Please wait a minute...
物理化学学报  2018, Vol. 34 Issue (12): 1397-1404    DOI: 10.3866/PKU.WHXB201804022
所属专题: 表面物理化学
Tree-Like NiS-Ni3S2/NF Heterostructure Array and Its Application in Oxygen Evolution Reaction
Pan LUO,Fang SUN,Ju DENG,Haitao XU,Huijuan ZHANG*(),Yu WANG*()
 全文: PDF(3192 KB)   HTML 输出: BibTeX | EndNote (RIS) | Supporting Info


关键词: 异质结结构树状整列NiS-Ni3S2析氧反应    

In the past decade, fossil fuel resources have been exploited and utilized extensively, which could lead to increasing environmental crises, like greenhouse effect, water pollution, etc. Accordingly, many coping strategies have been put forward, such as water electrolysis, metal-air batteries, fuel cell, etc. Among the strategies mentioned above, water electrolysis is one of the most promising. Water splitting, which can achieve sustainable hydrogen production, is a favorable strategy due to the abundance of water resources. Splitting of water includes two half reactions integral to its operation: hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). However, its practical application is mainly impeded by the sluggish anode reaction. Simultaneously, noble metal oxides (IrO2 and RuO2) and Pt-based catalysts have been recognized as typical OER catalysts; however, the scarcity of noble metals greatly limits their development. Hence, designing an alternative electrocatalyst plays a vital role in the development of OER. However, exploring a highly active electrocatalyst for OER is still difficult. Herein, a miraculous construction of a tree-like array of NiS/Ni3S2 heterostructure, which is directly grown on Ni foam substrate, is synthesized via one-step hydrothermal process. Since NiS and Ni3S2 have shown great OER performance in previous investigations, this novel NiS-Ni3S2/Nikel foam (NF) heterostructure array has tremendous potential as a practical OER catalyst. Upon application in OER, the NiS-Ni3S2/NF heterostructure array catalyst exhibits excellent activity and stability. More specifically, this novel tree-like NiS-Ni3S2 heterostructure array shows extremely low overpotential (269 mV to achieve a current density of 10 mA·cm-2) and small Tafel slope for OER. It also shows extraordinary stability in alkaline electrolytes. Compared with the Ni3S2 nanorods array, the NiS-Ni3S2 heterostructure array has a synergistic effect that can improve the OER performance. Due to the secondary structure (Ni3S2 nanosheets), the tree-like NiS-Ni3S2 array provides more active sites could have higher specific surface area. The greater activity of the NiS/Ni3S2 heterostructure may also stem from the tight conjunction between tree-like NiS/Ni3S2 and the Ni foam substrate, which is beneficial for electronic transmission. Hydroxy groups can accumulate in large amounts on the surface of the tree-like array, and it also generates some Ni-based oxides that are favorable to OER. Moreover, the synergistic effect of such heterostructure can intrinsically improve the OER activity. The unique tree-like NiS-Ni3S2 heterostructure array has great potential as an alternative OER electrocatalyst.

Key words: Heterostructure    Tree-like array    NiS-Ni3S2    Oxygen evolution reaction
收稿日期: 2018-03-08 出版日期: 2018-04-02
中图分类号:  O647  
基金资助: 中央高校基本科研业务费(0301005202017);中组部青年千人计划(0220002102003);国家自然科学基金(21373280);国家自然科学基金(21403019);北京分子科学国家实验室;重庆大学百人计划(0903005203205);机械传动国家重点实验室(SKLMT-ZZKT-2017M11)
通讯作者: 张慧娟,王煜     E-mail:;
E-mail Alert


罗盼,孙芳,邓菊,许海涛,张慧娟,王煜. NiS-Ni3S2树状异质结阵列在析氧反应中的应用[J]. 物理化学学报, 2018, 34(12): 1397-1404.

Pan LUO,Fang SUN,Ju DENG,Haitao XU,Huijuan ZHANG,Yu WANG. Tree-Like NiS-Ni3S2/NF Heterostructure Array and Its Application in Oxygen Evolution Reaction. Acta Phys. -Chim. Sin., 2018, 34(12): 1397-1404.


