Please wait a minute...
连孟水, 王雅莉, 赵明全, 李倩倩, 翁维正, 夏文生, 万惠霖
厦门大学化学化工学院, 固体表面物理化学国家重点实验室, 醇醚酯化工清洁生产国家工程实验室, 福建省理论计算化学重点实验室, 福建 厦门 361005
Stability of Ni/SiO2 in Partial Oxidation of Methane:Effects of W Modification
LIAN Mengshui, WANG Yali, ZHAO Mingquan, LI Qianqian, WENG Weizheng, XIA Wensheng, WAN Huilin
Fujian Province Key Laboratory of Theoretical and Computational Chemistry, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, State Key Laboratory of Physical Chemistry of Solid State Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, P. R. China
 全文: PDF(1881 KB)   输出: BibTeX | EndNote (RIS) |
摘要: 甲烷部分氧化制合成气反应(POM)是天然气、页岩气资源利用的重要途径之一,常用的Ni/SiO2催化剂在反应中易发生表面积炭而失活。为了解决这一问题,我们采用尿素沉淀法制备W修饰的Ni基催化剂,并考察其在POM反应中的稳定性和W的作用。结果表明,催化剂中适量W的存在可显著改善其POM反应稳定性。其原因为Ni-W作用修饰了Ni的化学态或其亲氧能力,从而改善了其表面抗积炭能力。此外,反应中催化剂表面形成的α-WC具有一定的抑制表面积炭形成的能力,且该α-WC具有良好的稳定性。
关键词: 甲烷部分氧化稳定性Ni基催化剂钨修饰    
Abstract: With the discovery and large-scale exploitation of natural gas resources such as shale gas and combustible ice, which are mainly composed of methane, their effective utilization has become a national strategic interest. Partial oxidation of methane (POM) to synthesis gas is one of the important methods for the utilization of natural gas and shale gas resources. The commonly used Ni/SiO2 catalyst for POM easily deactivates due to carbon deposition on the surface. To solve this problem, a urea precipitation method was employed in this work to prepare Ni-based catalysts modified with different amounts of tungsten (at W/Ni molar ratios of 0, 0.01, 0.03, 0.05, 0.07, and 0.10), and the catalyst stability in POM as well as the role of W were investigated. From characterizations such as X-ray diffraction (XRD), transmission electron microscopy (TEM), temperature-programmed reduction (H2-TPR), and X-ray photoelectron spectroscopy (XPS), we obtained the following results. The amount of W added to the Ni-based catalysts has a significant influence on their catalytic performances in POM and their physicochemical properties. The particle size of Ni in the catalysts decreases with W addition, and the Ni particle distribution on the support surfaces becomes more uniformed; however, the catalytic activity for POM is not significantly influenced. However, W-modified Ni-based catalysts show an increasing improvement in their stability in POM with increasing W/Ni molar ratio, with an optimum at the W/Ni molar ratio of 0.07; at the W/Ni molar ratio of 0.10, they exhibit a rapid deactivation in POM in a short time. Although interactions between Ni and SiO2 in the as-prepared catalysts are weak, the presence of adequate tungsten (W/Ni molar ratio of 0.05 and above) in the Ni-based catalysts can reduce the Ni particle size to some extent, and lead to the formation of strong interactions between Ni and W, which leads to an improvement in the dispersion of Ni on the support surface and imparts resistance for Ni particle growth in the POM reaction. The increased interaction between Ni and W changes the chemical state or oxygen affinity of Ni particles on the catalyst surfaces, and some of the partially oxidized Ni species (Niδ+) on the catalyst surfaces coexist with reduced Ni species (Ni0) during POM. Using an adequate amount of W-modified Ni catalysts results in almost no carbon deposition on the surfaces during POM, but using only a moderate amount results in good catalytic behavior and stability in POM. This finding suggests that the presence of W can not only enhance the anti-coking ability of the Ni-based catalysts and sustain their good stability in POM if the W content is low (i.e., W/Ni molar ratio of 0.07 and below), but also lead to the deactivation of W-modified catalysts in POM if the W content is high (i.e., W/Ni molar ratio of 0.10 and above), due to high oxygen affinity or the presence of more Ni species in oxidized form. In addition, α-WC (tungsten carbide) was identified using XRD to be formed on the surface of the moderate-amount W-modified Ni catalysts after POM, and it could inhibit or eliminate carbon deposition on the Ni-based catalyst surfaces. The catalytic performance evaluation of the catalysts in POM under a long time period confirmed that α-WC is stable.
