Please wait a minute...
物理化学学报  2018, Vol. 34 Issue (12): 1390-1396    DOI: 10.3866/PKU.WHXB201804191
所属专题: 表面物理化学
论文     
CO与蜜勒胺自组装膜协同作用制备Au单原子及多原子物种
黄丽丽,邵翔*()
CO Induced Single and Multiple Au Adatoms Trapped by Melem Self-Assembly
Lili HUANG,Xiang SHAO*()
 全文: PDF(2999 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

金属单原子物种的可控制备对于包括多相催化在内的各种表面化学过程非常重要。在本工作中,我们在Au(111)表面制备了由蜜勒胺分子形成的具有周期性孔道结构的自组装薄膜。这种有机分子薄膜所携载的官能团能与金属原子进行有效作用。通过在室温下暴露CO气体,在表面上成功制备出Au单原子。由于蜜勒胺分子中的杂环氮原子与Au原子作用较强,因此所形成的Au原子具有突出的稳定性,并且具有多种形式的空间分布构型,有望为一些结构敏感性的表面反应提供合适的催化位点。

关键词: 金原子CO蜜勒胺自组装STM    
Abstract:

The controllability of metal adatoms has been attracting ever-growing attention because the metal species in particular single-atom metals can play an important role in various surface processes, including heterogeneous catalytic reactions. On the other hand, organic self-assembly films have been regarded as an efficient and versatile bottom-up method to fabricate surface nanostructures, whose functionality and periodicity can be highly designable. In this work, we have developed a novel strategy to steer the generation and distribution of metal adatoms by combining the surface self-assemblies with exposure to small inorganic gaseous molecules. More specifically, we have prepared a honeycomb structure of melem (triamino-s-heptazine) on the Au(111) surface based on a well-structured hydrogen bonding network. The achieved melem self-assembly contains periodic hexagonal pores having diameters as large as around 1 nm. More importantly, the peripheries of the nanopores are decorated with heterocyclic N atoms that can probably form strong interactions with the metal species. Upon exposing the melem self-assembly to a CO atmosphere at room temperature, a fair number of Au adatoms were produced and trapped inside the nanopores encircled by the melem molecules. Single or clustered Au vacancies were concomitantly formed that were also trapped by the melem pores and stabilized by the surrounding molecules, as confirmed by high-resolution scanning tunneling microscopy (STM) images. Both types of added species showed positive correlations with the CO exposure and saturated at around 0.01 monolayer. In addition, owing to the large pore size, as well as the presence of multiple docking sites inside the nanopores, more than one Au adatom can reside in a melem nanopore; they can be distributed in a variety of configurations for bi-Au (two Au adatoms) and tri-Au (three Au adatoms) species, whose population can be manipulated with the CO exposure. Moreover, control experiments demonstrated that these CO-induced Au species, including the adatoms and vacancies, can survive annealing treatments up to the temperature at which the melem molecules start to desorb, indicating a substantial thermal stability. The formed Au species may hold great potential for serving as active sites for surface reactions. More interestingly, the bi-Au and tri-Au species have moderate Au-Au intervals, and can be potentially active for certain structurally sensitive bimolecular reactions. Considering all these aspects, we believe that this work presents a fresh approach to utilizing organic self-assembly films and has demonstrated a rather novel strategy for preparing various single-atom metal species on substrate surfaces.

Key words: Au adatom    CO    Melem    Self-assembly    STM
收稿日期: 2018-04-02 出版日期: 2018-04-23
中图分类号:  O647  
基金资助: 国家自然科学基金(21333001);国家自然科学基金(91545128);国家自然科学基金(91227117);科学技术部(2017YFA0205003);中组部青年千人计划资助项目
通讯作者: 邵翔     E-mail: shaox@ustc.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黄丽丽
邵翔

引用本文:

黄丽丽,邵翔. CO与蜜勒胺自组装膜协同作用制备Au单原子及多原子物种[J]. 物理化学学报, 2018, 34(12): 1390-1396.

