Please wait a minute...
物理化学学报  2019, Vol. 35 Issue (4): 401-407    DOI: 10.3866/PKU.WHXB201803131
论文     
低成本富勒烯衍生物电子传输层在钙钛矿太阳能电池的应用
陈瑞1,王维1,卜童乐1,库治良1,钟杰1,彭勇1,肖生强1,*(),尤为1,2,黄福志1,*(),程一兵1,3,傅正义1
1 武汉理工大学材料复合新技术国家重点实验室,武汉 430070
2 Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA.
3 Department of Materials Science and Engineering, Monash University, VIC 3800, Australia
Low-Cost Fullerene Derivative as an Efficient Electron Transport Layer for Planar Perovskite Solar Cells
Rui CHEN1,Wei WANG1,Tongle BU1,Zhiliang KU1,Jie ZHONG1,Yong PENG1,Shengqiang XIAO1,*(),Wei YOU1,2,Fuzhi HUANG1,*(),Yibing CHENG1,3,Zhengyi FU1
1 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
2 Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA.
3 Department of Materials Science and Engineering, Monash University, VIC 3800, Australia
 全文: PDF(1454 KB)   HTML 输出: BibTeX | EndNote (RIS) | Supporting Info
摘要:

有机无机杂化钙钛矿太阳能电池(PSCs)近几年吸引了众多的关注。目前,在反式平板异质结钙钛矿太阳能电池中,最普遍使用的电子传输层材料是富勒烯衍生物PCBM,但是由于其价格昂贵,将会影响钙钛矿太阳能电池的最终产业化。本文开发出一种新的低成本富勒烯衍生物N-甲基-2-戊基[60]富勒烯吡咯烷(NMPFP)来取代PCBM,用于反式钙钛矿太阳能电池的电子传输层。和PCBM电子传输层相比,NMPFP具有更快的电子传输速率。用NMPFP制作的钙钛矿太阳能电池几乎没有迟滞现象,取得了13.83%的光电转换效率,和PCBM电池性能相当。而且,由于NMPFP更强的疏水性,其电池的稳定性优于PCBM电池。本研究表明NMPFP是一种非常有前景的电子传输材料,用于反式平板钙钛矿太阳能电池,可以有效的取代PCBM。

关键词: 反式钙钛矿太阳能电池电子传输层低成本PCBM富勒烯衍生物    
Abstract:

Organic-inorganic hybrid perovskite solar cells (PSCs) have attracted significant attention owing to their high absorption coefficient and ambipolar charge transport properties. With only several years of development, the power conversion efficiency (PCE) has increased from 3.8% to 22.7%. In general, PSCs have two types of structural architecture: mesoporous and planar. The latter possesses higher potential for commercialization due to its simpler structure and fabrication process, especially the inverted planar structure, which possesses negligible hysteresis. In an inverted PSC, the electron transport materials (ETM) are deposited on a perovskite film. Only a few ETMs can be used for inverted PSCs as the perovskite film is easily damaged by the solvent used to dissolve the ETM. Furthermore, the energy levels of the ETM should be well aligned with that of the perovskites. Normally it is difficult to use inorganic ETMs as they require high temperatures for the annealing process to improve the electron conductivity; the perovskite film cannot sustain these high temperatures. To date, the fullerene derivative, [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM), is the most commonly used organic ETM for high efficiency inverted planar PSCs. However, the high manufacturing cost due to its complex synthesis retards the industrialization of the PSCs. Here, we introduce a fullerene pyrrolidine derivative, N-methyl-2-pentyl-[60]fullerene pyrrolidine (NMPFP), synthesized via the Prato reaction of C60 directly with cheap hexanal and sarcosine. Then the NMPFP electron transport layer (ETL) was prepared by a simple solution process. The properties of the resulting NMPFP ETLs were characterized using UV-Vis absorption spectroscopy, cyclic voltammetry measurements, atomic force microscopy, and conductivity test. From the results of the UV-Vis absorption spectroscopy and cyclic voltammetry measurements, the LUMO level of NMPFP ETL was calculated to be 0.2 eV higher than that of the PCBM ETL. This contributes to a higher open-circuit photovoltage. In addition, the NMPFP film presented higher conductivity than the PCBM film. Thus, the photo-generated charge carriers in the perovskite films should be transported more efficiently to the NMPFP electron transport layer (ETL) than to the PCBM ETL. This was confirmed by the results of the steady-state photoluminescence spectroscopy. Finally, the NMPFP as an alternative low-cost ETL was employed in an inverted planar PSC to evaluate the device performance. The device made with the NMPFP ETL yielded an efficiency of 13.83% with negligible hysteresis, which is comparable to the PCBM counterpart devices. Moreover, since stability is another important parameter retarding the commercialization of PSCs, the stability of the PCBM and NMPFP base PSCs were investigated and compared. It was found that the NMPFP devices possessed significantly improved stability due to the higher hydrophobicity of the NMPFP. In conclusion, this research demonstrates that NMPFP is a promising ETL to replace PCBM for the industrialization of cheap, efficient and stable inverted planar PSCs.