Key words: Partial oxidation of methane    Stability    Ni based catalyst    Modification of tungsten
收稿日期: 2018-05-20 出版日期: 2018-07-11
中图分类号:  O643  
基金资助: 国家自然科学基金(21373169)及教育部创新团队项目(IRT1036)资助
通讯作者: 夏文生;万惠霖     E-mail:;
E-mail Alert


连孟水, 王雅莉, 赵明全, 李倩倩, 翁维正, 夏文生, 万惠霖. Ni/SiO2在甲烷部分氧化反应中的稳定性:W修饰的影响[J]. 物理化学学报, 10.3866/PKU.WHXB201805054.

LIAN Mengshui, WANG Yali, ZHAO Mingquan, LI Qianqian, WENG Weizheng, XIA Wensheng, WAN Huilin. Stability of Ni/SiO2 in Partial Oxidation of Methane:Effects of W Modification. Acta Phys. -Chim. Sin., 10.3866/PKU.WHXB201805054.


(1) Chai,R. J.; Zhang,Z. Q.; Chen,P. J.; Zhao,G. F.; Liu,Y.; Lu,Y. Microporous Mesoporous Mater. 2017,253,123. doi: 10.1016/j.micromeso.2017.07.005
(2) Luo,Z.; Kriz,D. A.; Miao,R.; Kuo,C. H.; Zhong,W.; Guild,C.; He,J. K.; Willis,B.; Dang,Y. L.; Suib,S. L.; et al. Appl. Catal. A 2018,554,54. doi: 10.1016/j.apcata.2018.01.020
(3) Wang,F.; Li,W. Z.; Lin,J. D.; Chen,Z. Q.; Wang,Y. Appl. Catal. B 2018,231,292. doi: 10.1016/j.apcatb.2018.03.018
(4) Guo,S. S.; Wang,J. W.; Ding,C. M.; Duan,Q. L.; Ma,Q.; Zhang,K.; Liu,P. Int. J. Hydrog. Energy 2018,43,6603. doi: 10.1016/j.ijhydene.2018.02.035
(5) Yang,M. H.; Wu,H. H.; Wu,H. Y.; Huang,C. J.; Weng,W. Z.; Chen,M. S.; Wan,H. L. RSC Adv. 2016,6,81237. doi:10.1039/c6ra15358e
(6) Kim,D.; Park,G. A.; Lim,J.; Ha,K. S. Chem. Eng. J. 2017,316,1011. doi: 10.1016/j.cej.2017.02.014
(7) Rodemerck,U.; Schneider,M.; Linke,D. Catal. Commun. 2017,102,98. doi: 10.1016/j.catcom.2017.08.031
(8) Li,L.; He,S. C.; Song,Y. Y.; Zhao,J.; Ji,W. J.; Au,C. T. J. Catal. 2012,288,54. doi: 10.1016/j.jcat.2012.01.004
(9) Wang,F. G.; Han,B. L.; Zhang,L. J.; Xu,L. L.; Yu,H.; Shi,W.D. Appl. Catal. B 2018,235,26. doi:10.1016/j.apcatb.2018.04.069
(10) Ashok,J.; Bian,Z.; Wang,Z.; Kawi,S. Catal. Sci. Technol. 2018,8,1730. doi: 10.1039/c7cy02475d
(11) Li,Q.; Hou,Y. H.; Dong,L. Y.; Huang,M. X.; Weng,W. Z.; Xia,W. S.; Wan,H. L. Acta Phys. -Chim. Sin. 2013,29,2245. [李琪,侯玉慧,董玲玉,黄铭湘,翁维正,夏文生,万惠霖. 物理化学学报,2013,29,2245.] doi: 10.3866/PKU.WHXB201308201
(12) Wu,H. J.; Pantaleo,G.; La Parola,V.; Venezia,A. M.; Collard,X.; Aprile,C.; Liotta,L. F. Appl. Catal. B 2014,156–157,350. doi: 10.1016/j.apcatb.2014.03.018
(13) Zhu,J. Q.; Peng,X. X.; Yao,L.; Tong,D. M.; Hu,C. W. Catal. Sci. Technol. 2012,2,529. doi: 10.1039/c1cy00333j