Lili HUANG,Xiang SHAO. CO Induced Single and Multiple Au Adatoms Trapped by Melem Self-Assembly. Acta Phys. -Chim. Sin., 2018, 34(12): 1390-1396.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201804191        http://www.whxb.pku.edu.cn/CN/Y2018/V34/I12/1390

Scheme1  Molecular structure of melem (a) and the possible intermolecular hydrogen bonding patterns (b–d). Notice only in (b) each melem molecule has an N atom available for binding other species. In the ball models the white, gray and blue balls represent the H, C and N atoms, respectively.
Fig 1  STM images of (a) the pure honeycomb structure of melem on Au(111) and after exposing to different amounts of CO for (b) 100 L, (c) 400 L, (d) 800 L, and (e) 1200 L at RT. The inset in (a) shows the molecular model of the H-melem structure. Inset in (b) shows the zoomed-in picture of an ABS species inside the hexagonal pore of melem. (f) Diagram shows the coverage of the ABSs as the function of CO exposure. All the images were obtained with U = 1.2 V, I = 200 pA.
Fig 2  Variously different residing positions for Au adatom positions inside a melem pore as proposed (a) and as observed under STM (b-h). The yellow arrows in (a) mark the possible positions of Au adatoms and point to the h-N atoms that they bind to. The sizes of the STM images are all 2.5 nm × 2.5 nm. All images were obtained with U = 1.2 V, I = 200 pA.
Fig 3  Topographic dependence of the Au adatom on imaging bias. (a)-(c) Bias-dependent STM image sequence of the Au adatoms. (d) The profiles of the same Au atoms measured with different biases: black (a, 0.1 V), red (b, 1.0 V), blue (c, 2.1 V), set-point current: I = 100 pA.
Fig 4  STM images of four different residing configurations of two Au atoms trapped in one melem pore. he yellow arrows mark the locations of the Au adatoms and point to the h-N atoms that they bind with. The images were collected with U = 1.0 V, I = 300 pA.
Fig 5  STM images showing the increased appearance frequency of the bi-Au and multi-Au species inside the melem pores along with the increase of CO exposure (a, 100 L; b, 400 L; c, 800 L; d, 1200 L). The black and blue circles mark the singly dispersed Au adatoms and the bi-Au species, respectively. (e) The amplified area marked by the dashed square in (d). White arrow indicates a tri-Au species. (f) Plot of the ratio of bi-Au to s-Au as a function of CO exposure. All the images were collected with U = 1.5 V, I = 200 pA.
Fig 6  The proposed generation mechanism of Au adatoms upon exposing the melem film on Au(111) to a CO atmosphere. (a) The pseudo-3D STM image showing the existence of Au adatom and Au vacancy species. (b) The profile along the line in (a). (c) Schematic model showing the synchronistic formation of Au adatom and vacancy under the impingement of CO molecules.
1 Yang X. F. ; Wang A. ; Qiao B. ; Li J. ; Liu J. ; Zhang T. Acc. Chem. Res. 2013, 46, 1740.
doi: 10.1021/ar300361m
2 Pan M. ; Gong J. ; Dong G. ; Mullins C. B. Acc. Chem. Res. 2014, 47, 750.
doi: 10.1021/ar400172u
3 Campbell C. T. Annul. Rev. Phys. Chem. 1990, 41, 775.
doi: 10.1146/annurev.pc.41.100190.004015
4 Herzing A. A. ; Kiely C. J. ; Carley A. F. ; Landon P. ; Hutchings G. J. Science 2008, 321, 1331.
doi: 10.1126/science.1159639
5 Hackett S. F. J. ; Brydson R. M. ; Gass M. H. ; Harvey I. ; Newman A. D. ; Wilson K. ; Lee A. F. Angew. Chem. Int. Ed. 2007, 46, 8593.
doi: 10.1002/anie.200790227
6 Qiao B. ; Wang A. ; Yang X. ; Allard L. F. ; Zheng J. ; Cui Y. ; Liu J. ; Li J. ; Zhang T. Nat. Chem. 2011, 3, 634.
doi: 10.1038/nchem.1095
7 Zhang H. ; Watanabe T. ; Okumura M. ; Haruta M. ; Toshima N. Nat. Mater. 2012, 11, 49.
doi: 10.1038/nmat3143
8 Yang B. ; Pan Y. ; Lin X. ; Nilius N. ; Freund H. J. ; Hulot C. ; Graud A. ; Blechert S. ; Tosoni S. ; Sauer J. J. Am. Chem. Soc. 2012, 134, 11161.
