Please wait a minute...
陈瑞1, 王维1, 卜童乐1, 库治良1, 钟杰1, 彭勇1, 肖生强1, 尤为1,2, 黄福志1, 程一兵1,3, 傅正义1
1 武汉理工大学材料复合新技术国家重点实验室, 武汉 430070;
2 Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA;
3 Department of Materials Science and Engineering, Monash University, VIC 3800, Australia
Low-Cost Fullerene Derivative as an Efficient Electron Transport Layer for Planar Perovskite Solar Cells
CHEN Rui1, WANG Wei1, BU Tongle1, KU Zhiliang1, ZHONG Jie1, PENG Yong1, XIAO Shengqiang1, YOU Wei1,2, HUANG Fuzhi1, CHENG Yibing1,3, FU Zhengyi1
1 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China;
2 Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA;
3 Department of Materials Science and Engineering, Monash University, VIC 3800, Australia
 全文: PDF(514 KB)   输出: BibTeX | EndNote (RIS) | Supporting Info
摘要: 有机无机杂化钙钛矿太阳能电池(PSCs)近几年吸引了众多的关注。目前,在反式平板异质结钙钛矿太阳能电池中,最普遍使用的电子传输层材料是富勒烯衍生物PCBM,但是由于其价格昂贵,将会影响钙钛矿太阳能电池的最终产业化。本文开发出一种新的低成本富勒烯衍生物N-甲基-2-戊基[60]富勒烯吡咯烷(NMPFP)来取代PCBM,用于反式钙钛矿太阳能电池的电子传输层。和PCBM电子传输层相比,NMPFP具有更快的电子传输速率。用NMPFP制作的钙钛矿太阳能电池几乎没有迟滞现象,取得了13.83%的光电转换效率,和PCBM电池性能相当。而且,由于NMPFP更强的疏水性,其电池的稳定性优于PCBM电池。本研究表明NMPFP是一种非常有前景的电子传输材料,用于反式平板钙钛矿太阳能电池,可以有效的取代PCBM。
关键词: 反式钙钛矿太阳能电池电子传输层低成本PCBM富勒烯衍生物    
Abstract: Organic-inorganic hybrid perovskite solar cells (PSCs) have attracted significant attention owing to their high absorption coefficient and ambipolar charge transport properties. With only several years of development, the power conversion efficiency (PCE) has increased from 3.8% to 22.7%. In general, PSCs have two types of structural architecture:mesoporous and planar. The latter possesses higher potential for commercialization due to its simpler structure and fabrication process, especially the inverted planar structure, which possesses negligible hysteresis. In an inverted PSC, the electron transport materials (ETM) are deposited on a perovskite film. Only a few ETMs can be used for inverted PSCs as the perovskite film is easily damaged by the solvent used to dissolve the ETM. Furthermore, the energy levels of the ETM should be well aligned with that of the perovskites. Normally it is difficult to use inorganic ETMs as they require high temperatures for the annealing process to improve the electron conductivity; the perovskite film cannot sustain these high temperatures. To date, the fullerene derivative,[6,6]-phenyl-C61-butyric acid methyl ester (PCBM), is the most commonly used organic ETM for high efficiency inverted planar PSCs. However, the high manufacturing cost due to its complex synthesis retards the industrialization of the PSCs. Here, we introduce a fullerene pyrrolidine derivative, N-methyl-2-pentyl-[60]fullerene pyrrolidine (NMPFP), synthesized via the Prato reaction of C60 directly with cheap hexanal and sarcosine. Then the NMPFP electron transport layer (ETL) was prepared by a simple solution process. The properties of the resulting NMPFP ETLs were characterized using UV-Vis absorption spectroscopy, cyclic voltammetry measurements, atomic force microscopy, and conductivity test. From the results of the UV-Vis absorption spectroscopy and cyclic voltammetry measurements, the LUMO level of NMPFP ETL was calculated to be 0.2 eV higher than that of the PCBM ETL. This contributes to a higher open-circuit photovoltage. In addition, the NMPFP film presented higher conductivity than the PCBM film. Thus, the photo-generated charge carriers in the perovskite films should be transported more efficiently to the NMPFP electron transport layer (ETL) than to the PCBM ETL. This was confirmed by the results of the steady-state photoluminescence spectroscopy. Finally, the NMPFP as an alternative low-cost ETL was employed in an inverted planar PSC to evaluate the device performance. The device made with the NMPFP ETL yielded an efficiency of 13.83% with negligible hysteresis, which is comparable to the PCBM counterpart devices. Moreover, since stability is another important parameter retarding the commercialization of PSCs, the stability of the PCBM and NMPFP base PSCs were investigated and compared. It was found that the NMPFP devices possessed significantly improved stability due to the higher hydrophobicity of the NMPFP. In conclusion, this research demonstrates that NMPFP is a promising ETL to for the industrialization of cheap, efficient and stable inverted planar PSCs.