Fig 1  Different magnification FESEM images of tree-like NiS-Ni3S2 heterostructure array (a)–(c) and the corresponding XRD pattern (d).
Fig 2  (a) TEM image of tree-like NiS-Ni3S2 heterostructure and the corresponding HRTEM images in different region. (b) HRTEM image of branched NiS nanosheets. (c) HRTEM image of backboned Ni3S2 nanorods. (d)–(e) HRTEM image of different interface region of treelike NiS-Ni3S2 heterostructure.
Fig 3  FESEM image of tree-like NiS-Ni3S2 heterostrutures array and the corresponding EDX-mapping.
Fig 4  XPS survey spectra of tree-like NiS-Ni3S2 heterostructure array that before OER, (a) Ni 2p and (b) S 2p.
Fig 5  (a) Polarization curve of Nickel foam (blue), Ni3S2 nanorods array (black) and tree-like NiS-Ni3S2 heterostructure array (red) at a sacn rate of 5 mV·s-1. (b) Tafel plot of Ni3S2 nanorods array (red) and tree-like NiS-Ni3S2 heterostructure array (black) for OER. (c) Stability measurement of the tree-like NiS-Ni3S2 heterostructure array for 1000 CV cycles. (d) Chronopotentiometric curve of tree-like NiS-Ni3S2 heterostructure array at constant current density of 50 mA·cm-2. All the measurements were performed in 1.0 mol·L-1 KOH.
Fig 6  Electrochemical double layer capacitance ananlsis (a) cyclic voltammogram (CV) curves of tree-like NiS-Ni3S2 heterostructure array at different scan rates. (b) Scan rate dependence of the current density of tree-like NiS-Ni3S2 heterostructure array which could estimate double layer capacitance (Cdl). (c) CV curves of Ni3S2 nanorods array at different scan rates. (d) Scan rate dependence of the current density of Ni3S2 nanorods array which could estimate Cdl.
Fig 7  (a) FESEM image of tree-like NiS-Ni3S2 heterostructure array that after long-term OER test and (b) the corresponding XRD pattern. XPS data in (c) Ni 2p region and (d) S 2p region of tree-like NiS-Ni3S2 heterostructure array after OER
1 Wang F. ; Shifa T. A. ; Zhan X. ; Huang Y. ; Liu K. ; Cheng Z. ; Jiang C. ; He J. Nanoscale 2015, 7 (47), 19764.
doi: 10.1039/c5nr06718a
2 Yan Y. ; Xia B. Y. ; Zhao B. ; Wang X. J. Mater. Chem. A 2016, 4 (45), 17587.
doi: 10.1039/c6ta08075h
3 Gao M. R. ; Xu Y. F. ; Jiang J. ; Yu S. H. Chem. Soc. Rev. 2013, 42 (7), 2986.
doi: 10.1039/C2CS35310e
4 Zhou W. ; Wu X. J. ; Cao X. ; Huang X. ; Tan C. ; Tian J. ; Liu H. ; Wang J. ; Zhang H. Energy Environ. Sci. 2013, 6 (10), 2921.
doi: 10.1039/c3ee41572d
5 Dou Y. H. ; Liao T. ; Ma Z. Q. ; Tian D. L. ; Liu Q. N. ; Xiao F. ; Sun Z. Q. ; Kim J. H. ; Dou S. X. Nano Energy 2016, 30, 267.
doi: 10.1016/j.nanoen.2016.10.020
6 Jin C. ; Lu F. L. ; Cao X. C. ; Yang Z. R. ; Yang R. Z. J. Mater. Chem. A 2013, 1 (39), 12170.
doi: 10.1039/c3ta12118f
7 Cheng N. ; Liu Q. ; Tian J. ; Sun X. ; He Y. ; Zhai S. ; Asiri A. M. Int. J. Hydrog. Energy 2015, 40 (32), 9866.
doi: 10.1016/j.ijhydene.2015.06.105
8 Dong B. ; Zhao X. ; Han G. Q. ; Li X. ; Shang X. ; Liu Y. R. ; Hu W. H. ; Chai Y. M. ; Zhao H. ; Liu C. G. J. Mater. Chem. A 2016, 4 (35), 13499.