doi: 10.1021/ja300304s
9 Giesen M. Prog. Surf. Sci. 2001, 68, 1.
doi: 10.1016/S0079-6816(00)00021-6
10 Kern K. ; Niehus H. ; Schatz A. ; Zeppenfeld P. ; Goerge J. ; Comsa G. Phys. Rev. Lett. 1991, 67, 855.
doi: 10.1103/PhysRevLett.67.855
11 Carlisle C. I. ; Fujimoto T. ; Sim W. S. ; King D. A. Surf. Sci. 2000, 470, 15.
doi: 10.1016/S0039-6028(00)00831-1
12 Nakagoe O. ; Watanabe K. ; Takagi N. ; Matsumoto Y. Phys. Rev. Lett. 2003, 90, 226105.
doi: 10.1103/PhysRevLett.90.226105
13 Wang L. ; Li P. ; Shi H. ; Li Z. ; Wu K. ; Shao X. J. Phys. Chem. C 2017, 121, 7977.
doi: 10.1021/acs.jpcc.7b00938
14 Agrawal P. M. ; Rice B. M. ; Thompson D. L. Surf. Sci. 2002, 515, 21.
doi: 10.1016/S0039-6028(02)01916-7
15 Devyatko Y. N. ; Rogozhkin S. V. ; Fadeev A. V. Phys. Rev. B 2001, 63, 193401.
doi: 10.1103/PhysRevB.63.193401
16 Pawin G. ; Wong K. L. ; Kim D. ; Sun D. ; Bartels L. ; Hong S. ; Rahman T. S. ; Carp C. ; Marsella M. A. Angew. Chem. Int. Ed. 2008, 47, 8442.
doi: 10.1002/anie.200802543
17 Dong L. ; Sun Q. ; Zhang C. ; Li Z. ; Sheng K. ; Kong H. ; Tan Q. ; Pan Y. ; Hu A. ; Xu W. Chem. Commun. 2013, 49, 1735.
doi: 10.1039/C2CC37316E
18 Rosei F. ; Schunack M. ; Jiang P. ; Gourdon A. ; L?gsgaard E. ; Stensgaard I. ; Joachim C. ; Besenbacher F. Science 2002, 296, 328.
doi: 10.1126/science.1069157
19 Shi H. ; Wang W. ; Li Z. ; Wang L. ; Shao X. Chin. J. Chem. Phys. 2017, 30, 443.
doi: 10.1063/1674-0068/30/cjcp1704078
20 Kudernac T. ; Lei S. ; Elemans J. A. ; De Feyter S. Chem. Soc. Rev. 2009, 38, 402.
doi: 10.1039/b708902n
21 Liu X. H. ; Mo Y. P. ; Yue J. Y. ; Zheng Q. N. ; Yan H. J. ; Wang D. ; Wan L. J. Small 2014, 10, 4934.
doi: 10.1002/smll.201400899
22 Niu L. ; Ma X. ; Liu L. ; Mao X. ; Wu D. ; Yang Y. ; Zeng Q. D. ; Wang C. Phys. Chem. Chem. Phys. 2010, 12, 11683.
doi: 10.1039/C0CP90090G
23 Ciesielski A. ; Palma C. A. ; Bonini M. ; Samorì P. Adv. Mater. 2010, 22, 3506.
doi: 10.1002/adma.201001582
24 Barth J. V. Annul. Rev. Phys. Chem. 2007, 58, 375.
doi: 10.1146/annurev.physchem.56.092503.141259
25 Bonifazi D. ; Mohnani S. ; Llanes-Pallas A. Chem. Eur. J. 2009, 15, 7004.
doi: 10.1002/chem.200900900
26 Stepanow S. ; Lingenfelder M. ; Dmitriev A. ; Spillmann H. ; Delvigne E. ; Lin N. ; Deng X. B. ; Cai C. Z. ; Barth J. V. ; Kern K. Nat. Mater. 2004, 3, 229.
