Please wait a minute...
物理化学学报  2018, Vol. 34 Issue (12): 1358-1365    DOI: 10.3866/PKU.WHXB201803071
所属专题: 表面物理化学
论文     
O2和CO在Ni(111)表面的吸附活化
段园,陈明树*(),万惠霖
Adsorption and Activation of O2 and CO on the Ni(111) Surface
Yuan DUAN,Mingshu CHEN*(),Huilin WAN
 全文: PDF(1312 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

采用高分辨电子能量损失谱(HREELS)、俄歇电子能谱(AES)和低能电子衍射(LEED)研究镍单晶表面氧物种及CO与O2的共吸附。实验结果表明,Ni(111)表面氧化后存在两种氧物种,位于54 meV能量损失峰的表面化学吸附氧物种和位于69 meV能量损失峰的表面氧化镍。首先,随着暴露氧量的增加,表面化学吸附氧物种的能量损失峰蓝移至58 meV;其次,通过真空退火及与CO相互作用考察,发现表面化学吸附氧物种较不稳定。在室温条件下,表面预吸附形成的表面化学吸附氧物种与CO共吸附,导致端位吸附CO增多,表明氧优先吸附在穴位上,随着CO暴露量的增加化学吸附氧物种与CO反应脱去;而表面氧化镍需在较高温度和较高CO分压下才能被CO还原。预吸附CO可被氧逐渐移去。

关键词: Ni(111)高分辨电子能量损失谱表面O2和CO活化表面氧物种CO吸附CO和O2共吸附    
Abstract:

Ni-based catalysts have been widely used in many important industrial heterogeneous processes such as hydrogenation and steam reforming owing to their sufficiently high activity yet significantly lower cost than that of alternative precious-metal-based catalysts. However, nickel catalysts are susceptible to deactivation. Understanding the adsorption and activation behavior of small molecules on the model catalyst surface is important to optimize the catalytic performance. Although many studies have been carried out in recent years, the initial oxidation process of nickel surface is still not fully understood, and the influence of the adsorption sequence of CO and O2 and their co-adsorption is controversial. In this study, the surface oxygen species on Ni(111) and the co-adsorption of CO and O2 were explored using high-resolution electron energy loss spectroscopy (HREELS), Auger electron spectroscopy (AES), and low energy electron diffraction (LEED). HREELS can provide useful information about the surface structure, surface-adsorbed species, adsorption sites, and interactions between surface oxygen species and CO on the surface. The results showed that there were two kinds of oxygen species after the oxidation of Ni(111), and the energy loss peaks at 54–58 meV were ascribed to surface chemisorbed oxygen species, and the peak at 69 meV to surface nickel oxide. The chemisorbed oxygen at low coverage displayed a LEED pattern of (2×2), revealing the formation of an ordered surface structure. As the amount of oxygen increased, the energy loss peak at 54 meV shifted to 58 meV. At an O2 partial pressure of 1×10-8 Torr (1 Torr = 133.32 Pa), the AES ratio of O/Ni remained almost unchanged after dosing 48 L, which indicated that the surface nickel oxide was relatively stable. The surface chemisorbed oxygen species was less stable, which could change to surface nickel oxide after annealing in vacuum. CO adsorbed on Ni(111) at room temperature with tri-hollow and a-top sites. Upon annealing in vacuum, a-top CO weakened first and then disappeared completely at 520 K, whereas tri-hollow CO was much more stable. The pre-adsorption of CO could suppress O2 adsorption and oxidation of the Ni(111) surface. The presence of oxygen could then gradually remove and replace CO with O2. The surface oxygen species preferred the tri-hollow sites, resulting in more a-top adsorbed CO during the co-adsorption of CO and oxygen. The surface chemisorbed oxygen species were more active and could react with CO at room temperature; however, the surface nickel oxide was less active, and could only be reduced at a higher temperature and higher partial pressure of CO.

Key words: Ni(111)    High-resolution electron energy loss spectroscopy    Activation of O2 and CO    Surface oxygen species    CO adsorption    Co-adsorption of CO and O2
收稿日期: 2018-02-04 出版日期: 2018-03-07
中图分类号:  O647  
基金资助: 国家自然科学基金(21273178);国家自然科学基金(21573180);国家自然科学基金(91545204)
通讯作者: 陈明树     E-mail: chenms@xmu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
段园
陈明树
万惠霖

引用本文:

段园,陈明树,万惠霖. O2和CO在Ni(111)表面的吸附活化[J]. 物理化学学报, 2018, 34(12): 1358-1365.

