Please wait a minute...
物理化学学报  2019, Vol. 35 Issue (3): 292-298    DOI: 10.3866/PKU.WHXB201803121
论文     
射频放电等离子体中CO2及CO2-H2混合气转化反应的原位研究
杨瑞龙1,张笛宇3,朱康伟1,周寰林1,叶小球1,KLEYN Aart W.3,胡殷2,*(),黄强3,*()
1 表面物理与化学重点实验室,四川 绵阳 621900
2 中国工程物理研究院材料研究所,四川 绵阳 621900
3 中国工程物理研究院材料研究所可持续界面动力学研究中心,成都 610200
In Situ Study of the Conversion Reaction of CO2 and CO2-H2 Mixtures in Radio Frequency Discharge Plasma
Ruilong YANG1,Diyu ZHANG3,Kangwei ZHU1,Huanlin ZHOU1,Xiaoqiu YE1,Aart W. KLEYN3,Yin HU2,*(),Qiang HUANG3,*()
1 Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621900, Sichuan Province, P. R. China
2 China Academy of Engineering Physics, Mianyang 621900, Sichuan Province, P. R. China
3 Center of Interface Dynamics for Sustainability, Institute of Materials, China Academy of Engineering Physics, Chengdu 610200, P. R. China
 全文: PDF(613 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

为探索CO2气体在低温等离子体中的分解规律,开展了近室温条件下,射频等离子体中CO2及CO2-H2混合气体的电离分解行为研究。反应产物通过差分四极质谱进行在线分析,并通过发射光谱对等离子体状态进行诊断。研究结果表明,在射频电场作用下二氧化碳气体迅速电离并部分分解为一氧化碳和氧气,随着射频功率升高CO2分解率提高,而能量效率降低。氢气的加入可以显著降低CO2分解达到平衡所需的时间,随着H2含量的增加,二氧化碳的分解率先降低后升高,H2的电离状态与对CO2分解氧的消耗是导致CO2分解率V字形变化的主要原因。

关键词: 射频放电等离子体二氧化碳氢气分解率能量效率反应平衡    
Abstract:

Currently, worldwide attention is focused on controlling the continually increasing emissions of greenhouse gases, especially carbon dioxide. To this end, a number of investigations have been carried out to convert the carbon dioxide molecules into value-added chemicals. As carbon dioxide is thermodynamically stable, it is necessary to develop an efficient carbon dioxide utilization method for future scaled-up applications. Recently, several approaches, such as electrocatalysis, thermolysis, and non-thermal plasma, have been utilized to achieve carbon dioxide conversion. Among them, non-thermal plasma, which contains chemically active species such as high-energy electrons, ions, atoms, and excited gas molecules, has the potential to achieve high energy efficiency without catalysts near room temperature. Here, we used radio-frequency (RF) discharge plasma, which exhibits the non-thermal feature, to explore the decomposition behavior of carbon dioxide in non-thermal plasma. We studied the ionization and decomposition behaviors of CO2 and CO2-H2 mixtures in plasma at low gas pressure. The non-thermal plasma was realized by our custom-made inductively coupled RF plasma research system. The reaction products were analyzed by on-line quadrupole mass spectrometry (differentially pumped), while the plasma status was monitored using an in situ real-time optical emission spectrometer. Plasma parameters (such as the electron temperature and ion density), which can be tuned by utilizing different discharge conditions, played significant roles in the carbon dioxide dissociation process in non-thermal plasma. In this study, the conversion ratio and energy efficiency of pure carbon dioxide plasma were investigated at different values of power supply and gas flow. Subsequently, the effect of H2 on CO2 decomposition was studied with varying H2 contents. Results showed that the carbon dioxide molecules were rapidly ionized and partially decomposed into CO and oxygen in the RF field. With increasing RF power, the conversion ratio of carbon dioxide increased, while the energy efficiency decreased. A maximum conversion ratio of 77.6% was achieved. It was found that the addition of hydrogen could substantially reduce the time required to attain the equilibrium of the carbon dioxide decomposition reaction. With increasing H2 content, the conversion ratio of CO2 decreased initially and then increased. The ionization state of H2 and the consumption of oxygen owing to CO2 decomposition were the main reasons for the V-shape plot of the CO2 conversion ratio. In summary, this study investigates the influence of power supply, feed gas flow, and added hydrogen gas content, on the carbon dioxide decomposition behavior in non-thermal RF discharge plasma.

