Please wait a minute...
物理化学学报  2019, Vol. 35 Issue (6): 651-656    DOI: 10.3866/PKU.WHXB201805037
论文     
小尺寸金石墨纳米颗粒的合成与表征
刘芳,张鲁凤,董倩,陈卓*()
Synthesis and Characterization of Small Size Gold-Graphitic Nanocapsules
Fang LIU,Lufeng ZHANG,Qian DONG,Zhuo CHEN*()
 全文: PDF(1341 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

在表面增强拉曼光谱(SERS)的研究领域中,基于局域表面等离子体共振效应的等离子体SERS基底的制备成为过去几十年的研究热点。然而,通常开发的等离子体金属基底具有较差的稳定性和重现性。对于SERS而言,石墨烯类材料具有拉曼化学增强效应,除此之外,还具有分子富集、强的稳定性与荧光猝灭能力等优点,因此基于石墨金属复合纳米材料的SERS基底受到了研究人员的重视。我们利用化学气相沉积(CVD)法制备了小尺寸的金石墨核壳纳米颗粒(Au@G),其粒径约为17 nm。我们通过在Au NP上包覆介孔二氧化硅来控制Au@G的尺寸,同时还研究了包覆二氧化硅过程中,正硅酸乙酯(TEOS)的浓度对于石墨壳层形成的影响。结果表明当TEOS在一定浓度范围内,其浓度的降低有利于得到石墨化程度高的Au@G。进一步利用Au@G对结晶紫分子进行拉曼检测,也表明了Au@G具有较好的拉曼增强效果。这种小尺寸的Au@G在分子检测与细胞成像分析领域中具有广泛的应用潜力。

关键词: 金石墨纳米颗粒化学气相沉积表面增强拉曼光谱介孔二氧化硅金纳米颗粒    
Abstract:

The preparation of plasmonic metal-based substrates has been a hot research topic during the past decades in the area of surface-enhanced Raman spectroscopy (SERS). The localized surface plasmon resonance effect of plasmonic metal nanostructures enhances the electromagnetic field for SERS analysis, thereby making SERS an extremely sensitive detection technique. However, commonly developed plasmonic metal substrates exhibit poor stability and reproducibility. Since the separation of graphene from graphite, graphene has been widely used in various fields because of its unique physical, chemical, electronic, and optical properties. In the field of SERS, graphene has been used for graphene-enhanced Raman scattering, which makes use of the chemical enhancement mechanism in SERS. In addition, it has capabilities of surface molecular enrichment, quenching fluorescence, surface homogenization, and has strong chemical stability. Due to these characteristics of graphene, SERS substrates based on graphene-metal nanocapsules have attracted the attention of researchers. In this work, a small size gold-graphitic nanocapsules (Au@G) was prepared by chemical vapor deposition (CVD). The material exhibits a core-shell structure consisting of a graphitized carbon layer coated on Au nanoparticles (Au NPs). The Au NP core of the Au@G provides a major enhancement factor for Raman analysis, and the external graphitized carbon shell ensures strong chemical stability of the material. The Au@G exhibits a uniform particle size with diameter ~17 nm. In order to control the size of the Au@G, tetraethyl orthosilicate (TEOS) and tetraethylorthotrimethylammonium bromide were used as the raw material and template, respectively, a 45 nm-thick layer of mesoporous silica was coated on the synthesized Au NPs. The presence of the mesoporous silica capping layer prevented aggregation and particle size growth of the Au NPs during high-temperature CVD. At the same time, we studied the effect of TEOS concentration on the growth of the graphitized carbon layer during CVD. The results revealed that a decrease of the TEOS concentration is conducive for obtaining a high graphitic Au@G, and the concentration of TEOS does not affect the particle size of the Au@G. Raman detection of crystal violet molecules using Au@G demonstrated the latter's good Raman enhancement effect. The Au@G prepared by high-temperature CVD exhibits a clean surface with no impurities. It is an SERS substrate with both physical and chemical enhancement. The unique Raman spectral peaks and small size of Au@G ensure its great potential for use in the fields of molecular detection and cell imaging analysis.

Key words: Gold-graphitic nanocapsues    Chemical vapor deposition    Surface-enhanced Raman spectroscopy    Mesoporous silica    Au nanoparticles
收稿日期: 2018-05-15 出版日期: 2018-06-28
中图分类号:  O648  
基金资助: 国家自然科学基金(21522501);国家自然科学基金(21521063);湖南省自然科学基金(2018JJ1007)
通讯作者: 陈卓     E-mail: zhuochen@hnu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘芳
张鲁凤
董倩
陈卓

引用本文:

刘芳,张鲁凤,董倩,陈卓. 小尺寸金石墨纳米颗粒的合成与表征[J]. 物理化学学报, 2019, 35(6): 651-656, 10.3866/PKU.WHXB201805037

Fang LIU,Lufeng ZHANG,Qian DONG,Zhuo CHEN. Synthesis and Characterization of Small Size Gold-Graphitic Nanocapsules. Acta Phys. -Chim. Sin., 2019, 35(6): 651-656, 10.3866/PKU.WHXB201805037.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201805037        http://www.whxb.pku.edu.cn/CN/Y2019/V35/I6/651