(14) Wang,Y. L.; Li,Q.; Weng,W. Z.; Xia,W. S.; Wan,H. L. Acta Phys. -Chim. Sin. 2016,32,2776. [王雅莉,李琪,翁维正,夏文生,万惠霖. 物理化学学报,2016,32,2776.]doi: 10.3866/PKU.WHXB201608302
(15) Zhao,X. Y.; Li,H. R.; Zhang,J. P.; Shi,L. Y.; Zhang,D. S. Int. J. Hydrog. Energy 2016,41,2447. doi: 10.1016/j.ijhydene.2015.10.111
(16) Zhang,S. H.; Shi,C.; Chen,B. B.; Zhang,Y. L.; Qiu,J. S. Catal. Commun. 2015,69,123. doi: 10.1016/j.catcom.2015.06.003
(17) Claridge,J. B.; York,A. P. E.; Brungs,A. J.; Marquez-Alvarez,C.; Sloan,J.; Tsang,S. C.; Green,M. L. H. J. Catal. 1998,180,85. doi: 10.1006/jcat.1998.2260
(18) Li,J. F.; Xiao,B.; Yan,R.; Yi,R. J. Chem. Eng. 2007,35,53. [李建芬,肖波,晏蓉,易仁金. 化学工程 2007,35,53.]
(19) Jiang,J. T.; Wei,X. J.; Xu,C. Y.; Zhou,Z. X.; Zhen,L. J. Magn. Magn. Mater. 2013,334,111. doi: 10.1016/j.jmmm.2012.12.036
(20) Ding,C. M.; Wang,J. W.; Ai,G. G.; Liu,S. B.; Liu,P.; Zhang,K.; Han,Y. L.; Ma,X. S. Fuel 2016,175,1. doi: 10.1016/j.fuel.2016.02.024
(21) He,S. F.; Zheng,X. M.; Mo,L. Y.; Yu,W. J.; Wang,H.; Luo,Y.M. MRS Bull. 2014,49,108. doi:10.1016/j.materresbull.2013.08.051
(22) Xia,W. S.; Hou,Y. H.; Chang,G.; Weng,W. Z.; Han,G. B.; Wan,H. L. Int. J. Hydrog. Energy 2012,37,8343. doi: 10.1016/j.ijhydene.2012.02.141
(23) Solsona,B.; López Nieto,J. M.; Concepción,P.; Dejoz,A.; Ivars,F.; Vázquez,M. I. J. Catal. 2011,280,28. doi: 10.1016/j.jcat.2011.02.010
(24) Venugopal,A.; Naveen Kumar,S.; Ashok,J.; Hari Prasad,D.; Durga Kumari,V.; Prasad,K. B. S.; Subrahmanyam,M. Int. J. Hydrog. Energy 2007,32,1782. doi:10.1016/j.ijhydene.2007.01.007
(25) Arbag,H.; Yasyerli,S.; Yasyerli,N.; Dogu,T.; Dogu,G. Top. Catal. 2013,56,1695. doi: 10.1007/s11244-013-0105-3
(26) Theofanidis,S. A.; Galvita,V. V.; Poelman,H.; Marin,G. B. ACS Catal. 2015,5,3028. doi: 10.1021/acscatal.5b00357
(27) Xia,W. S.; Chang,G.; Hou,Y. H.; Weng,W. Z.; Wan,H. L. Acta Phys. -Chim. Sin. 2011,27,1567. [夏文生,常刚,侯玉慧,翁维正,万惠霖. 物理化学学报,2011,27,1567.]doi: 10.3866/PKU.WHXB20110627
(28) Xia,W. S.; Chen,R. F.; Wang,Y. L.; Li,Q.; Weng,W. Z.; Wan,H. L. Xiamen Univ. J. Nat. Sci. Ed. 2015,54,17. [夏文生,陈蓉芳,王雅莉,李琪,翁维正,万惠霖. 厦门大学学报(自然科学版),2015,54,17.] doi: 10.6043/j.issn.0438-0479.2015.05.17
(29) Mohammadzadeh Valendar,H.; Yu,D. W.; Barati,M.; Rezaie,H. J. Therm. Anal. Calorim. 2016,128,553. doi: 10.1007/s10973-016-5883-y
[1] 陈文君,薛智敏,王晋芳,蒋静云,赵新辉,牟天成. 低共熔溶剂的热稳定性研究[J]. 物理化学学报, 2018, 34(8): 904-911.
