Please wait a minute...
物理化学学报  2018, Vol. 34 Issue (12): 1366-1372    DOI: 10.3866/PKU.WHXB201804161
所属专题: 表面物理化学
论文     
利用原位APXPS与STM研究H2在ZnO(10${\rm{\bar 1}}$0)表面的活化
刘强1,4,韩永1,3,曹云君2,李小宝1,4,黄武根2,余毅3,杨帆2,包信和2,李毅敏1,3,*(),刘志1,3,*()
1 中国科学院上海微系统与信息技术研究所,信息功能材料国家重点实验室,上海 200050
2 中国科学院大连化学物理研究所,辽宁 大连 116011
3 上海科技大学物质科学与技术学院,上海 201203
4 中国科学院大学,北京 100049
In-situ APXPS and STM Study of the Activation of H2 on ZnO(10${\rm{\bar 1}}$0) Surface
Qiang LIU1,4,Yong HAN1,3,Yunjun CAO2,Xiaobao LI1,4,Wugen HUANG2,Yi YU3,Fan YANG2,Xinhe BAO2,Yimin LI1,3,*(),Zhi LIU1,3,*()
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China
2 Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning Province, P. R. China
3 School of Physical Science and Technology, Shanghai Tech University, Shanghai 201203, P. R. China
4 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
 全文: PDF(1608 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

Cu/ZnO/Al2O3是工业中最广泛使用的甲醇合成催化剂。然而该催化反应的活性位点和机理目前仍存争议。H2作为反应物之一,研究其在ZnO表面的活化和解离对于弄清甲醇合成反应的催化机理具有重要的帮助。本工作利用近常压光电子能谱(APXPS)和扫描隧道显微镜(STM)原位研究了H2在ZnO(10${\rm{\bar 1}}$0)表面上的活化和解离。APXPS结果表明:在0.3 mbar (1 mbar = 100 Pa)的H2气氛中,室温下ZnO表面形成羟基(OH)吸附物种。STM实验发现通入H2后ZnO表面发生了(1×1)到(2×1)的重构。上述结果和原子H在ZnO(10${\rm{\bar 1}}$0)表面的吸附结果一致。然而吸附H2O可以导致同样的现象。因此,我们还开展了H2O在ZnO(10${\rm{\bar 1}}$0)表面吸附的对比实验。结果表明:H2气氛中ZnO表面发生0.3 eV的能带弯曲,而H2O吸附实验中几乎观察不到能带弯曲发生。同时,热稳定性实验表明H2气氛中ZnO表面的OH不同于H2O解离吸附产生的OH,前者具有更高的脱附温度。因此,本工作的结果表明常温和常压下H2在ZnO(10${\rm{\bar 1}}$0)表面发生解离吸附。这一结果和以往超高真空下未发现H2在ZnO(10${\rm{\bar 1}}$0)表面上的解离不同,说明H2的活化是一个压力依赖过程。

关键词: H2ZnO(10${\rm{\bar 1}}$0)活化解离吸附近常压光电子能谱扫描隧道显微镜    
Abstract:

Cu/ZnO/Al2O3 is one of the most widely used catalysts in industrial methanol synthesis. However, the reaction mechanism and the nature of the active sites on the catalyst for this reaction are still under debate. Thus, detailed information is needed to understand the catalytic processes occurring on the surface of this catalyst. H2 is one of the reaction gases in methanol synthesis. Studies of the activation and dissociation behaviors of H2 on ZnO surfaces are of great importance in understanding the catalytic mechanism of methanol synthesis. In this work, the activation and dissociation processes of H2 on a ZnO(10${\rm{\bar 1}}$0) single crystal surface were investigated in-situ using ambient-pressure X-ray photoelectron spectroscopy (APXPS) and scanning tunneling microscopy (STM), two powerful surface characterization techniques. In the APXPS experiments, results indicated the formation of hydroxyl (OH) species on the ZnO single crystal surface at room temperature in 0.3 mbar (1 mbar = 100 Pa) H2 atmosphere. Meanwhile, STM measurements showed that the ZnO surface was reconstructed from a (1×1) to a (2×1) structure upon introduction of H2. These observations revealed adsorption behaviors of H2 the same as those of atomic H on a ZnO(10${\rm{\bar 1}}$0) surface as seen in previous studies, which could be evidence of the dissociative adsorption of H2 on a ZnO surface. However, H2O adsorption on ZnO surfaces can also result in the formation of OH species, which can be observed using XPS. The STM results show that the exposure of H2O also leads to the reconstruction from a (1×1) to a (2×1) structure on the ZnO(10${\rm{\bar 1}}$0) surface upon H2 introduction. Hence, it is necessary to exclude the influence of H2O in this work, because there may be trace amounts of H2O in the H2 gas. Therefore, we performed a comparative study of H2 and H2O on ZnO(10${\rm{\bar 1}}$0) single crystal surface. A downward band bending of 0.3 eV was observed on the ZnO surface in 0.3 mbar H2 atmosphere using APXPS, while negligible band bending was shown in the case of the H2O atmosphere. Moreover, thermal stability studies revealed that the OH group formed in the H2 atmosphere desorbed at a higher temperature than the one resulting from H2O adsorption, meaning that the two OH groups formed on the ZnO surface were different. Results in this work provide evidence of the dissociative adsorption of H2 on the ZnO(10${\rm{\bar 1}}$0) surface at room temperature and atmospheric pressure. This is in contrast to previous findings, in which no H2 dissociation on a ZnO(10${\rm{\bar 1}}$0) surface under ultra-high vacuum conditions was observed, indicating that the activation of H2 on ZnO surfaces is a pressure dependent process.