图1  Au NP, Au@m-SiO2, Au@G的透射电子显微镜图像 (a, b) TEM images of Au NP; scale bar, (a) 50 nm, (b) 20 nm. (c, d) TEM images of Au@m-SiO2; scale bar, (c) 50 nm, (d) 20 nm. TEM (e) and HR-TEM (f) images of Au@G; scale bar, 20 nm and 5 nm.
图2  所合成的Au@G的表征 (a) UV-Vis spectra of Au NP (red line) and Au@G (blue line). (b) Zeta potential of Au@G. (c) Raman spectrum of Au@G
图3  TEOS浓度对Au@G合成的影响 (a) UV-Vis spectra of Au@G synthesized with different concentrations of TEOS. (b) Raman spectra of Au@G synthesized with different concentrations of TEOS
图4  CV分子的拉曼检测 (a) Raman detection of 3 μmol·L-1 CV with Au@G (red line) and 10 μmol·L-1 CV without Au@G (black line).(b) Corresponding quantitative data analysis of (a)
1 Cortes E. ; Etchegoin P. G. ; Le Ru E. C. ; Fainstein A. ; Vela M. E. ; Salvarezzaet R. C. J. Am. Chem. Soc. 2010, 132, 18034.
doi: 10.1021/ja108989b
2 Sun M. ; Zhang Z. ; Zheng H. ; Xu H. Sci. Rep. 2012, 2, 647.
doi: 10.1038/srep00647
3 Hudson S. D. ; Chumanov G. Anal. Bioanal. Chem. 2009, 394, 679.
doi: 10.1007/s00216-009-2756-2
4 Tripp R. A. ; Dluhy R. A. ; Zhao Y. Nano Today 2008, 3, 31.
doi: 10.1016/S1748-0132(08)70042-2
5 Quang L. X. ; Lim C. ; Seong G. H. ; Choo J. ; Do K. J. ; Yoo S. Lab. Chip. 2008, 8, 2214.
doi: 10.1039/B808835G
6 Golightly R. S. ; Doering W. E. ; Natan M. J. ACS Nano 2009, 3 (10), 2859.
doi: 10.1021/nn9013593
7 Willets K. A. ; Duyne R. P. V. Annu. Rev. Phys. Chem. 2007, 58, 267.
doi: 10.1146/annurev.physchem.58.032806.104607
8 Henry A. ; Sharma B. ; Cardinal M. F. ; Kurouski D. ; Duyne R. P. V. Anal. Chem. 2016, 88, 6638.
doi: 10.1021/acs.analchem.6b01597
9 Zhang B. ; Xu P. ; Xie X. ; Wei H. ; Li Z. ; Mack N. H. ; Han X. ; Xu H. ; Wang H. J. Mater. Chem. 2011, 21, 2495.
doi: 10.1039/C0JM02837A
10 Cecchini M. P. ; Turek V. A. ; Paget J. ; Kornyshev A. A. ; Edel J. B. Nat. Mater. 2013, 12, 165.
doi: 10.1038/nmat3488
11 Wang J. ; Zhou F. ; Duan G. ; Li Y. ; Liu G. ; Su F. ; Cai W. RSC Adv. 2014, 4, 8758.
doi: 10.1039/C3RA47882C
12 Xu P. ; Han X. ; Zhang B. ; Du Y. ; Wang H. Chem. Soc. Rev. 2014, 43, 1349.
doi: 10.1039/C3CS60380F
13 Hakonen A. ; Svedendahl M. ; Ogier R. ; Yang Z. ; Lodewijks K. ; Verre R. ; Shegai T. ; Andersson P. O. ; Käll M. Nanoscale 2015, 7, 9405.
doi: 10.1039/C5NR01654A
14 Kang L. ; Xu P. ; Chen D. ; Zhang B. ; Han X. ; Li Q. ; Wang H. J. Phys. Chem. C 2013, 117, 10007.
doi: 10.1021/jp400572z
15 Schluecker S. Angew. Chem. Int. Ed. 2014, 53, 4756.
doi: 10.1002/anie.201205748
16 Novoselov K. S. ; Geim A. K. ; Morozov S. V. ; Jiang D. ; Zhang Y. ; Dubonos S. V. ; Grigorieva I. V. Science 2004, 306, 666.
