 物理化学学报, 2017, 33, 1492.
doi: 10.3866/PKU.WHXB201704141
[1] 罗盼,孙芳,邓菊,许海涛,张慧娟,王煜. NiS-Ni3S2树状异质结阵列在析氧反应中的应用[J]. 物理化学学报, 2018, 34(12): 1397-1404.
[2] 何畅,侯剑辉. 基于非富勒烯受体的溶液加工型全小分子太阳能电池研究进展[J]. 物理化学学报, 2018, 34(11): 1202-1210.
[3] 张驰,吴志娇,刘建军,朴玲钰. MoS2/TiO2复合催化剂的制备及其在紫外光下的光催化制氢活性[J]. 物理化学学报, 2017, 33(7): 1492-1498.
[4] 陈鑫,胡绍争,李萍,李薇,马宏飞,陆光. 熔盐辅助微波法制备g-C3N4包覆MgO-Al2O3-Fe2O3异质结催化剂及其光催化制过氧化氢性能[J]. 物理化学学报, 2017, 33(12): 2532-2541.
[5] 唐伟,王兢. 金属氧化物异质结气体传感器气敏增强机理[J]. 物理化学学报, 2016, 32(5): 1087-1104.
[6] 王彦娟,孙佳瑶,封瑞江,张健. 三元金属硫化物-石墨相氮化碳异质结催化剂的制备及光催化性能[J]. 物理化学学报, 2016, 32(3): 728-736.
[7] 赵宗彦,田凡. CdS/FeP复合光催化材料界面结构与性质的理论研究[J]. 物理化学学报, 2016, 32(10): 2511-2517.
[8] 乔治, 解新建, 薛俊明, 刘辉, 梁李敏, 郝秋艳, 刘彩池. nc-Si:H/c-Si硅异质结太阳电池中本征硅薄膜钝化层的优化[J]. 物理化学学报, 2015, 31(6): 1207-1214.
[9] 刘兴, 李越湘, 彭绍琴, 赖华. 染料敏化可见光催化制氢研究进展[J]. 物理化学学报, 2015, 31(4): 612-626.
[10] 李湘奇, 范庆飞, 李广立, 黄瑶翰, 高照, 范希梅, 张朝良, 周祚万. 合成ZnO纳米阵列及刺突状CuO/ZnO异质结[J]. 物理化学学报, 2015, 31(4): 783-792.
[11] 于建华, 范闽光, 李斌, 董丽辉, 张飞跃. 混合相二氧化钛石墨烯复合物的制备及光催化性能[J]. 物理化学学报, 2015, 31(3): 519-526.
[12] 王利果, 张晓丹, 王奉友, 王宁, 姜元建, 郝秋艳, 许盛之, 魏长春, 赵颖. 不同形貌的金字塔结构对硅片表面钝化和异质结太阳电池的影响[J]. 物理化学学报, 2014, 30(9): 1758-1763.
[13] 张剑芳, 王岩, 沈天阔, 舒霞, 崔接武, 陈忠, 吴玉程. 脉冲沉积制备Cu2O/TiO2纳米管异质结的可见光光催化性能[J]. 物理化学学报, 2014, 30(8): 1535-1542.
[14] 赵伟荣, 施巧梦, 刘莹. SnO2/TiO2纳米管复合光催化剂的性能及失活再生[J]. 物理化学学报, 2014, 30(7): 1318-1324.
[15] 唐伟, 王兢, 姚朋军, 杜海英, 孙炎辉. ZnO掺杂的SnO2纳米纤维的制备、表征及气敏机理[J]. 物理化学学报, 2014, 30(4): 781-788.