Key words: H2    ZnO(10${\rm{\bar 1}}$0)    Activation    Dissociative adsorption    APXPS    STM
收稿日期: 2018-03-14 出版日期: 2018-04-16
中图分类号:  O647  
基金资助: 国家自然科学基金(11227902);技部重点研发计划(2017YFB0602205);技部重点研发计划(2016YFA0202803);中国科学院战略优先研究项目(XDB17020200)
通讯作者: 李毅敏,刘志     E-mail: liym1@shanghaitech.edu.cn;zliu2@mail.sim.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘强
韩永
曹云君
李小宝
黄武根
余毅
杨帆
包信和
李毅敏
刘志

引用本文:

刘强,韩永,曹云君,李小宝,黄武根,余毅,杨帆,包信和,李毅敏,刘志. 利用原位APXPS与STM研究H2在ZnO(10${\rm{\bar 1}}$0)表面的活化[J]. 物理化学学报, 2018, 34(12): 1366-1372, 10.3866/PKU.WHXB201804161

Qiang LIU,Yong HAN,Yunjun CAO,Xiaobao LI,Wugen HUANG,Yi YU,Fan YANG,Xinhe BAO,Yimin LI,Zhi LIU. In-situ APXPS and STM Study of the Activation of H2 on ZnO(10${\rm{\bar 1}}$0) Surface. Acta Phys. -Chim. Sin., 2018, 34(12): 1366-1372, 10.3866/PKU.WHXB201804161.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201804161        http://www.whxb.pku.edu.cn/CN/Y2018/V34/I12/1366