Key words: Inverted perovskite solar cells    Electron transport layer    Low cost    PCBM    Fullerene derivative
收稿日期: 2018-02-22 出版日期: 2018-03-13
中图分类号:  O649  
基金资助: 国家自然科学基金(51672202,21673170),湖北省科技厅技术创新重大专项(2016AAA041)和中央高校基本科研专项资金(WUT:2016IVA085)资助项目
通讯作者: 肖生强, 黄福志     E-mail:;
E-mail Alert


陈瑞, 王维, 卜童乐, 库治良, 钟杰, 彭勇, 肖生强, 尤为, 黄福志, 程一兵, 傅正义. 低成本富勒烯衍生物电子传输层在钙钛矿太阳能电池的应用[J]. 物理化学学报, 10.3866/PKU.WHXB201803131.

CHEN Rui, WANG Wei, BU Tongle, KU Zhiliang, ZHONG Jie, PENG Yong, XIAO Shengqiang, YOU Wei, HUANG Fuzhi, CHENG Yibing, FU Zhengyi. Low-Cost Fullerene Derivative as an Efficient Electron Transport Layer for Planar Perovskite Solar Cells. Acta Physico-Chimica Sinca, 10.3866/PKU.WHXB201803131.


(1) Green, M. A.; Ho-Baillie, A.; Snaith, H. J. Nat. Photon. 2014, 8, 506. doi: 10.1038/nphoton.2014.134
(2) Snaith, H. J. J. Phys. Chem. Lett. 2013, 4, 3623. doi: 10.1021/jz4020162
(3) Liu, M.; Johnston, M. B.; Snaith, H. J. Nature 2013, 501, 395. doi: 10.1038/nature12509
(4) Park, N. G. J. Phys. Chem. Lett. 2013, 4, 2423. doi: 10.1021/jz400892a
(5) Gao, P.; Grätzel, M.; Nazeeruddin, M. K. Energy Environ. Sci. 2014, 7, 2448. doi: 10.1039/c4ee00942h
(7) Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Science 2014, 345, 542. doi: 10.1126/science.1254050
(8) Heo, J. H.; Han, H. J.; Lee, M.; Song, M.; Kim, D. H.; Im, S. H. Energy Environ. Sci. 2015, 8, 2922. doi: 10.1039/c5ee01050k
(9) Xiao, M.; Huang, F.; Huang, W.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray-Weale, A.; Bach, U.; Cheng, Y. B.; Spiccia, L. Angew. Chem. Int. Ed. 2014, 53, 9898. doi: 10.1002/anie.201405334
(10) Bu, T.; Wen, M.; Zou, H.; Wu, J.; Zhou, P.; Li, W.; Ku, Z.; Peng, Y.; Li, Q.; Huang, F.; Cheng, Y. B.; Zhong, J. Solar Energy 2016, 139, 290. doi: 10.1016/j.solener.2016.10.003
(11) Bai, S.; Sakai, N.; Zhang, W.; Wang, Z.; Wang, J. T. W.; Gao, F.; Snaith, H. J. Chem. Mater. 2017, 29, 462. doi: 10.1021/acs.chemmater.6b05159
(12) Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H. Energy Environ. Sci. 2015, 8, 1602. doi: 10.1039/c5ee00120j
(13) Chen, K.; Hu, Q.; Liu, T.; Zhao, L.; Luo, D.; Wu, J.; Zhang, Y.; Zhang, W.; Liu, F.; Russell, T. P.; Zhu, R.; Gong, Q. Adv. Mater. 2016, 28, 10718. doi: 10.1002/adma.201604048