[2] 钟爱国,李嵘嵘,洪琴,张杰,陈丹. 从能量和信息理论视角理解单取代烷烃的异构化[J]. 物理化学学报, 2018, 34(3): 303-313.
[3] 鄢慧君,李彪,蒋宁,夏定国. 阴离子硫氧化还原与Li1-xNiO2-ySy的结构稳定性:第一性原理研究[J]. 物理化学学报, 2017, 33(9): 1781-1788.
[4] 于景华,李文文,朱红. 管径对碳纳米管负载铂催化剂氧还原的影响[J]. 物理化学学报, 2017, 33(9): 1838-1845.
[5] 郑芳芳,李倩,张宏,翁维正,伊晓东,郑燕萍,黄传敬,万惠霖. 抗烧结Rh-Sm2O3/SiO2催化剂的制备和表征及其甲烷部分氧化制合成气性能[J]. 物理化学学报, 2017, 33(8): 1689-1698.
[6] 刘敬伟,杨娜婷,祝艳. Pd/Co3O4纳米颗粒负载于Al2O3纳米片高效催化甲烷燃烧[J]. 物理化学学报, 2017, 33(7): 1453-1461.
[7] 顾津宇,齐朋伟,彭扬. 无机非铅钙钛矿太阳能电池研究进展[J]. 物理化学学报, 2017, 33(7): 1379-1389.
[8] 张彦涛,刘圳杰,王佳伟,王亮,彭章泉. 非水溶剂Li-O2电池锂负极研究进展[J]. 物理化学学报, 2017, 33(3): 486-499.
[9] 晒旭霞,李丹,刘双双,李浩,王鸣魁. 钙钛矿太阳电池吸光层材料研究进展[J]. 物理化学学报, 2016, 32(9): 2159-2170.
[10] 孙小祥,陈宇,赵剑曦. 气相二氧化硅/季铵Gemini表面活性剂稳定的泡沫体系[J]. 物理化学学报, 2016, 32(8): 2045-2051.
[11] 李红梅,兰丽,陈山虎,刘达玉,王卫,龚茂初,陈耀强. 复合沉淀剂制备的CeO2-ZrO2-Al2O3材料及其负载的单Pd三效催化剂[J]. 物理化学学报, 2016, 32(7): 1734-1746.
[12] 党成雄,杨浩波,余皓,王红娟,彭峰. 铈镧比对CexNi0.5La0.5-xO系催化剂甘油氧化蒸汽重整制氢性能的影响[J]. 物理化学学报, 2016, 32(6): 1527-1533.
[13] 梁梅清,殷鸿尧,冯玉军. 智能水基泡沫研究进展[J]. 物理化学学报, 2016, 32(11): 2652-2662.
[14] 王雅莉,李琪,翁维正,夏文生,万惠霖. Y2O3修饰Ni/SiO2催化剂在甲烷部分氧化制合成气反应中的催化性能及稳定性[J]. 物理化学学报, 2016, 32(11): 2776-2784.
[15] 李璀灿,张梦晓,华伟明,乐英红,高滋. 碳前驱体在全氟磺酸型碳基固体酸材料设计中的影响[J]. 物理化学学报, 2015, 31(9): 1747-1752.