Key words: Radio frequency discharge plasma    Carbon dioxide    Hydrogen    Decomposition ratio    Energy efficiency    Reaction equilibrium
收稿日期: 2018-01-19 出版日期: 2018-03-12
基金资助: 国家自然科学基金(21603202);国家自然科学基金(51561135013);中物院成都基地科研团队培育项目(PY2014-7-7);中物院成都基地科研团队培育项目(PY2014-7-11)
通讯作者: 胡殷,黄强     E-mail: huyin_spc@163.com;qhuang1986@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨瑞龙
张笛宇
朱康伟
周寰林
叶小球
KLEYN Aart W.
胡殷
黄强

引用本文:

杨瑞龙,张笛宇,朱康伟,周寰林,叶小球,KLEYN Aart W.,胡殷,黄强. 射频放电等离子体中CO2及CO2-H2混合气转化反应的原位研究[J]. 物理化学学报, 2019, 35(3): 292-298, 10.3866/PKU.WHXB201803121

Ruilong YANG,Diyu ZHANG,Kangwei ZHU,Huanlin ZHOU,Xiaoqiu YE,Aart W. KLEYN,Yin HU,Qiang HUANG. In Situ Study of the Conversion Reaction of CO2 and CO2-H2 Mixtures in Radio Frequency Discharge Plasma. Acta Phys. -Chim. Sin., 2019, 35(3): 292-298, 10.3866/PKU.WHXB201803121.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201803121        http://www.whxb.pku.edu.cn/CN/Y2019/V35/I3/292

