Please wait a minute...
物理化学学报  2018, Vol. 34 Issue (12): 1381-1389    DOI: 10.3866/PKU.WHXB201804092
所属专题: 表面物理化学
论文     
Ca掺杂的CeO2模型催化剂的形貌和电子结构及其与CO2分子的相互作用
王岩,李雄,胡善玮*(),徐倩,鞠焕鑫,朱俊发*()
Morphologies and Electronic Structures of Calcium-Doped Ceria Model Catalysts and Their Interaction with CO2
Yan WANG,Xiong LI,Shanwei HU*(),Qian XU,Huanxin JU,Junfa ZHU*()
 全文: PDF(2561 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

利用扫描隧道显微镜、X射线光电子能谱和同步辐射光电子能谱研究了CeO2(111),部分还原的CeO2-x(111) (0<x<0.5)以及Ca掺杂的CeO2模型催化剂的形貌、电子结构以及它们与CO2分子间的相互作用。CeO2(111)和部分还原的CeO2-x(111)薄膜外延生长于Cu(111)单晶表面。不同Ca掺杂的CeO2薄膜是通过在CeO2(111)薄膜表面室温物理沉积金属Ca及随后真空退火到不同温度而得到的。不同的制备过程导致样品具有不同的表面组成,化学态和结构。CO2吸附到CeO2和部分还原的CeO2-x表面后导致表面羧酸盐的形成。此外,相比于CeO2表面,羧酸盐物种更易在部分还原的CeO2-x表面生成,而且更加稳定。而在Ca掺杂的氧化铈薄膜表面,Ca2+离子的存在有利于CO2的吸附,且探测到碳酸盐物种的形成。

关键词: 二氧化铈扫描隧道显微镜X射线光电子能谱同步辐射光电子能谱    
Abstract:

CeO2-based catalysts are promising for use in various important chemical reactions involving CO2, such as the dry reforming of methane to produce synthesis gas and methanol. CeO2 has a superior ability to store and release oxygen, which can improve the catalytic performance by suppressing the formation of coke. Although the adsorption and activation behavior of CO2 on the CeO2 surface has been extensively investigated in recent years, the intermediate species formed from CO2 on ceria has not been clearly identified. The reactivity of the ceria surface to CO2 has been reported to be tuned by introducing CaO, which increases the number of basic sites for the ceria-based catalysts. However, the mechanism by which Ca2+ ions affect CO2 decomposition is still debated. In this study, the morphologies and electronic properties of stoichiometric CeO2(111), partially reduced CeO2-x(111) (0 < x < 0.5), and calcium-doped ceria model catalysts, as well as their interactions with CO2, were investigated by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy, and synchrotron radiation photoemission spectroscopy. Stoichiometric CeO2(111) and partially reduced CeO2-x(111) films were epitaxially grown on a Cu(111) surface. STM images show that the stoichiometric CeO2 film exhibits large, flat terraces that completely cover the Cu(111) surface. The reduced CeO2-x film also has a flat surface and an ordered structure, but dark spaces are observed on the film. Different Ca-doped ceria films were prepared by physical vapor deposition of metallic Ca on CeO2(111) at room temperature and subsequent annealing to 600 or 800 K in ultrahigh vacuum. The different preparation procedures produce samples with various surface components, oxidation states, and structures. Our results indicate that the deposition of metallic Ca on CeO2 at room temperature leads to a partial reduction of Ce from the +4 to the +3 state, accompanied by the oxidation of Ca to Ca2+. Large CaO nanofilms are observed on CeO2 upon annealing to 600 K. However, small CaO nanoislands appear near the step edges and more Ca2+ ions migrate into the subsurface of CeO2 upon annealing to 800 K. In addition, different surface-adsorbed species are identified after CO2 adsorption on ceria (CeO2 and reduced CeO2-x) and Ca-doped ceria films. CO2 adsorption on the stoichiometric CeO2 and partially reduced CeO2-x surfaces leads to the formation of surface carboxylate. Moreover, the surface carboxylate species is more easily formed on reduced CeO2-x with enhanced thermal stability than on stoichiometric CeO2. On Ca-doped ceria films, the presence of Ca2+ ions is observed to be beneficial for CO2 adsorption; further, the carbonate species is identified.