Yuan DUAN,Mingshu CHEN,Huilin WAN. Adsorption and Activation of O2 and CO on the Ni(111) Surface. Acta Phys. -Chim. Sin., 2018, 34(12): 1358-1365.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201803071        http://www.whxb.pku.edu.cn/CN/Y2018/V34/I12/1358

图1  (a) Ni(111)表面在不同氧气分压下室温氧化的HREELS图;(b) Ni(111)表面在室温氧气分压为1×10-8 Torr,不同暴露氧量的HREELS图;(c) O/Ni俄歇比值随着氧气分压的变化图(插图:Ni(111)表面氧气分压为1×10-8 Torr,室温氧化5 min后的LEED衍射图);(d)俄歇O/Ni比值在固定氧气分压为1×10-8 Torr随着暴氧量的变化图
图2  (a) Ni(111)表面室温氧化再不同温度真空退火后的HREELS谱图;(b) O/Ni俄歇比值随退火温度的变化(插图:氧气分压为1×10-6 Torr,室温氧化5 min,接着750 K退火后的LEED衍射图)
图3  (a) Ni(111)表面室温吸附CO的HREELS谱图;(b) Ni(111)表面室温饱和吸附CO后升温脱附的HREELS谱图
图4  (a)、(b)饱和吸附CO后的Ni(111)表面吸附O2的HREELS谱图;(c) O2分别在饱和吸附CO表面与清洁表面吸附后O/Ni俄歇比值
图5  (a) CO与预吸附1.2 L O2的Ni(111)表面作用的HREELS谱图;(b)预吸附不同量O2后再吸附6 L CO的HREELS谱图;(c) HREELS穴位与端位吸附CO峰强度比值与俄歇C/O比值的关系
图6  Ni(111)表面预吸附氧气后再吸附CO的表面对氧吸附的影响
图7  表面氧化镍与CO在不同条件下作用的HREELS谱图
1 Ertl G. Angew. Chem. Int. Ed. 2008, 47 (19), 3524.
doi: 10.1002/anie.200800480
2 Ertl, G. ; Knoezinger, H. ; Schueth, F. ; Weitkamp, J. Handbook of Heterogeneous Catalysis, 2nd ed. ; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008; Vol. 8, pp. 1309–1310.
3 Chen M. S. Acta Phys. -Chim. Sin. 2017, 33 (12), 2424.
doi: 10.3866/PKU.WHXB201707171
陈明树. 物理化学学报, 2017, 33 (12), 2424.
doi: 10.3866/PKU.WHXB201707171
4 Beniya A. ; Ikuta Y. ; Isomura N. ; Hirata H. ; Watanabe Y. ACS Catal. 2017, 7 (2), 1369.
doi: 10.1021/acscatal.6b02714
5 Netzer, F. P., Fortunelli, A. Oxide Materials at the Two-Dimensional Limit; Springer: Heidelberg, 2016; 234, pp. 119–142.
6 Schaub R. ; Thostrup P. ; Lopez N. ; Laegsgaard E. ; Stensgaard I. ; Norskov J. K. ; Besenbacher F. Phys. Rev. Lett. 2001, 87 (26), 266104/1.
doi: 10.1103/PhysRevLett.87.266104
7 Kuhlenbeck H. ; Odoerfer G. ; Jaeger R. ; Xu C. ; Mull T. ; Baumeister B. ; Illing G. ; Menges M. ; Freund H. J. ; Weide D. ; Andresen G. ; Watson G. ; Plummer E. W. Vacuum 1990, 41 (1–3), 34.
doi: 10.1016/0042-207X(90)90263-X
8 Shao S. M. ; Xi G. K. ; Wang J. R. ; Li S. L. ; Yang X. Z. ; Wang J. H. ; Zhou Z. Q. ; He T. X. ; Yu B. X. Acta Phys. -Chim. Sin. 1992, 8 (6), 767.
doi: 10.3866/PKU.WHXB19920610
邵淑敏; 席光康; 王君容; 李胜林; 杨学柱; 王金合; 周志强; 贺添喜; 于宝霞. 物理化学学报, 1992, 8 (6), 767.
doi: 10.3866/PKU.WHXB19920610
9 Mills G. A. ; Steffgen F. W. Catal. Rev. 1973, 8 (2), 159.