Key words: Inverted perovskite solar cells    Electron transport layer    Low cost    PCBM    Fullerene derivative
收稿日期: 2018-02-22 出版日期: 2018-03-13
中图分类号:  O649  
基金资助: 国家自然科学基金(51672202);国家自然科学基金(21673170);湖北省科技厅技术创新重大专项(2016AAA041);中央高校基本科研专项资金(WUT:2016IVA085)
通讯作者: 肖生强,黄福志     E-mail: shengqiang@whut.edu.cn;fuzhi.huang@whut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈瑞
王维
卜童乐
库治良
钟杰
彭勇
肖生强
尤为
黄福志
程一兵
傅正义

引用本文:

陈瑞,王维,卜童乐,库治良,钟杰,彭勇,肖生强,尤为,黄福志,程一兵,傅正义. 低成本富勒烯衍生物电子传输层在钙钛矿太阳能电池的应用[J]. 物理化学学报, 2019, 35(4): 401-407, 10.3866/PKU.WHXB201803131

Rui CHEN,Wei WANG,Tongle BU,Zhiliang KU,Jie ZHONG,Yong PENG,Shengqiang XIAO,Wei YOU,Fuzhi HUANG,Yibing CHENG,Zhengyi FU. Low-Cost Fullerene Derivative as an Efficient Electron Transport Layer for Planar Perovskite Solar Cells. Acta Phys. -Chim. Sin., 2019, 35(4): 401-407, 10.3866/PKU.WHXB201803131.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201803131        http://www.whxb.pku.edu.cn/CN/Y2019/V35/I4/401