Key words: Calcium    Ceria    Scanning tunneling microscopy    X-ray photoelectron spectroscopy    Synchrotron radiation photoemission spectroscopy
收稿日期: 2018-03-14 出版日期: 2018-04-09
中图分类号:  O643  
基金资助: 国家自然科学基金(U1732272);国家自然科学基金(21473178);国家自然科学基金(21403205);国家重点研发计划(2017YFA0403402);中国博士后科学基金(BH2310000032)
通讯作者: 胡善玮,朱俊发     E-mail: husw@ustc.edu.cn;jfzhu@ustc.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王岩
李雄
胡善玮
徐倩
鞠焕鑫
朱俊发

引用本文:

王岩,李雄,胡善玮,徐倩,鞠焕鑫,朱俊发. Ca掺杂的CeO2模型催化剂的形貌和电子结构及其与CO2分子的相互作用[J]. 物理化学学报, 2018, 34(12): 1381-1389.

Yan WANG,Xiong LI,Shanwei HU,Qian XU,Huanxin JU,Junfa ZHU. Morphologies and Electronic Structures of Calcium-Doped Ceria Model Catalysts and Their Interaction with CO2. Acta Phys. -Chim. Sin., 2018, 34(12): 1381-1389.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201804092        http://www.whxb.pku.edu.cn/CN/Y2018/V34/I12/1381

Fig 1  STM images (130 nm × 130 nm) of samples: (a) CeO2(111), (b) CeO2-x(111), (c) Ca/CeO2, (d) Ca/CeO2-600 K, and (e) Ca/CeO2-800 K. The insets of (a) and (b) show the high-resolution STM images (4.8 nm × 4.8 nm) of CeO2(111) and CeO2-x(111), respectively. Panels (c)–(e) include the line scans along the corresponding Ca islands on ceria. (f) Magnified STM image (6.5 nm × 6.5 nm) of the black framed region in panel (e), showing the detailed structure of the CeO2 substrate for Ca/CeO2-800 K.
Fig 2  Core level spectra of (a) Ce 3d and (b, c) Ca 2p from samples: CeO2, CeO2-x, Ca/CeO2, Ca/CeO2-600 K, and Ca/CeO2-800 K. (a) and (b) are collected with a photon energy of 1486.6 eV. (c) is acquired with a photon energy of 420 eV. (d) The values of Ce3+/(Ce3+ + Ce4+) in samples: CeO2-x(111), Ca/CeO2, Ca/CeO2-600 K, and Ca/CeO2-800 K. (e) The integrated Ca 2p intensities of samples: Ca/CeO2, Ca/CeO2-600 K, and Ca/CeO2-800 K collected at photon energies of 1486.6 and 420 eV.
Fig 3  C 1s spectra obtained from samples: (a) CeO2, (b) CeO2-x, (c) Ca/CeO2-600 K, and (d) Ca/CeO2-800 K upon 10 L CO2 adsorption at 180 K and subsequent heating to higher temperatures.
Fig 4  O 1s spectra obtained from samples: (a) CeO2-x, (b) Ca/CeO2-600 K, and (c) Ca/CeO2-800 K upon 10 L CO2 adsorption at 180 K and subsequent heating to higher temperatures. The O 1s spectra of CeO2-x, Ca/CeO2-600 K, and Ca/CeO2-800 K are plotted as top curves in (a)-(c), respectively. (d) Integrated C 1s intensities of CeO2, CeO2-x, Ca/CeO2-600 K, and Ca/CeO2-800 K (black) and the intensity ratios of O 1s peak γ to peak α of CeO2-x, Ca/CeO2-600 K, and Ca/CeO2-800 K (red) with 10 L CO2 adsorption at 180 K as a function of temperature.