doi: 10.1080/01614947408071860
10 Gao J. J. ; Wang Y. L. ; Ping Y. ; Hu D. C. ; Xu G. W. ; Gu F. N. ; Su F. B. RSC Adv. 2012, 2 (6), 2358.
doi: 10.1039/c2ra00632d
11 Hu D. C. ; Gao J. J. ; Ping Y. ; Jia L. H. ; Gunawan P. ; Zhong Z. Y. ; Xu G. W. ; Gu F. N. ; Su F. B. Ind. Eng. Chem. Res. 2012, 51 (13), 4875.
doi: 10.1021/ie300049f
12 Li S. R. ; Gong J. L. Chem. Soc. Rev. 2014, 43 (21), 7245.
doi: 10.1039/C4CS00223G
13 Wang Y. ; Yao L. ; Wang S. H. ; Mao D. H. ; Hu C. W. Fuel Process. Technol. 2018, 169, 199.
doi: 10.1016/j.fuproc.2017.10.007
14 Abdullah B. ; Ghani N. A. A. ; Vo D. V. N. J. Cleaner Prod. 2017, 162, 170.
doi: 10.1016/j.jclepro.2017.05.176
15 Li C. L. ; Fu Y. L. ; Bian G. Z. Acta Phys. -Chim. Sin. 2003, 19 (10), 902.
doi: 10.3866/PKU.WHXB20031004
李春林; 伏义路; 卞国柱. 物理化学学报, 2003, 19 (10), 902.
doi: 10.3866/PKU.WHXB20031004
16 Liu C. J. ; Ye J. Y. ; Jiang J. J. ; Pan Y. X. ChemCatChem 2011, 3 (3), 529.
doi: 10.1002/cctc.201000358
17 Trimm D. L. Catal. Today 1997, 37 (3), 233.
doi: 10.1016/S0920-5861(97)00014-X
18 Chen C. S. ; Lin J. H. ; You J. H. ; Yang K. H. J. Phys. Chem. A 2010, 114 (11), 3773.
doi: 10.1021/jp904434e
19 Yuan K. D. ; Zhong J. Q. ; Zhou X. ; Xu L. L. ; Bergman S. L. ; Wu K. ; Xu G. Q. ; Bernasek S. L. ; Li H. X. ; Chen W. ACS Catal. 2016, 6 (7), 4330.
doi: 10.1021/acscatal.6b00357
20 Zhao Y. F. ; Zhao B. ; Liu J. J. ; Chen G. B. ; Gao R. ; Yao S. Y. ; Li M. Z. ; Zhang Q. H. ; Gu L. ; Xie J. L. ; Wen X. D. ; Wu L. Z. ; Tung C. H. ; Ma D. ; Zhang T. R. Angew. Chem. Int. Ed. 2016, 55 (13), 4215.
doi: 10.1002/anie.201511334
21 Oku M. ; Brundle C. R. J. Vac. Sci. Technol. 1982, 20 (3), 532.
doi: 10.1116/1.571424
22 Park R. L. ; Farnsworth H. E. J. Chem. Phys. 1964, 40 (8), 2354.
doi: 10.1063/1.1725514
23 Saiki R. ; Kaduwela A. ; Osterwalder J. ; Sagurton M. ; Fadley C. S. ; Brundle C. R. J. Vac. Sci. Technol. A 1987, 5 (4, Pt. 1), 932.
doi: 10.1116/1.574299
24 Beckerle J. D. ; Yang Q. Y. ; Johnson A. D. ; Ceyer S. T. Surf. Sci. 1988, 195 (1), 77.
doi: 10.1016/0039-6028(88)90781-9
25 Munoz-Marquez M. A. ; Tanner R. E. ; Woodruff D. P. Surf. Sci. 2004, 565 (1), 1.
doi: 10.1016/j.susc.2004.06.204
26 Mu R. T. ; Fu Q. ; Xu H. ; Zhang H. ; Huang Y. Y. ; Jiang Z. ; Zhang S. ; Tan D. L. ; Bao X. H. J. Am. Chem. Soc. 2011, 133 (6), 1978.