图1  室温下ZnO(10${\rm{\bar 1}}$0)表面在UHV以及0.3 mbar H2条件下的O 1s谱图(a);清洁的ZnO(10${\rm{\bar 1}}$0)表面在UHV (b)以及暴露H2后(c)的STM表面结构图;ZnO(10${\rm{\bar 1}}$0)表面H的吸附位点示意图(d)
图2  ZnO(10${\rm{\bar 1}}$0)表面暴露H2 (a)或者H2O (b)以及之后进行升温实验的O 1s谱图;表面吸附物的量随实验条件的变化曲线图(c)
图3  在暴露H2或者H2O之后,ZnO(10${\rm{\bar 1}}$0)表面的O 1s和Zn 2p随实验条件变化的谱图
图4  ZnO(10${\rm{\bar 1}}$0)表面暴露H2 (红点)或者H2O (蓝点)之后能带弯曲的程度与所分别形成的OH的相对含量之间的变化趋势
1 Wang Z. L. J. Phys.: Condens. Matter 2004, 16, R829.
doi: 10.1088/0953-8984/16/25/R01
2 Janotti A. ; Van de Walle C. G. Rep. Prog. Phys. 2009, 72, 126501.
doi: 10.1088/0034-4885/72/12/126501
3 Moezzi A. ; McDonagh A. M. ; Cortie M. B. Chem. Eng. J. 2012, 185, 1.
doi: 10.1016/j.cej.2012.01.076
4 W?ll C. Prog. Surf. Sci. 2007, 82, 55.
doi: 10.1016/j.progsurf.2006.12.002
5 Wang Y. M. ; W?ll C. Chem. Soc. Rev. 2017, 46, 1875.
doi: 10.1039/C6CS00914J
6 Behrens M. ; Studt F. ; Kasatkin I. ; Kühl S. ; H?vecker M. ; Abild-Pedersen F. ; Zander S. ; Girgsdies F. ; Kurr P. ; Kniep B.-L ;et al Science 2012, 336, 893.
doi: 10.1126/science.1219831
7 Kuld S. ; Thorhauge M. ; Falsig H. ; Elkj?r C. F. ; Helveg S. ; Chorkendorff I. ; Sehested J. Science 2016, 352, 969.
doi: 10.1126/science.aaf0718
8 Kattel S. ; Ramírez P. J. ; Chen J. G. ; Rodriguez J. A. ; Liu P. Science 2017, 355, 1296.
doi: 10.1126/science.aal3573
9 Scarano D. ; Spoto G. ; Bordiga S. ; Zecchina A. ; Lamberti C. Surf. Sci. 1992, 276, 281.
doi: 10.1016/0039-6028(92)90716-J
10 Tang C. G. ; Spencer M. J. S. ; Barnard A. S. Phys. Chem. Chem. Phys. 2014, 16, 22139.
doi: 10.1039/C4CP03221G
11 Becker T. ; H?vel S. ; Kunat M. ; Boas C. ; Burghaus U. ; W?ll C. Surf. Sci. 2001, 486, L502.
doi: 10.1016/S0039-6028(01)01120-7
12 Eischens R. P. ; Pliskin W. A. ; Low M. J. D. J. Catal. 1962, 1, 180.
doi: 10.1016/0021-9517(62)90022-2
13 Kokes R. J. ; Dent A. L. ; Chang C. C. ; Dixon L. T. J. Am. Chem. Soc. 1972, 94, 4429.
doi: 10.1021/ja00768a005
14 Boccuzzi F. ; Borello E. ; Zecchina A. ; Bossi A. ; Camia M. J. Catal. 1978, 51, 150.
doi: 10.1016/0021-9517(78)90288-9
15 Griffin G. L. ; Yates Jr J. T. J. Chem. Phys. 1982, 77, 3744.
doi: 10.1063/1.444249
16 Griffin G. L. ; Yates Jr J. T. J. Catal. 1982, 73, 396.
doi: 10.1016/0021-9517(82)90112-9
17 Tops?e H. J. Catal. 2003, 216, 155.
doi: 10.1016/S0021-9517(02)00133-1
18 Oosterbeek H. Phys. Chem. Chem. Phys. 2007, 9, 3570.
doi: 10.1039/B703003G
19 Vang R. T. ; L?gsgaard E. ; Besenbacher F. Phys. Chem. Chem. Phys. 2007, 9, 3460.
doi: 10.1039/B703328C
20 Starr D. E. ; Liu Z. ; H?vecker M. ; Knop-Gericke A. ; Bluhm H. Chem. Soc. Rev. 2013, 42, 5833.
doi: 10.1039/C3CS60057B
21 Wang Y. ; Muhler M. ; W?ll C. Phys. Chem. Chem. Phys. 2006, 8, 1521.
doi: 10.1039/B515489H
22 Liu Y. ; Yang F. ; Zhang Y. ; Xiao J. P. ; Yu L. ; Liu Q. F. ; Ning Y. X. ; Zhou Z. W. ; Chen H. ; Huang W. G. ; et al Nat. Commun 2017, 8, 14459.
doi: 10.1038/ncomms14459
23 Biesinger M. C. ; Lau L. W. W. ; Gerson A. R. ; Smart R. S. C. Appl. Surf. Sci. 2010, 257, 887.