Fig 5  Ca 2p spectra of (a) Ca/CeO2-600 K and (b) Ca/CeO2-800 K upon 10 L CO2 adsorption at 180 K and subsequent heating to higher temperatures.
Fig 6  VB spectra obtained from samples: (a) CeO2, (b) CeO2-x, (c) Ca/CeO2-600 K, and (d) Ca/CeO2-800 K upon 10 L CO2 adsorption at 180 K and subsequent heating to higher temperatures. The VB of CeO2, CeO2-x, Ca/CeO2-600 K, and Ca/CeO2-800 K are plotted as top curves in (a)–(d), respectively.
1 Huang T. J. ; Jhao S. Y. Appl. Catal. A 2006, 302, 325.
doi: 10.1016/j.apcata.2006.02.027
2 Stacchiola D. J. Acc. Chem. Res. 2015, 48, 2151.
doi: 10.1021/acs.accounts.5b00200
3 Rostrup-Nielsen J. R. Catal. Today 1997, 37, 225.
doi: 10.1016/S0920-5861(97)00016-3
4 Wang X. ; Gorte R. J. Appl. Catal. A 2002, 224, 209.
doi: 10.1016/S0926-860X(01)00783-9
5 Kong D. ; Zhu J. ; Ernst K. H. J. Phys. Chem. C 2016, 120, 5980.
doi: 10.1021/acs.jpcc.5b10338
6 Hahn K. R. ; Iannuzzi M. ; Seitsonen A. P. ; Hutter J. J. Phys. Chem. C 2013, 117, 1701.
doi: 10.1021/jp309565u
7 Appel L. G. ; Eon J. G. ; Schmal M. Catal. Lett. 1998, 56, 199.
doi: 10.1023/a:1019098121432
8 Jin T. ; Zhou Y. ; Mains G. J. ; White J. M. J. Phys. Chem. 1987, 91, 5931.
doi: 10.1021/j100307a023
9 Valenzuela R. X. ; Bueno G. ; Solbes A. ; Sapi?a F. ; Martínez E. ; Cortés Corberán V. Top. Catal. 2001, 15, 181.
doi: 10.1023/a:1016697615043
10 Pacchioni G. ; Ricart J. M. ; Illas F. J. Am. Chem. Soc. 1994, 116, 10152.
doi: 10.1021/ja00101a038
11 Kadossov E. ; Burghaus U. J. Phys. Chem. C 2008, 112, 7390.
doi: 10.1021/jp800755q
12 Solis B. H. ; Cui Y. ; Weng X. ; Seifert J. ; Schauermann S. ; Sauer J. ; Shaikhutdinov S. ; Freund H. J. Phys. Chem. Chem. Phys. 2017, 19, 4231.
doi: 10.1039/C6CP08504K
13 Kang M. ; Wu X. ; Zhang J. ; Zhao N. ; Wei W. ; Sun Y. RSC Adv. 2014, 4, 5583.
doi: 10.1039/c3ra45595e
14 Istadi; ; Amin N. A. S. J. Molec. Catal. A: Chem. 2006, 259, 61.
doi: 10.1016/j.molcata.2006.06.003
15 Xu Q. ; Hu S. ; Cheng D. ; Feng X. ; Han Y. ; Zhu J. J. Chem. Phys. 2012, 136, 154705.
doi: 10.1063/1.4704676
16 Wang W. ; Hu S. ; Han Y. ; Pan X. ; Xu Q. ; Zhu J. Surf. Sci. 2016, 653, 205.
doi: 10.1016/j.susc.2016.07.007
17 Horcas I. ; Fernández R. ; Gómez-Rodríguez J. M. ; Colchero J. ; Gómez-Herrero J. ; Baro A. M. Rev. Sci. Instrum. 2007, 78, 013705.