doi: 10.1038/nmat1088
27 Iancu V. ; Braun K. F. ; Schouteden K. ; Van Haesendonck C. Phys. Rev. Lett. 2014, 113, 106102.
doi: 10.1103/PhysRevLett.113.106102
28 Zhou X. ; Yang W. ; Chen Q. ; Geng Z. ; Shao X. ; Li J. ; Wang Y. ; Dai D. ; Chen W ; Xu G. ; Yang X. ; Wu K. J. Phys. Chem. C 2016, 120, 1709.
doi: 10.1021/acs.jpcc.5b11362
29 Zhou X. ; Shen Q. ; Yuan K. ; Yang W. ; Chen Q. ; Geng Z. ; Zhang J. ; Shao X. ; Chen W. ; Xu G. ; Yang X. ; Wu K. J. Am. Chem. Soc. 2018, 140, 554.
doi: 10.1021/jacs.7b10394
30 Brown M. A. ; Fujimori Y. ; Ringleb F. ; Shao X. ; Stavale F. ; Nilius N. ; Sterrer M. ; Freund H. J. J. Am. Chem. Soc. 2011, 133, 10668.
doi: 10.1021/ja204798z
31 Yim W. L. ; Nowitzki T. ; Necke M. ; Schnars H. ; Nickut A. ; Shamery K. ; Klüner T. ; B?umer M. J. Phys. Chem. C 2007, 111, 445.
doi: 10.1021/jp0665729
32 Eren B. ; Zherebetskyy D. ; Patera L. L. ; Wu H. C. ; Bluhm H. ; Africh C. ; Wang L. ; Somorjai G. A. ; Salmeron M. Science 2016, 351, 4758.
doi: 10.1126/science.aad8868
33 Eren B. ; Liu Z. ; Stacchiola D. ; Somorjai A. G. ; Salmeron M. J. Phys. Chem. C 2016, 120, 8227.
doi: 10.1021/acs.jpcc.6b02143
34 Wang L. ; Chen Q. ; Shi H. ; Liu H. ; Ren X. ; Wang B. ; Wu K. ; Shao X. Phys. Chem. Chem. Phys. 2016, 18, 2324.
doi: 10.1039/c5cp05976c
35 Wang L. ; Shi H. X. ; Wang W. Y. ; Shi H. ; Shao X. Acta Phys. -Chim. Sin. 2017, 33, 393.
doi: 10.3866/PKU.WHXB201611033
王利; 石何霞; 王文元; 施宏; 邵翔. 物理化学学报,, 2017, 33, 393.
doi: 10.3866/PKU.WHXB201611033
36 Eichhorn J. ; Lotsch V. B. ; Schnick W. ; Lackinger H. M. Cryst. Eng. Commun. 2011, 13, 5559.
doi: 10.1039/c1ce05342f
37 Uemura S. ; Aono M. ; Sakata K. ; Komatsu T. ; Kunitake M. J. Phys. Chem. C 2013, 117, 24815.
doi: 10.1021/jp406810c
38 Uemura S. ; Sakata K. ; Aono M. ; Nakamura Y. ; Kunitake M. Front. Chem. Sci. Eng. 2016, 10, 294.
doi: 10.1007/s11705-016-1564-4
39 Bao M. ; Wei X. ; Cai L. ; Sun Q. ; Liu Z. ; Xu W. Phys. Chem. Chem. Phys. 2017, 19, 18704.
doi: 10.1039/C7CP03862C
40 Chen M. ; Kumar D. ; Yi C. W Goodman W. D. Science 2015, 310, 291.
doi: 10.1126/science.1115800
41 Greeley J. ; Mavrikakis M. Nat. Mater. 2004, 3, 810.
doi: 10.1038/nmat1223
42 Ma Y. ; Diemant T. ; Bansmann J. ; Behm R. J. Phys. Chem. Chem. Phys. 2011, 13, 10741.
doi: 10.1039/c1cp00009h
43 Tao F. ; Dag S. ; Wang L. ; Liu Z. ; Butcher D. R. ; Bluhm H. ; Salmeron M. ; Somorjai G. A. Science 2010, 327, 850.
doi: 10.1126/science.1182122
44 Inukai J. ; Tryk D. A. ; Abe T. ; Wakisaka M. ; Uchida H. ; Watanabe M. J. Am. Chem. Soc. 2013, 135, 1476.
doi: 10.1021/ja309886p
45 Toyoshima R. ; Yoshida M. ; Monya Y. ; Suzuki K. ; Amemiya K. ; Mase K. ; Simon Munc B. ; Kondoh H. Phys. Chem. Chem. Phys. 2014, 16, 23564.