Fig 1  Schematic diagram of RF discharge plasma reactor.
Fig 2  The power dependences of CO2 conversion ratios (a) and the power dependence of energy efficiencies (b) with variant gas flow.
Power/W 30 mL·min?1 60 mL·min?1 90 mL·min?1 200 mL·min?1
X EFF X EFF X EFF X EFF
30 18.7 3.95 10.3 4.34 6.12 3.87 4.1 5.78
60 31.4 3.30 18.9 3.98 12.2 3.87 7.3 5.14
150 59.0 2.49 41.6 3.51 28.8 3.63 14.6 4.11
300 77.6 1.63 67.0 2.82 53.5 3.38 28.1 3.95
Table 1  CO2 decomposition ratio(X) and energy efficiency (EFF) under different flow/power conditions.
Fig 3  Emission spectra of pure CO2 plasma under different discharge power with 30 mL·min?1 flow.
Fig 4  Reaction behavior of CO2-H2 mixtures in RF plasma: (a) decomposition ratio of CO2 versus discharge time; (b) decomposition ratio of CO2 and equilibrium time versus H2 content.
Fig 5  Emission spectra of CO2-H2 plasma with different hydrogen content.
1 Nishimura Y. ; Takenouchi T. Ind. Eng. Chem. Fundam. 1976, 15 (4), 266.
doi: 10.1021/i160060a007
2 Lan B. Y. ; Shi H. F. Acta Phys. -Chim. Sin. 2014, 30 (12), 2177.
doi: 10.3866/PKU.WHXB201409303
蓝奔月; 史海峰. 物理化学学报, 2014, 30 (12), 2177.
doi: 10.3866/PKU.WHXB201409303
3 Bai X. F. ; Chen W. ; Wang B. Y. ; Feng G. H. ; Wei W. ; Jiao Z. ; Sun Y. H. Acta Phys. -Chim. Sin. 2017, 33 (12), 2388.
doi: 10.3866/PKU.WHXB201706131
白晓芳; 陈为; 王白银; 冯光辉; 魏伟; 焦正; 孙予罕. 物理化学学报, 2017, 33 (12), 2388.
doi: 10.3866/PKU.WHXB201706131
4 Chen G. ; Georgieva V. ; Godfroid T. ; Snyders R. ; Delpoancke-Ogletree M. P. .Appl. Catal. B- Environ. 216, 190, 115.
doi: 10.1016/j.apcatb.2016.03.009
5 Mei D. H. ; Zhu X. B. ; Wu C. F. ; Ashford B. ; Williams P. T. ; Tu X. Appl. Catal. B- Environ. 2016, 182, 525.
doi: 10.1016/j.apcatb.2015.09.052
6 Tao X. M. ; Bai M. G. ; Li X. ; Long H. L. ; Shang S. Y. ; Yin Y. X. ; Dai X. Y. Prog. Energ. Combust. 2011, 37 (2), 113.
doi: 10.1016/j.pecs.2010.05.001
7 Nizio M. ; Albarazi A. ; Cavadias S. ; Amouroux J. ; Galvez M. E. ; Costa P. D. Int. J. Hydrog. Energ. 2016, 41 (27), 11584.
doi: 10.1016/j.ijhydene.2016.02.020
8 Wang H. ; Song L. J. ; Li X. H. ; Yue L. M. Acta Phys. -Chim. Sin. 2015, 31 (7), 1406.
doi: 10.3866/PKU.WHXB201504272
王皓; 宋凌珺; 李兴虎; 岳丽蒙. 物理化学学报, 2015, 31 (7), 1406.
doi: 10.3866/PKU.WHXB201504272
9 Nguyen H. H. ; Kim K. S. Catal. Today 2015, 256, 88.
doi: 10.1016/j.cattod.2015.04.034
10 Huang C. H. ; Tan C. S. Aerosol Air Qual. Res. 2014, 14 (2), 480.
doi: 10.4209/aaqr.2013.10.0326
11 Wang Y. Acta Phys. -Chim. Sin. 2017, 33 (5), 857.
doi: 10.3866/PKU.WHXB201703172
王野. 物理化学学报, 2017, 33 (5), 857.
doi: 10.3866/PKU.WHXB201703172
12 Buser R. G. ; Sullivan J. J. J. Appl. Phys. 1970, 41 (2), 472.
doi: 10.1063/1.1658700
13 Xie, Z. ; Jogan, K. ; Chang, J. S. The Effect of Residential Time on the Reduction of CO2 from Combustion Flue Gases by a Corona Torch Reactor. In Conference Record of the 1990 IEEE Industry Applications Society Annual Meeting, Seattle, WA, USA, Oct. 7–12, 1990; IEEE: New York, NY, USA, 1990; pp. 809–814. doi: 10.1109/IAS.1990.152151
14 Spencer L. F. ; Gallimore A. D. Plasma Chem. Plasma Proc. 2011, 31 (1), 79.
doi: 10.1007/s11090-010-9273-0
15 Huang Q. ; Zhang D. Y. ; Wang D. P. ; Liu K. Z. ; Kleyn A. W. J. Phys. D: Appl. Phys. 2017, 50, 294001.
doi: 10.1088/1361-6463/aa754e