doi: 10.1063/1.2432410
18 Lu J. L. ; Gao H. J. ; Shaikhutdinov S. ; Freund H. J. Surf. Sci. 2006, 600, 5004.
doi: 10.1016/j.susc.2006.08.023
19 Mullins D. R. ; Radulovic P. V. ; Overbury S. H. Surf. Sci. 1999, 429, 186.
doi: 10.1016/S0039-6028(99)00369-6
20 Fukui K. I. ; Namai Y. ; Iwasawa Y. Appl. Surf. Sci. 2002, 188, 252.
doi: 10.1016/S0169-4332(01)00917-5
21 Hu S. ; Wang Y. ; Wang W. ; Han Y. ; Fan Q. ; Feng X. ; Xu Q. ; Zhu J. J. Phys. Chem. C 2015, 119, 3579.
doi: 10.1021/jp511691p
22 Campbell C. T. ; Peden C. H. F. Science 2005, 309, 713.
doi: 10.1126/science.1113955
23 Mullins D. R. ; Overbury S. H. ; Huntley D. R. Surf. Sci. 1998, 409, 307.
doi: 10.1016/S0039-6028(98)00257-X
24 Pfau A. ; Schierbaum K. D. Surf. Sci. 1994, 321, 71.
doi: 10.1016/0039-6028(94)90027-2
25 Skála T. ; ?utara F. ; Prince K. C. ; Matolín V. J. Electron Spectrosc. Relat. Phenom. 2009, 169, 20.
doi: 10.1016/j.elspec.2008.10.003
26 Skála T. ; ?utara F. ; ?koda M. ; Prince K. C. ; Matolín V. J. Phys.: Condens. Matter 2009, 21, 055005.
doi: 10.1088/0953-8984/21/5/055005
27 Dupin J. C. ; Gonbeau D. ; Vinatier P. ; Levasseur A. Phys. Chem. Chem. Phys. 2000, 2, 1319.
doi: 10.1039/a908800h
28 Li S. Q. ; Hu J. S. ; Liu B. ; Zhang G. H. ; Cao W. ; Wang Q. ; Zhang N. Cem. Concr. Res. 1999, 29, 1549.
doi: 10.1016/S0008-8846(99)00111-8
29 Alba-Rubio A. C. ; Santamaría-González J. ; Mérida-Robles J. M. ; Moreno-Tost R. ; Martín-Alonso D. ; Jiménez-López A. ; Maireles-Torres P. Catal. Today 2010, 149, 281.
doi: 10.1016/j.cattod.2009.06.024
30 Barin, I. Thermochemical Data of Pure Substances, 3rd ed. ; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2008; pp. 416–523.
31 Shao X. ; Myrach P. ; Nilius N. ; Freund H. J. J. Phys. Chem. C 2011, 115, 8784.
doi: 10.1021/jp201852x
32 Shao X. ; Nilius N. ; Freund H. J. J. Am. Chem. Soc. 2012, 134, 2532.
doi: 10.1021/ja211396t
33 Hu S. ; Wang W. ; Wang Y. ; Xu Q. ; Zhu J. J. Phys. Chem. C 2015, 119, 18257.
doi: 10.1021/acs.jpcc.5b04325
34 Skála T. ; Tsud N. ; Prince K. C. ; Matolín V. Appl. Surf. Sci. 2011, 257, 3682.
doi: 10.1016/j.apsusc.2010.11.107
35 ?koda M. ; Cabala M. ; Cháb V. ; Prince K. C. ; Sedlá?ek L. ; Skála T. ; ?utara F. ; Matolín V. Appl. Surf. Sci. 2008, 254, 4375.
doi: 10.1016/j.apsusc.2008.01.080
36 Ginting E. ; Hu S. ; Thorne J. E. ; Zhou Y. ; Zhu J. ; Zhou J. Appl. Surf. Sci. 2013, 283, 1.
doi: 10.1016/j.apsusc.2013.05.009
37 Vayssilov G. N. ; Lykhach Y. ; Migani A. ; Staudt T. ; Petrova G. P. ; Tsud N. ; Skála T. ; Bruix A. ; Illas F. ; Prince K. C. ; et al Nat. Mater. 2011, 10, 310.