(14) Chiang, C. H.; Nazeeruddin, M. K.; Grätzel, M.; Wu, C. G. Energy Environ. Sci. 2017, 10, 808. doi: 10.1039/c6ee03586h
(15) Yan, W.; Ye, S.; Li, Y.; Sun, W.; Rao, H.; Liu, Z.; Bian, Z.; Huang, C. Adv. Energy Mater. 2016, 6, 1600474. doi: 10.1002/aenm.201600474
(16) Li, Y.; Sun, W.; Yan, W.; Ye, S.; Rao, H.; Peng, H.; Zhao, Z.; Bian, Z.; Liu, Z.; Zhou, H.; Huang, C. Adv. Energy Mater. 2016, 6, 1601353. doi: 10.1002/aenm.201601353
(17) Yan, W.; Rao, H.; Wei, C.; Liu, Z.; Bian, Z.; Xin, H.; Huang, W. Nano Energy 2017, 35, 62. doi: 10.1016/j.nanoen.2017.03.001
(18) Ye, S.; Rao, H.; Zhao, Z.; Zhang, L.; Bao, H.; Sun, W.; Li, Y.; Gu, F.; Wang, J.; Liu, Z.; Bian, Z.; Huang, C. J. Am. Chem. Soc. 2017, 139, 7504. doi: 10.1021/jacs.7b01439
(19) Luo, D.; Zhao, L.; Wu, J.; Hu, Q.; Zhang, Y.; Xu, Z.; Liu, Y.; Liu, T.; Chen, K.; Yang, W.; Zhang, W.; Zhu, R.; Gong, Q. Adv. Mater. 2017, 29, 1604758. doi: 10.1002/adma.201604758
(20) Wu, Y.; Yang, X.; Chen, W.; Yue, Y.; Cai, M.; Xie, F.; Bi, E.; Islam, A.; Han, L. Nat. Energy 2016, 1, 16148. doi: 10.1038/nenergy.2016.148
(21) Liu, X.; Yu, H.; Yan, L.; Dong, Q.; Wan, Q.; Zhou, Y.; Song, B.; Li, Y. ACS Appl. Mater. Inter. 2015, 7, 6230. doi: 10.1021/acsami.5b00468
(22) Qiu, W.; Buffière, M.; Brammertz, G.; Paetzold, U. W.; Froyen, L.; Heremans, P.; Cheyns, D. Org. Electron. 2015, 26, 30. doi: 10.1016/j.orgel.2015.06.046
(23) You, J.; Meng, L.; Song, T. B.; Guo, T. F.; Yang, Y. M.; Chang, W.H.; Hong, Z.; Chen, H.; Zhou, H.; Chen, Q.; Liu, Y.; De Marco, N.; Yang, Y. Nat. Nanotechnol. 2016, 11, 75. doi: 10.1038/nnano.2015.230
(24) Liang, P. W.; Chueh, C. C.; Williams, S. T.; Jen, A. K. Y. Adv. Energy Mater. 2015, 5, 1402321. doi: 10.1002/aenm.201402321
(25) Meng, X.; Bai, Y.; Xiao, S.; Zhang, T.; Hu, C.; Yang, Y.; Zheng, X.; Yang, S. Nano Energy 2016, 30, 341. doi: 10.1016/j.nanoen.2016.10.026
(26) Wang, Q.; Shao, Y.; Dong, Q.; Xiao, Z.; Yuan, Y.; Huang, J. Energy Environ. Sci. 2014, 7, 2359. doi: 10.1039/C4EE00233D
(27) Chen, W.; Wu, Y.; Yue, Y.; Liu, J.; Zhang, W.; Yang, X.; Chen, H.; Bi, E.; Ashraful, I.; Grätzel, M.; Han, L. Science 2015, 350, 944. doi: 10.1126/science.aad1015
(28) Liu, X.; Lin, F.; Chueh, C. C.; Chen, Q.; Zhao, T.; Liang, P. W.; Zhu, Z.; Sun, Y.; Jen, A. K. Y. Nano Energy 2016, 30, 417. doi: 10.1016/j.nanoen.2016.10.036