doi: 10.1021/ja109483a
27 Chiarello G. ; Formoso V. ; Infusino E. ; Marino A. ; Agostino R. G. ; Colavita E. Surf. Sci. 2007, 601 (1), 104.
doi: 10.1016/j.susc.2006.09.010
28 Politano A. ; Chiarello G. J. Phys. Chem. C 2011, 115 (28), 13541.
doi: 10.1021/jp202212a
29 Politano A. ; Chiarello G. Vib. Spectrosc. 2011, 55 (2), 295.
doi: 10.1016/j.vibspec.2010.12.010
30 Zhao B. R. ; Yan X. L. ; Zhou Y. ; Liu C. J. Ind. Eng. Chem. Res. 2013, 52 (24), 8182.
doi: 10.1021/ie400688y
31 Pan Y. X. ; Liu C. J. ; Shi P. J. Power Sources 2008, 176 (1), 46.
doi: 10.1016/j.jpowsour.2007.10.039
32 Chen J. G. ; Weisel M. D. ; Hall R. B. Surf. Sci. 1991, 250 (1–3), 159.
doi: 10.1016/0039-6028(91)90718-8
33 Tyuliev G. T. ; Kostov K. L. Phys. Rev. B 1999, 60 (4), 2900.
doi: 10.1103/PhysRevB.60.2900
34 Langell M. A. ; Nassir M. H. J. Phys. Chem. 1995, 99 (12), 4162.
doi: 10.1021/j100012a042
35 Lambers E. S. ; Dykstal C. N. ; Seo J. M. ; Rowe J. E. ; Holloway P. H. Oxid. Met. 1996, 45 (3/4), 301.
doi: 10.1007/BF01046987
36 Kitakatsu N. ; Maurice V. ; Marcus P. Surf. Sci. 1998, 411 (1/2), 215.
doi: 10.1016/S0039-6028(98)00372-0
37 Kitakatsu N. ; Maurice V. ; Hinnen C. ; Marcus P. Surf. Sci. 1998, 407 (1–3), 36.
doi: 10.1016/S0039-6028(98)00089-2
38 Rohr F. ; Wirth K. ; Libuda J. ; Cappus D. ; Baeumer M. ; Freund H. J. Surf. Sci. 1994, 315 (1–2), L977.
doi: 10.1016/0039-6028(94)90529-0
39 Erley W. ; Ibach H. ; Lehwald S. ; Wagner H. Surf. Sci. 1979, 83 (2), 585.
doi: 10.1016/0039-6028(79)90065-7
40 Chen M. S. ; Zheng Y. P. ; Wan H. L. Top. Catal. 2013, 56 (15–17), 1299.
doi: 10.1007/s11244-013-0140-0
41 Ertl G. J. Mol. Catal. A-Chem. 2002, 182 (1), 10.
doi: 10.1016/S1381-1169(01)00460-5
[1] 杨帆, 张静, 吴维成. Mo2C/γ-Al2O3催化剂上苯加氢反应的原位红外光谱研究[J]. 物理化学学报, 2014, 30(5): 943-949.
[2] 杨宗献, 于小虎, 马东伟. 氧原子在具有Pt皮肤的Pt3Ni(111)表面的吸附和扩散[J]. 物理化学学报, 2009, 25(11): 2329-2335.
[3] 张福兰, 李来才, 田安民. 乙烷在Ni(111)表面的吸附和分解[J]. 物理化学学报, 2009, 25(09): 1883-1889.
[4] 张寒洁;鲍世宁;何丕模;王穗东;冯明凯;李振声;李述汤. 有或没有Alq3参与情况下LiF和Al的化学反应[J]. 物理化学学报, 2003, 19(08): 770-773.
[5] 周志有;孙世刚;陈声培;司迪;贡辉. 电化学原位步进扫描时间分辨显微镜FTIR反射光谱[J]. 物理化学学报, 2002, 18(11): 989-993.
[6] 周仁贤,蒋晓原,吕光烈,郑小明. Cu/ZrO2-Al2O3上表面氧物种脱附及其对催化性能的影响[J]. 物理化学学报, 1997, 13(02): 128-133.
[7] 冯(言贝)民. 乙腈、苯基氰在Cu(111)与Pd(100)表面上的吸附与反应[J]. 物理化学学报, 1992, 8(03): 313-320.