Scheme 1  The structure of NMPFP and PCBM.
Fig 1  (a) Cross-sectional SEM image of the p-i-n planar heterojunction PSCs with NMPFP as the ETL. (b) J–V curves of the best PSCs prepared with the PCBM and NMPFP ETL under AM 1.5 G 100 mW·cm−2 illumination. (c) IPCE spectra of the PSCs with the PCBM and NMPFP ETL. (d) J–V curves of the PSCs based on NMPFP with the forward and reverse scan.
ETL type Voc/V Jsc/(mA∙cm−2) FF PCE/% Calculated Jsc/(mA·cm−2)
PCBM 1.018 20.10 0.678 13.87 19.54
NMPFP 1.049 19.48 0.677 13.83 19.50
Table 1  The photovoltaic characteristics of the PCBM and NMPFP ETL based PSCs.
Fig 2  Cyclic voltammograms of the PCBM and NMPFP films from potential (V vs FC/FC+) (a) −2.5 to −0.5 and (b) 0.5 to 2.5, and Energy level diagram of the fabricated devices based on different ETLs (c).
Fig 3  (a) Steady state PL spectra and (b) time resolved PL spectra of the perovskite, perovskite/PCBM, and perovskite/NMPFP films. (c) Electron-only devices of PCBM and NMPFP films.
Fig 4  (a) Stability test of the PSCs in air with a humidity of 30% for 60 days, and water contact angles on (b) NMPFP and (c) PCBM films.
1 Green M. A. ; Ho-Baillie A. ; Snaith H. J. Nat. Photon. 2014, 8, 506.
doi: 10.1038/nphoton.2014.134
2 Snaith H. J. J. Phys. Chem. Lett. 2013, 4, 3623.
doi: 10.1021/jz4020162
3 Liu M. ; Johnston M. B. ; Snaith H. J. Nature 2013, 501, 395.
doi: 10.1038/nature12509
4 Park N. G. J. Phys. Chem. Lett. 2013, 4, 2423.
doi: 10.1021/jz400892a
5 Gao P. ; Grätzel M. ; Nazeeruddin M. K. Energy Environ. Sci. 2014, 7, 2448.
doi: 10.1039/c4ee00942h
6 https://www.nrel.gov/pv/assets/images/efficiency-chart.png
7 Zhou H. ; Chen Q. ; Li G. ; Luo S. ; Song T. B. ; Duan H. S. ; Hong Z. ; You J. ; Liu Y. ; Yang Y. Science 2014, 345, 542.
doi: 10.1126/science.1254050
8 Heo J. H. ; Han H. J. ; Lee M. ; Song M. ; Kim D. H. ; Im S. H. Energy Environ. Sci. 2015, 8, 2922.
doi: 10.1039/c5ee01050k
9 Xiao M. ; Huang F. ; Huang W. ; Dkhissi Y. ; Zhu Y. ; Etheridge J. ; Gray-Weale A. ; Bach U. ; Cheng Y. B. ; Spiccia L. Angew. Chem. Int. Ed. 2014, 53, 9898.
doi: 10.1002/anie.201405334
10 Bu T. ; Wen M. ; Zou H. ; Wu J. ; Zhou P. ; Li W. ; Ku Z. ; Peng Y. ; Li Q. ; Huang F. ; Cheng Y. B. ; Zhong J. Solar Energy 2016, 139, 290.
doi: 10.1016/j.solener.2016.10.003
11 Bai S. ; Sakai N. ; Zhang W. ; Wang Z. ; Wang J. T. W. ; Gao F. ; Snaith H. J. Chem. Mater. 2017, 29, 462.
doi: 10.1021/acs.chemmater.6b05159
12 Heo J. H. ; Han H. J. ; Kim D. ; Ahn T. K. ; Im S. H. Energy Environ. Sci. 2015, 8, 1602.
doi: 10.1039/c5ee00120j
13 Chen K. ; Hu Q. ; Liu T. ; Zhao L. ; Luo D. ; Wu J. ; Zhang Y. ; Zhang W. ; Liu F. ; Russell T. P. ; Zhu R. ; Gong Q. Adv. Mater. 2016, 28, 10718.
doi: 10.1002/adma.201604048
14 Chiang C. H. ; Nazeeruddin M. K. ; Grätzel M. ; Wu C. G. Energy Environ. Sci. 2017, 10, 808.
doi: 10.1039/c6ee03586h
15 Yan W. ; Ye S. ; Li Y. ; Sun W. ; Rao H. ; Liu Z. ; Bian Z. ; Huang C. Adv. Energy Mater. 2016, 6, 1600474.
doi: 10.1002/aenm.201600474
16 Li Y. ; Sun W. ; Yan W. ; Ye S. ; Rao H. ; Peng H. ; Zhao Z. ; Bian Z. ; Liu Z. ; Zhou H. ; Huang C. Adv. Energy Mater. 2016, 6, 1601353.
doi: 10.1002/aenm.201601353
17 Yan W. ; Rao H. ; Wei C. ; Liu Z. ; Bian Z. ; Xin H. ; Huang W. Nano Energy 2017, 35, 62.
doi: 10.1016/j.nanoen.2017.03.001
18 Ye S. ; Rao H. ; Zhao Z. ; Zhang L. ; Bao H. ; Sun W. ; Li Y. ; Gu F. ; Wang J. ; Liu Z. ; Bian Z. ; Huang C. J. Am. Chem. Soc. 2017, 139, 7504.
doi: 10.1021/jacs.7b01439
19 Luo D. ; Zhao L. ; Wu J. ; Hu Q. ; Zhang Y. ; Xu Z. ; Liu Y. ; Liu T. ; Chen K. ; Yang W. ; Zhang W. ; Zhu R. ; Gong Q. Adv. Mater. 2017, 29, 1604758.