doi: 10.1038/nmat2976
38 Skála T. ; Tsud N. ; Prince K. C. ; Matolín V. J. Phys.: Condens. Matter 2011, 23, 215001.
doi: 10.1088/0953-8984/23/21/215001
39 Staudt T. ; Lykhach Y. ; Tsud N. ; Skála T. ; Prince K. C. ; Matolín V. ; Libuda J. J. Phys. Chem. C 2011, 115, 8716.
doi: 10.1021/jp200382y
40 Mudiyanselage K. ; Senanayake S. D. ; Feria L. ; Kundu S. ; Baber A. E. ; Graciani J. ; Vidal A. B. ; Agnoli S. ; Evans J. ; Chang R. Angew. Chem. Int. Ed. 2013, 52, 5101.
doi: 10.1002/anie.201210077
41 Doyle C. S. ; Kendelewicz T. ; Carrier X. ; Brown G. E. Surf. Rev. Lett. 1999, 06, 1247.
doi: 10.1142/s0218625x99001402
42 Lykhach Y. ; Staudt T. ; Streber R. ; Lorenz M. P. A. ; Bayer A. ; Steinrück H. P. ; Libuda J. Eur. Phys. J. B 2010, 75, 89.
doi: 10.1140/epjb/e2010-00110-x
43 Hari B. ; Ding X. ; Guo Y. ; Deng Y. ; Wang C. ; Li M. ; Wang Z. Mater. Lett. 2006, 60, 1515.
doi: 10.1016/j.matlet.2005.11.062
44 Altrusaitis J. ; Usher C. R. ; Grassian V. H. Phys. Chem. Chem. Phys. 2007, 9, 3011.
doi: 10.1039/b617697f
45 Kova?evi? V. ; Lu?i? S. ; Hace D. ; Packham D. ; ?mit I. Polym. Eng. Sci. 1999, 39, 1433.
doi: 10.1002/pen.11534
46 Voigts F. ; Bebensee F. ; Dahle S. ; Volgmann K. ; Maus-Friedrichs W. Surf. Sci. 2009, 603, 40.
doi: 10.1016/j.susc.2008.10.016
47 Fujimori Y. ; Zhao X. ; Shao X. ; Levchenko S. V. ; Nilius N. ; Sterrer M. ; Freund H. J. J. Phys. Chem. C 2016, 120, 5565.
doi: 10.1021/acs.jpcc.6b00433
48 Miao S. Appl. Surf. Sci. 2003, 220, 298.
doi: 10.1016/S0169-4332(03)00830-4
49 Ni M. ; Ratner B. D. Surf. Interface Anal. 2008, 40, 1356.
doi: 10.1002/sia.2904
50 Shui M. Appl. Surf. Sci. 2003, 220, 359.
doi: 10.1016/S0169-4332(03)00866-3
51 Staudt T. ; Lykhach Y. ; Tsud N. ; Skála T. ; Prince K. C. ; Matolín V. ; Libuda J. J. Catal. 2010, 275, 181.
doi: 10.1016/j.jcat.2010.07.032
52 ?utara F. ; Cabala M. ; Sedlá?ek L. ; Skála T. ; ?koda M. ; Matolín V. ; Prince K. C. ; Cháb V. Thin Solid Films 2008, 516, 6120.
doi: 10.1016/j.tsf.2007.11.013
53 Matolín V. ; Cabala M. ; Cháb V. ; Matolínová I. ; Prince K. C. ; ?koda M. ; ?utara F. ; Skála T. ; Veltruská K. Surf. Interface Anal. 2008, 40, 225.
doi: 10.1002/sia.2625
54 Ochs D. ; Braun B. ; Maus-Friedrichs W. ; Kempter V. Surf. Sci. 1998, 417, 406.
doi: 10.1016/S0039-6028(98)00721-3
55 Vohs J. M. ; Barteau M. A. Surf. Sci. 1988, 201, 481.
doi: 10.1016/0039-6028(88)90499-2
56 von Niessen W. ; Bieri G. ; ?sbrink L. J. Electron Spectrosc. Relat. Phenom. 1980, 21, 175.