doi: 10.1039/c4cp04318a
46 Piccolo L. ; Loffreda D. ; Cadete Santos Aires F. J. ; Deranlot C. ; Jugnet Y. ; Sautet P. ; Bertolini J. C. Surf. Sci. 2004, 566, 995.
doi: 10.1016/j.susc.2004.06.042
[1] 程晓蒙,焦东霞,梁志豪,魏金金,李宏平,杨俊佼. 聚苯乙烯-聚4-乙烯基吡啶两亲嵌段共聚物在CO2膨胀液体中的组装行为[J]. 物理化学学报, 2018, 34(8): 945-951.
[2] 周洋,李志敏,郑凯,李杲. 精确控制合成Au36(SR)24金原子簇(SR = SPh, SC6H4CH3, SCH(CH3)Ph, SC10H7)[J]. 物理化学学报, 2018, 34(7): 786-791.
[3] VON SZENTPÁLY László. Multiply Charged Anions, Maximum Charge Acceptance, and Higher Electron Affinities of Molecules, Superatoms, and Clusters[J]. 物理化学学报, 2018, 34(6): 675-682.
[4] AYERS Paul W.,LEVY Mel. Levy Constrained Search in Fock Space: An Alternative Approach to Noninteger Electron Number[J]. 物理化学学报, 2018, 34(6): 625-630.
[5] GEERLINGS Paul,DE PROFT Frank,FIAS Stijn. Analogies between Density Functional Theory Response Kernels and Derivatives of Thermodynamic State Functions[J]. 物理化学学报, 2018, 34(6): 699-707.
[6] OROZCO-VALENCIA Ulises,GÁZQUEZ José L.,VELA Alberto. Reactivity of Indoles through the Eyes of a Charge-Transfer Partitioning Analysis[J]. 物理化学学报, 2018, 34(6): 692-698.
[7] FINZEL Kati.,BULTINCK Patrick.. The Influence of the Exchange-Correlation Functional on the Non-Interacting Kinetic Energy and Its Implications for Orbital-Free Density Functional Approximations[J]. 物理化学学报, 2018, 34(6): 650-655.
[8] GONZÁLEZ Marco Martínez,CÁRDENAS Carlos,RODRÍGUEZ Juan I.,LIU Shubin,HEIDAR-ZADEH Farnaz,MIRANDA-QUINTANA Ramón Alain,AYERS Paul W.. Quantitative Electrophilicity Measures[J]. 物理化学学报, 2018, 34(6): 662-674.
[9] NAGY Ágnes. Phase Space View of Ensembles of Excited States[J]. 物理化学学报, 2018, 34(5): 492-496.
[10] HEIDAR-ZADEH Farnaz,AYERS Paul W.. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. 物理化学学报, 2018, 34(5): 514-518.
[11] MORRISON Robert C. Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-, and Ca-[J]. 物理化学学报, 2018, 34(3): 263-269.
[12] 段园,陈明树,万惠霖. O2和CO在Ni(111)表面的吸附活化[J]. 物理化学学报, 2018, 34(12): 1358-1365.
[13] 刘甜,黎军,刘维佳,朱育丹,陆小华. 简单的配体改变调控钌配合物催化还原CO2的活性:硼基配体的对位效应和Ru―H键的性质[J]. 物理化学学报, 2018, 34(10): 1097-1105.
[14] 宁红岩,杨其磊,杨晓,李鹰霞,宋兆钰,鲁逸人,张立红,刘源. 碳纤维负载Rh-Mn紧密接触的催化剂及其合成气制乙醇催化性能[J]. 物理化学学报, 2017, 33(9): 1865-1874.
[15] 郭云鹏,冯杰,李文英. Ni掺杂对Ni/MgO体系中电荷分配影响[J]. 物理化学学报, 2017, 33(9): 1796-1802.