16 Zhu A. M. ; Zhang X. L. ; Gong W. M. ; Ruan G. S. Environ. Sci. (Chin.) 1998, 19 (2), 20.
doi: 10.3321/j.issn:0250-3301.1998.02.005
朱爱民; 张秀玲; 宫为民; 阮桂色. 环境科学, 1998, 19 (2), 20.
doi: 10.3321/j.issn:0250-3301.1998.02.005
17 Dai B. ; Gong W. M. ; Zhang X. L. ; Zhang L. ; He R. Nat. Gas Chem. Ind. (Chin.) 2000, 25 (6), 11.
代斌; 宫为民; 张秀玲; 张琳; 何仁. 天然气化工:C1化学与化工, 2000, 25 (6), 11.
18 Dai B. ; Gong W. M. China Environ. Sci. (Chin.) 1999, 19 (5), 410.
doi: 10.3321/j.issn:1000-6923.1999.05.007
代斌; 宫为民. 中国环境科学, 1999, 19 (5), 410.
doi: 10.3321/j.issn:1000-6923.1999.05.007
19 Dobrea S. ; Mihaila I. ; Tiron V. ; Popa G. Rom. Rep. Phys. 2014, 66 (4), 1147.
20 Tan S. Y. ; Yang D. W. Nat. Gas Chem. Ind. (Chin.) 2008, 33, 23.
潭世语; 杨大伟. 天然气化工:C1化学与化工, 2008, 33, 23.
21 Zhao H. Q. Plasma Chemistry and Processing Hefei: Plasma Chemistry and Processing; University of Science and Technology Press, 1993, 154- 167.
赵化侨. 等离子体化学与工艺, 合肥: 中国科学技术大学出版社, 1993, 154- 167.
22 Aleksandrov N. L. ; Kindysheva S. V. ; Kirpichnikov A. A. ; Kosarev I. N. ; Starikovskaia S. M. ; Starikovskii A. Y. J. Phys. D: Appl. Phys. 2007, 40, 4493.
doi: 10.1088/0022-3727/40/15/019
23 Fridman A. Plasma Chemistry 1st ed New York, NY, USA: Cambridge University Press: New York, 2008, 259- 317.
24 Zhang J. H. ; Sun J. Z. ; Gong Y. ; Wang D. Z. ; Ma T. C. ; Liu Y. Vacuum 2009, 83, 133.
doi: 10.1016/j.vacuum.2008.03.046
25 Hueso J. L. ; González-Elipe A. R. ; Cotrino J. ; Caballero A. J. Phys. Chem. A 2005, 109 (22), 4930.
doi: 10.1021/jp0502398
26 Kossyi I. A. ; Kostinsky A. Y. ; Matveyev A. A. ; Silakov V. P. Plasma Sources Sci. Technol. 1992, 1, 207.
doi: 10.1088/0963-0252/1/3/011
27 Ye C. ; Ning Z. Y. ; Jiang F. M. ; Wu X. M. ; Xin Y. Diagnostic Principle and Technology of Low Temperature Plasma at Low Pressure Beijing: Science Publishing House, 2010, 193- 200.
叶超; 宁兆元; 江美福; 吴雪梅; 辛煜. 低气压低温等离子体诊断原理与技术, 北京: 科学出版社, 2010, 193- 200.
[1] 刘艳芳,胡兵,尹雅芝,刘国亮,洪昕林. 无表面活性剂条件下一锅法制备金属/氧化锌复合材料用于催化二氧化碳加氢制甲醇反应[J]. 物理化学学报, 2019, 35(2): 223-229.
[2] 高云楠,刘世桢,赵振清,陶亨聪,孙振宇. 二氧化碳多相催化加氢制C2及以上烃类和醇的研究进展[J]. 物理化学学报, 2018, 34(8): 858-872.
[3] 张玉景,代兴超,王红利,石峰. 二氧化碳和胺催化合成甲酰胺反应研究[J]. 物理化学学报, 2018, 34(8): 845-857.
[4] 程晓蒙,焦东霞,梁志豪,魏金金,李宏平,杨俊佼. 聚苯乙烯-聚4-乙烯基吡啶两亲嵌段共聚物在CO2膨胀液体中的组装行为[J]. 物理化学学报, 2018, 34(8): 945-951.
[5] 宁汇,王文行,毛勤虎,郑诗瑞,杨中学,赵青山,吴明铂. 1-辛基-3-甲基咪唑功能化石墨片负载氧化亚铜催化二氧化碳电还原制乙烯[J]. 物理化学学报, 2018, 34(8): 938-944.
[6] 周智华,夏书梅,何良年. 绿色催化二氧化碳、炔丙醇和亲核试剂的三组分反应[J]. 物理化学学报, 2018, 34(8): 838-844.
[7] 孙帅其,易颜辉,王丽,张家良,郭洪臣. 负载型双金属催化剂的制备及其等离子体催化氨分解制氢性能[J]. 物理化学学报, 2017, 33(6): 1123-1129.
[8] 白晓芳,陈为,王白银,冯光辉,魏伟,焦正,孙予罕. 二氧化碳电化学还原的研究进展[J]. 物理化学学报, 2017, 33(12): 2388-2403.
[9] 全泉,谢顺吉,王野,徐艺军. 石墨烯基复合材料应用于光电二氧化碳还原的基本原理,研究进展和发展前景[J]. 物理化学学报, 2017, 33(12): 2404-2423.
[10] 王娟,李世坤,赵侦超,周丹红,陆安慧,张维萍. 胺基功能化的炭材料上二氧化碳吸附的密度泛函理论研究[J]. 物理化学学报, 2016, 32(7): 1666-1673.
[11] 聂望欣,邹秀晶,汪学广,丁伟中,鲁雄刚. 介孔γ-Al2O3负载的高分散Ni-Ce-Zr氧化物的制备及其二氧化碳甲烷化研究[J]. 物理化学学报, 2016, 32(11): 2803-2810.
[12] 程晓蒙,李宇,陈总,李宏平,郑晓芳. 亚临界和超临界二氧化碳-甲醇混合气相及液相区中甲醇核磁弛豫速率比较研究[J]. 物理化学学报, 2016, 32(11): 2671-2677.
[13] 朱庆宫,孙晓甫,康欣晨,马珺,钱庆利,韩布兴. 泡沫铜负载硫化亚铜电极高效电催化还原二氧化碳制备甲酸[J]. 物理化学学报, 2016, 32(1): 261-266.
[14] 张晓晴, 徐艳, 杨春辉, 张燕平, 印永祥, 尚书勇. 原位共沉淀法制备Ni-Mg-Al-LDHs/γ-Al2O3催化前驱体在甲烷二氧化碳重整反应体系中的性能评价[J]. 物理化学学报, 2015, 31(5): 948-954.
[15] 李浙齐, 王特华, 李秀媛, 张雅琴, 纪敏. 三维有序大孔MgFe0.1Al1.9O4催化剂制备及其催化乙苯与CO2氧化脱氢的性能[J]. 物理化学学报, 2015, 31(4): 743-749.