doi: 10.1016/j.apsusc.2010.07.086
24 Gao Y. K. ; Traeger F. ; Shekhah O. ; Idriss H. ; W?ll C. J. Colloid Interface Sci. 2009, 338, 16.
doi: 10.1016/j.jcis.2009.06.008
25 Losurdo M. ; Giangregorio M. M. Appl. Phys. Lett. 2005, 86, 091901.
doi: 10.1063/1.1870103
26 Newberg J. T. ; Goodwin C. ; Arble C. ; Khalifa Y. ; Boscoboinik J. A. ; Rani S. J. Phys. Chem. B 2017, 122, 472.
doi: 10.1021/acs.jpcb.7b03335
27 Meyer B. ; Marx D. ; Dulub O. ; Diebold U. ; Kunat M. ; Langenberg D. ; W?ll C. Angew. Chem. Int. Ed. 2004, 43, 6641.
doi: 10.1002/anie.200461696
28 Dulub O. ; Meyer B. ; Diebold U. Phys. Rev. Lett. 2005, 95, 136101.
doi: 10.1103/PhysRevLett.95.136101
29 Lu Y. F. ; Ni H. Q. ; Mai Z. H. ; Ren Z. M. J. Appl. Phys. 2000, 88, 498.
doi: 10.1063/1.373685
30 Vi?es F. ; Iglesias-Juez A. ; Illas F. ; Fernández-García M. J. Phys. Chem. C 2014, 118, 1492.
doi: 10.1021/jp407021v
31 Zhang Z. ; Yates Jr. J. T. Chem. Rev. 2012, 112, 5520.
doi: 10.1021/cr3000626
32 Mao B. -H. ; Crumlin E. ; Tyo E. C. ; Pellin M. J. ; Vajda S. ; Li Y. M. ; Wang S. D. ; Liu Z. Catal. Sci. Technol. 2016, 6, 6778.
doi: 10.1039/C6CY00575F
33 Heinhold R. ; Williams G. T. ; Cooil S. P. ; Evans D. A. ; Allen M. W. Phys. Rev. B 2013, 88, 235315.
doi: 10.1103/PhysRevB.88.235315
34 Porsgaard S. ; Jiang P. ; Borondics F. ; Wendt S. ; Liu Z. ; Bluhm H. ; Besenbacher F. ; Salmeron M. Angew. Chem. Int. Ed. 2011, 50, 2266.
doi: 10.1002/anie.201005377
35 Ozawa K. ; Mase K. Phys. Rev. B 2011, 83, 125406.
doi: 10.1103/PhysRevB.83.125406
36 Ozawa K. ; Mase K. Phys. Rev. B 2010, 81, 205322.
doi: 10.1103/PhysRevB.81.205322
[1] 赵新飞,陈浩,吴昊,王睿,崔义,傅强,杨帆,包信和. 氧化锌有序结构在Au(111)和Cu(111)上的生长[J]. 物理化学学报, 2018, 34(12): 1373-1380.
[2] 赵烨梁,王兵. 衬底对N@C60分子电子自旋共振谱的影响[J]. 物理化学学报, 2018, 34(12): 1312-1320.
[3] 段园,陈明树,万惠霖. O2和CO在Ni(111)表面的吸附活化[J]. 物理化学学报, 2018, 34(12): 1358-1365.
[4] 王岩,李雄,胡善玮,徐倩,鞠焕鑫,朱俊发. Ca掺杂的CeO2模型催化剂的形貌和电子结构及其与CO2分子的相互作用[J]. 物理化学学报, 2018, 34(12): 1381-1389.
[5] 王心怡,谢磊,丁元琪,姚心仪,张弛,孔惠慧,王利坤,许维. 超高真空条件下碱基与金属在Au(111)表面的相互作用[J]. 物理化学学报, 2018, 34(12): 1321-1333.
[6] 陈爱喜,汪宏,段赛,张海明,徐昕,迟力峰. 电势诱导的N-异丁酰基-L-半胱氨酸分子在金(111)表面的相转变[J]. 物理化学学报, 2017, 33(5): 1010-1016.
[7] 郭瑞,张嘉霖,赵宋焘,余小江,钟舒,孙硕,李震宇,陈伟. 基于全氟酞菁铜和碗烯双分子体系在银和石墨表面自组装行为的低温扫描隧道显微镜研究[J]. 物理化学学报, 2017, 33(3): 627-632.
[8] 佟静,刘璐,张朵,郑煦,陈霞,杨家振. [C2mim][Ala]丙氨酸离子液体水溶液粘滞流动的活化参数[J]. 物理化学学报, 2017, 33(3): 513-519.
[9] 王利,石何霞,王文元,施宏,邵翔. 三聚氰胺与蜜勒胺在Au (111)表面的自组装和氢键识别[J]. 物理化学学报, 2017, 33(2): 393-398.
[10] 李嫣婷,刘新敏,田锐,丁武泉,修维宁,唐玲玲,张静,李航. 一种评估阳离子交换吸附活化能的方法[J]. 物理化学学报, 2017, 33(10): 1998-2003.
[11] 公绪莉,张长桥,宁朋歌,曹宏斌,张懿. NH4VO3在NH4H2PO4-H2O和(NH4)3PO4-H2O体系中的溶解度[J]. 物理化学学报, 2016, 32(5): 1134-1142.
[12] 赵俊凤,孙小丽,黄旭日,李吉来. 铂钌团簇及电荷对甲醇活性的理论研究[J]. 物理化学学报, 2016, 32(5): 1175-1182.
[13] 孔令明,祝宝林,庞先勇,王贵昌. 氧缺陷TiO2-B作为可充电锂离子电池负极材料的第一性原理研究[J]. 物理化学学报, 2016, 32(3): 656-664.
[14] 尹瑞丽,陈利平,陈网桦,吴珂,张彩星,李焓,于诚. 两种量热模式下物质热分解的动力学补偿效应[J]. 物理化学学报, 2016, 32(2): 391-398.
[15] 李亚捷,倪星元,沈军,刘冬,刘念平,周小卫. 聚吡咯/硝酸活化碳气凝胶纳米复合材料的制备表征及其在超级电容器中的应用[J]. 物理化学学报, 2016, 32(2): 493-502.