doi: 10.1002/adma.201604758
20 Wu Y. ; Yang X. ; Chen W. ; Yue Y. ; Cai M. ; Xie F. ; Bi E. ; Islam A. ; Han L. Nat. Energy 2016, 1, 16148.
doi: 10.1038/nenergy.2016.148
21 Liu X. ; Yu H. ; Yan L. ; Dong Q. ; Wan Q. ; Zhou Y. ; Song B. ; Li Y. ACS Appl. Mater. Inter. 2015, 7, 6230.
doi: 10.1021/acsami.5b00468
22 Qiu W. ; Buffière M. ; Brammertz G. ; Paetzold U. W. ; Froyen L. ; Heremans P. ; Cheyns D. Org. Electron. 2015, 26, 30.
doi: 10.1016/j.orgel.2015.06.046
23 You J. ; Meng L. ; Song T. B. ; Guo T. F. ; Yang Y. M. ; Chang W. H. ; Hong Z. ; Chen H. ; Zhou H. ; Chen Q. ; Liu Y. ; De Marco N. ; Yang Y. Nat. Nanotechnol. 2016, 11, 75.
doi: 10.1038/nnano.2015.230
24 Liang P. W. ; Chueh C. C. ; Williams S. T. ; Jen A. K. Y. Adv. Energy Mater. 2015, 5, 1402321.
doi: 10.1002/aenm.201402321
25 Meng X. ; Bai Y. ; Xiao S. ; Zhang T. ; Hu C. ; Yang Y. ; Zheng X. ; Yang S. Nano Energy 2016, 30, 341.
doi: 10.1016/j.nanoen.2016.10.026
26 Wang Q. ; Shao Y. ; Dong Q. ; Xiao Z. ; Yuan Y. ; Huang J. Energy Environ. Sci. 2014, 7, 2359.
doi: 10.1039/C4EE00233D
27 Chen W. ; Wu Y. ; Yue Y. ; Liu J. ; Zhang W. ; Yang X. ; Chen H. ; Bi E. ; Ashraful I. ; Grätzel M. ; Han L. Science 2015, 350, 944.
doi: 10.1126/science.aad1015
28 Liu X. ; Lin F. ; Chueh C. C. ; Chen Q. ; Zhao T. ; Liang P. W. ; Zhu Z. ; Sun Y. ; Jen A. K. Y. Nano Energy 2016, 30, 417.
doi: 10.1016/j.nanoen.2016.10.036
29 Dai S. M. ; Tian H. R. ; Zhang M. L. ; Xing Z. ; Wang L. Y. ; Wang X. ; Wang T. ; Deng L. L. ; Xie S. Y. ; Huang R. B. ; Zheng L. S. J. Power Sources 2017, 339, 27.
doi: 10.1016/j.jpowsour.2016.11.047
30 Yang G. ; Tao H. ; Qin P. ; Ke W. ; Fang G. J. Mater. Chem. A 2016, 4, 3970.
doi: 10.1039/c5ta09011c
31 Tian C. ; Kochiss K. ; Castro E. ; Betancourt-Solis G. ; Han H. ; Echegoyen L. J. Mater. Chem. A 2017, 5, 7326.
doi: 10.1039/c7ta00362e
32 Chang C. Y. ; Huang W. K. ; Chang Y. C. ; Lee K. T. ; Chen C. T. J. Mater. Chem. A 2016, 4, 640.
doi: 10.1039/c5ta09080f
33 Seo J. ; Park S. ; Chan Kim Y. ; Jeon N. J. ; Noh J. H. ; Yoon S. C. ; Seok S. I. Energy Environ. Sci. 2014, 7, 2642.
doi: 10.1039/c4ee01216j
34 Bin Z. ; Li J. ; Wang L. ; Duan L. Energy Environ. Sci. 2016, 9, 3424.
doi: 10.1039/c6ee01987k
35 Yin X. ; Xu Z. ; Guo Y. ; Xu P. ; He M. ACS Appl. Mater. Interface 2016, 8, 29580.
doi: 10.1021/acsami.6b09326
36 Yin X. ; Guo Y. ; Xue Z. ; Xu P. ; He M. ; Liu B. Nano Res. 2015, 8, 1997.
doi: 10.1007/s12274-015-0711-4
37 Dong F. ; Guo Y. ; Xu P. ; Yin X. ; Li Y. ; He M. Sci. China Mater. 2017, 60, 295.
doi: 10.1007/s40843-017-9009-8
38 Liu D. ; Kelly T. L. Nat. Photon. 2014, 8, 133.
doi: 10.1038/nphoton.2013.342
39 Chen W. ; Wu Y. ; Liu J. ; Qin C. ; Yang X. ; Islam A. ; Cheng Y. B. ; Han L. Energy Environ. Sci. 2015, 8, 629.
doi: 10.1039/c4ee02833c
40 Hu L. ; Peng J. ; Wang W. ; Xia Z. ; Yuan J. ; Lu J. ; Huang X. ; Ma W. ; Song H. ; Chen W. ; Cheng Y. B. ; Tang J. ACS Photonics 2014, 1, 547.
doi: 10.1021/ph5000067
41 Sun Q. ; Wang H. ; Yang C. ; Li Y. J. Mater. Chem. 2003, 13, 800.
doi: 10.1039/B209469J
42 Sun C. ; Wu Z. ; Yip H. L. ; Zhang H. ; Jiang X. F. ; Xue Q. ; Hu Z. ; Hu Z. ; Shen Y. ; Wang M. ; Huang F. ; Cao Y. Adv. Energy Mater. 2016, 6, 1501534.
doi: 10.1002/aenm.201501534
43 Kim H. S. ; Seo J. Y. ; Park N. G. J. Phys. Chem. C 2016, 120, 27840.
doi: 10.1021/acs.jpcc.6b09412
[1] 马勇,王广伟,孙绍涛,宋秀能. 第一性原理研究富勒烯衍生物PCBM的近边X射线吸收精细结构谱[J]. 物理化学学报, 2015, 31(8): 1483-1488.
[2] 申利莹, 吴晓明, 华玉林, 董木森, 印寿根, 郑加金. 利用Cs基衍生物作为n型掺杂剂改善蓝色有机发光二极管的效率[J]. 物理化学学报, 2012, 28(06): 1497-1501.
[3] 张材荣, 陈宏善, 陈玉红, 魏智强, 蒲忠胜. 亚甲基富勒烯衍生物[6,6]-苯基-C61丁酸甲酯的密度泛函研究[J]. 物理化学学报, 2008, 24(08): 1353-1358.