doi: 10.1039/C6TA03177C
9 Liang H. ; Meng F. ; Cabán-Acevedo M. ; Li L. ; Forticaux A. ; Xiu L. ; Wang Z. ; Jin S. Nano Lett. 2015, 15 (2), 1421.
doi: 10.1021/nl504872s
10 Gao M. R. ; Cao X. ; Gao Q. ; Xu Y. F. ; Zheng Y. R. ; Jiang J. ; Yu S. H. ACS Nano 2014, 8 (4), 3970.
doi: 10.1021/nn500880v
11 Swesi A. T. ; Masud J. ; Nath M. Energy Environ. Sci. 2016, 9 (5), 1771.
doi: 10.1039/c5ee02463c
12 Chen J. S. ; Ren J. ; Shalom M. ; Fellinger T. ; Antonietti M. ACS Appl. Mater. Interfaces 2016, 8 (8), 5509.
doi: 10.1021/acsami.5b10099
13 Chen P. Z. ; Xu K. ; Tong Y. ; Li X. L. ; Tao S. ; Fang Z. W. ; Chu W. S. ; Wu X. J. ; Wu C. Z. Inorg. Chem. Front. 2016, 3 (2), 236.
doi: 10.1039/C5QI00197H
14 Yang L. ; Gao M. G. ; Dai B. ; Guo X. H. ; Liu Z. Y. ; Peng B. H. Electrochim. Acta 2016, 191, 813.
doi: 10.1016/j.electacta.2016.01.160
15 Li T. T. ; Zuo Y. P. ; Lei X. M. ; Li N. ; Liu J. W. ; Han H. Y. J. Mater. Chem. A 2016, 4 (21), 8029.
doi: 10.1039/C6TA01547F
16 Zhang Z. ; Zhao H. ; Xia Q. ; Allen J. ; Zeng Z. ; Gao C. ; Li Z. ; Du X. ; ?wierczek K. Electrochim. Acta 2016, 211, 761.
doi: 10.1016/j.electacta.2016.06.103
17 Feng L. L. ; Yu G. ; Wu Y. ; Li G. D. ; Li H. ; Sun Y. ; Asefa T. ; Chen W. ; Zou X. J. Am. Chem. Soc. 2015, 137 (44), 14023.
doi: 10.1021/jacs.5b08186
18 Zhou X. ; Liu Y. ; Ju H. ; Pan B. ; Zhu J. ; Ding T. ; Wang C. ; Yang Q. Chem. Mater. 2016, 28 (6), 1838.
doi: 10.1021/acs.chemmater.5b05006
19 Zhang J. ; Wang T. ; Pohl D. ; Rellinghaus B. ; Dong R. ; Liu S. ; Zhuang X. ; Feng X. Angew. Chem. Int. Ed. 2016, 55 (23), 6702.
doi: 10.1002/anie.201602237
20 Duan X. D. ; Wang C. ; Shaw J. C. ; Cheng R. ; Chen Y. ; Li H. L. ; Wu X. P. ; Tang Y. ; Zhang Q. L. ; Pan A. L. ; et al Nat. Nanotechnol. 2014, 9 (12), 1024.
doi: 10.1038/nnano.2014.222
21 Lee D. K. ; Ahn C. W. ; Jeon H. J. Microelectron. Eng. 2016, 166, 1.
doi: 10.1016/j.mee.2016.09.003
22 Zhao Y. ; Zhang Y. ; Zhao H. ; Li X. ; Li Y. ; Wen L. ; Yan Z. ; Huo Z. Nano Res. 2015, 8 (8), 2763.
doi: 10.1007/s12274-015-0783-1
23 Jeong Y. U. ; Manthiram A. Inorg. Chem. 2001, 40 (1), 73.
doi: 10.1021/ic000819d
24 Huang S. ; Harris K. D. ; Lopez-Capel E. ; Manning D. A. ; Rickard D. Inorg. Chem. 2009, 48 (24), 11486.
doi: 10.1021/ic901512z
25 Zheng J. ; Zhou W. ; Liu T. ; Liu S. ; Wang C. ; Guo L. Nanoscale 2017, 9 (13), 4409.
doi: 10.1039/c6nr07953a
26 Xu K. ; Chen P. ; Li X. ; Tong Y. ; Ding H. ; Wu X. ; Chu W. ; Peng Z. ; Wu C. ; Xie Y. J. Am. Chem. Soc. 2015, 137 (12), 4119.
doi: 10.1021/ja5119495
27 Zhu T. ; Zhu L. L. ; Wang J. ; Ho G. W. J. Mater. Chem. A 2016, 4 (36), 13916.
doi: 10.1039/c6ta05618k
[1] 王海燕,石高全. 层状双金属氢氧化物/石墨烯复合材料及其在电化学能量存储与转换中的应用[J]. 物理化学学报, 2018, 34(1): 22-35.
[2] 玄翠娟,王杰,朱静,王得丽. 基于金属有机框架化合物纳米电催化剂的研究进展[J]. 物理化学学报, 2017, 33(1): 149-164.
[3] 王森林, 王丽品, 张振洪. Ni/NiCo2O4电极的制备及其析氧反应性能[J]. 物理化学学报, 2013, 29(05): 981-988.
[4] 李海玲;王文静;亢国虎;黄金昭;徐征. 反应压强变化对Fe∶NiOx阳极催化薄膜性质的影响[J]. 物理化学学报, 2006, 22(03): 330-334.