doi: 10.1016/0368-2048(80)85046-8
57 Tegeler E. ; Kosuch N. ; Wiech G. ; Faessler A. J. Electron Spectrosc. Relat. Phenom. 1980, 18, 23.
doi: 10.1016/0368-2048(80)80002-8
[1] 赵新飞,陈浩,吴昊,王睿,崔义,傅强,杨帆,包信和. 氧化锌有序结构在Au(111)和Cu(111)上的生长[J]. 物理化学学报, 2018, 34(12): 1373-1380.
[2] 王心怡,谢磊,丁元琪,姚心仪,张弛,孔惠慧,王利坤,许维. 超高真空条件下碱基与金属在Au(111)表面的相互作用[J]. 物理化学学报, 2018, 34(12): 1321-1333.
[3] 赵烨梁,王兵. 衬底对N@C60分子电子自旋共振谱的影响[J]. 物理化学学报, 2018, 34(12): 1312-1320.
[4] 刘强,韩永,曹云君,李小宝,黄武根,余毅,杨帆,包信和,李毅敏,刘志. 利用原位APXPS与STM研究H2在ZnO(10${\rm{\bar 1}}$0)表面的活化[J]. 物理化学学报, 2018, 34(12): 1366-1372.
[5] 张婧,何有军,闵杰. 钙钛矿太阳能电池中小分子空穴传输材料的研究进展[J]. 物理化学学报, 2018, 34(11): 1221-1238.
[6] 杨春和,唐爱伟,滕枫,蒋克健. 钙钛矿CH3NH3PbI3晶体的电化学[J]. 物理化学学报, 2018, 34(11): 1197-1201.
[7] 黄鹏,元利刚,李耀文,周祎,宋波. 左旋多巴和N, N-二甲基亚砜共掺杂PEDOT:PSS作为空穴传输层的高性能p-i-n型钙钛矿太阳能电池[J]. 物理化学学报, 2018, 34(11): 1264-1271.
[8] 许利刚,邱伟,陈润锋,张宏梅,黄维. ZnO电极修饰层在钙钛矿太阳能电池中的应用[J]. 物理化学学报, 2018, 34(1): 36-48.
[9] 黄杨,孙庆德,徐文,何垚,尹万健. 卤化钙钛矿太阳能电池材料理论研究进展[J]. 物理化学学报, 2017, 33(9): 1730-1751.
[10] 顾津宇,齐朋伟,彭扬. 无机非铅钙钛矿太阳能电池研究进展[J]. 物理化学学报, 2017, 33(7): 1379-1389.
[11] 陈爱喜,汪宏,段赛,张海明,徐昕,迟力峰. 电势诱导的N-异丁酰基-L-半胱氨酸分子在金(111)表面的相转变[J]. 物理化学学报, 2017, 33(5): 1010-1016.
[12] 郭瑞,张嘉霖,赵宋焘,余小江,钟舒,孙硕,李震宇,陈伟. 基于全氟酞菁铜和碗烯双分子体系在银和石墨表面自组装行为的低温扫描隧道显微镜研究[J]. 物理化学学报, 2017, 33(3): 627-632.
[13] 王利,石何霞,王文元,施宏,邵翔. 三聚氰胺与蜜勒胺在Au (111)表面的自组装和氢键识别[J]. 物理化学学报, 2017, 33(2): 393-398.
[14] 王亚楠,马品,彭路梅,张迪,方艳艳,周晓文,林原. 醋酸铅作为铅源合成CH3NH3PbBr3-xClx纳米晶体颗粒[J]. 物理化学学报, 2017, 33(10): 2099-2105.
[15] 刘继翀,唐峰,叶枫叶,陈琪,陈立桅. 利用扫描开尔文探针显微镜观察薄膜光电器件能级排布[J]. 物理化学学报, 2017, 33(10): 1934-1943.