doi: 10.1126/science.1102896
17 Somani P. R. ; Somani S. P. ; Umeno M. P. Chem. Phys. Lett. 2006, 430, 56.
doi: 10.1016/j.cplett.2006.06.081
18 Liu Z. F. Acta. Phys. -Chim. Sin. 2016, 32 (4), 810.
doi: 10.3866/PKU.WHXB201603012
刘忠范. 物理化学学报, 2016, 4, 810.
doi: 10.3866/PKU.WHXB201603012
19 Allen M. J. ; Tung V. C. ; Kaner R. B. Chem. Rev. 2010, 110, 132.
doi: 10.1021/cr900070d
20 Dreyer D. R. ; Todd A. D. ; Bielawski C. W. Chem. Soc. Rev. 2014, 43, 5288.
doi: 10.1039/C4CS00060A
21 Ling X. ; Xie L. ; Fang Y. ; Xu H. ; Zhang H. ; Kong J. ; Mildred S. ; Dresselhaus M. S. ; Zhang J. ; Liu Z. Nano Lett. 2010, 10, 553.
doi: 10.1021/nl903414x
22 Kang L. ; Chu J. ; Zhao H. ; Xu P. ; Sun M. J. Mater. Chem. A 2015, 3, 9024.
doi: 10.1039/C5TC01759A
23 Li X. ; Li J. ; Zhou X. ; Ma Y. ; Zheng Z. ; Duan X. Carbon 2014, 66, 713.
doi: 10.1016/j.carbon.2013.09.076
24 Gong T. ; Zhu Y. ; Zhang J. ; Ren W. ; Quan J. ; Wang N. Carbon 2015, 87, 385.
doi: 10.1016/j.carbon.2015.02.055
25 Zhao Y. ; Xie Y. ; Bao Z. ; Tsang Y. H. ; Xie L. ; Chai Y. J. Phys. Chem. C 2014, 118, 11827.
doi: 10.1021/jp503487a
26 Wu C. ; Lim Z. ; Zhou C. ; Guo W. W. ; Zhou S. ; Zhu Y. Chem. Commun. 2013, 49, 3215.
doi: 10.1039/c3cc39202c
[1] 王琴,薛珉敏,张助华. 硼烯化学合成进展与展望[J]. 物理化学学报, 2019, 35(6): 565-571.
[2] 吴元菲,李明雪,周剑章,吴德印,田中群. 密度泛函理论研究银上吸附对巯基吡啶的SERS化学增强效应[J]. 物理化学学报, 2017, 33(3): 530-538.
[3] 陈晓宇,王经东,于安池. 金纳米颗粒在不同包裹介质中的超快等离子体动力学[J]. 物理化学学报, 2017, 33(11): 2184-2190.
[4] 张季平,程硕桢,李学丰,董金凤. pH和温度诱导双亲水嵌段共聚物聚甲基丙烯酸-b-聚N-(2-甲基丙烯酰氧乙基)吡咯烷酮水溶液的胶束化[J]. 物理化学学报, 2016, 32(8): 2018-2026.
[5] 马红星,葛婷婕,蔡倩倩,徐颖华,马淳安. 水溶液中银阴极对3,4,5,6-四氯吡啶甲酸脱氯反应的催化作用[J]. 物理化学学报, 2016, 32(7): 1715-1721.
[6] 刘庆彬,蔚翠,何泽召,王晶晶,李佳芦,伟立,冯志红. 蓝宝石衬底上化学气相沉积法生长石墨烯[J]. 物理化学学报, 2016, 32(3): 787-792.
[7] 陈旭东,陈召龙,孙靖宇,张艳锋,刘忠范. 石墨烯玻璃:玻璃表面上石墨烯的直接生长[J]. 物理化学学报, 2016, 32(1): 14-27.
[8] 乔治, 解新建, 薛俊明, 刘辉, 梁李敏, 郝秋艳, 刘彩池. nc-Si:H/c-Si硅异质结太阳电池中本征硅薄膜钝化层的优化[J]. 物理化学学报, 2015, 31(6): 1207-1214.
[9] 王文轩, 邓绍新, 史成香, 孙平川, 陈铁红. 以阴离子表面活性剂/阳离子聚铵复合胶束为模板合成有序介孔二氧化硅[J]. 物理化学学报, 2015, 31(4): 707-714.
[10] 鲁理平, 李娇, 武静, 康天放, 程水源. 基于DNA电化学发光传感器研究金纳米颗粒对量子点的电化学发光影响[J]. 物理化学学报, 2015, 31(3): 483-488.
[11] 邓淑芬,黄溦,张继芳,林玲,何嘉伟,卞勋涛,陈文凯,孙建军. 双氰胺在金团簇上吸附的密度泛函理论和表面增强拉曼光谱研究[J]. 物理化学学报, 2015, 31(10): 1872-1879.
[12] 周杰, 李柏霖, 朱沛志, 卢晓林. 表面增强拉曼光谱研究自组装单分子层在化学接触和纳米隔绝下的分子振动活性变化[J]. 物理化学学报, 2014, 30(4): 623-627.
[13] 赵乔, 逯丹凤, 陈晨, 祁志美. 介孔SiO2薄膜增敏SERS基底在消逝波激励下的特性表征[J]. 物理化学学报, 2014, 30(12): 2335-2341.
[14] 黄天辉, 赵玉娟, 田兆福, 李小兰, 刘茜, 赵东元. 有序介孔二氧化硅对正丁醛的吸附性能[J]. 物理化学学报, 2014, 30(12): 2307-2314.
[15] 刘文涵, 袁荣辉, 滕渊洁, 马淳安. 基于活性金电极上硫代水杨酸自组装单分子层的电化学表面增强拉曼光谱[J]. 物理化学学报, 2013, 29(12): 2599-2607.