(29) Dai, S. M.; Tian, H. R.; Zhang, M. L.; Xing, Z.; Wang, L. Y.; Wang, X.; Wang, T.; Deng, L. L.; Xie, S. Y.; Huang, R. B.; Zheng, L. S. J. Power Sources 2017, 339, 27. doi: 10.1016/j.jpowsour.2016.11.047
(30) Yang, G.; Tao, H.; Qin, P.; Ke, W.; Fang, G. J. Mater. Chem. A 2016, 4, 3970. doi: 10.1039/c5ta09011c
(31) Tian, C.; Kochiss, K.; Castro, E.; Betancourt-Solis, G.; Han, H.; Echegoyen, L. J. Mater. Chem. A 2017, 5, 7326. doi: 10.1039/c7ta00362e
(32) Chang, C. Y.; Huang, W. K.; Chang, Y. C.; Lee, K. T.; Chen, C. T. J. Mater. Chem. A 2016, 4, 640. doi: 10.1039/c5ta09080f
(33) Seo, J.; Park, S.; Chan Kim, Y.; Jeon, N. J.; Noh, J. H.; Yoon, S. C.; Seok, S. I. Energy Environ. Sci. 2014, 7, 2642. doi: 10.1039/c4ee01216j
(34) Bin, Z.; Li, J.; Wang, L.; Duan, L. Energy Environ. Sci. 2016, 9, 3424. doi: 10.1039/c6ee01987k
(35) Yin, X.; Xu, Z.; Guo, Y.; Xu, P.; He, M. ACS Appl. Mater. Interface 2016, 8, 29580. doi: 10.1021/acsami.6b09326
(36) Yin, X.; Guo, Y.; Xue, Z.; Xu, P.; He, M.; Liu, B. Nano Res. 2015, 8, 1997. doi: 10.1007/s12274-015-0711-4
(37) Dong, F.; Guo, Y.; Xu, P.; Yin, X.; Li, Y.; He, M. Sci. China Mater.2017, 60, 295. doi: 10.1007/s40843-017-9009-8
(38) Liu, D.; Kelly, T. L. Nat. Photon. 2014, 8, 133. doi: 10.1038/nphoton.2013.342
(39) Chen, W.; Wu, Y.; Liu, J.; Qin, C.; Yang, X.; Islam, A.; Cheng, Y. B.; Han, L. Energy Environ. Sci. 2015, 8, 629. doi: 10.1039/c4ee02833c
(40) Hu, L.; Peng, J.; Wang, W.; Xia, Z.; Yuan, J.; Lu, J.; Huang, X.; Ma, W.; Song, H.; Chen, W.; Cheng, Y. B.; Tang, J. ACS Photonics 2014, 1, 547. doi: 10.1021/ph5000067
(41) Sun, Q.; Wang, H.; Yang, C.; Li, Y. J. Mater. Chem. 2003, 13, 800. doi: 10.1039/B209469J
(42) Sun, C.; Wu, Z.; Yip, H. L.; Zhang, H.; Jiang, X. F.; Xue, Q.; Hu, Z.; Hu, Z.; Shen, Y.; Wang, M.; Huang, F.; Cao, Y. Adv. Energy Mater. 2016, 6, 1501534. doi: 10.1002/aenm.201501534
(43) Kim, H. S.; Seo, J. Y.; Park, N. G. J. Phys. Chem. C 2016, 120, 27840. doi: 10.1021/acs.jpcc.6b09412
[1] 马勇, 王广伟, 孙绍涛, 宋秀能. 第一性原理研究富勒烯衍生物PCBM的近边X射线吸收精细结构谱[J]. 物理化学学报, 2015, 31(8): 1483-1488.
[2] 申利莹, 吴晓明, 华玉林, 董木森, 印寿根, 郑加金. 利用Cs基衍生物作为n型掺杂剂改善蓝色有机发光二极管的效率[J]. 物理化学学报, 2012, 28(06): 1497-1501.
[3] 张材荣, 陈宏善, 陈玉红, 魏智强, 蒲忠胜. 亚甲基富勒烯衍生物[6,6]-苯基-C61丁酸甲酯的密度泛函研究[J]. 物理化学学报, 2008, 24(08): 1353-1358.