Please wait a minute...
物理化学学报  2019, Vol. 35 Issue (6): 616-623    DOI: 10.3866/PKU.WHXB201805082
论文     
LaCoO3-TiO2纳米管阵列的构筑及可见光光催化性能
弓程1,2,向思弯1,2,张泽阳1,2,孙岚1,2,*(),叶陈清2,林昌健1
1 厦门大学化学化工学院化学系,固体表面物理化学国家重点实验室,福建 厦门 361005
2 宁德市师范学院,特色生物化工材料福建省重点实验室,福建 宁德 352100
Construction and Visible-Light-Driven Photocatalytic Properties of LaCoO3-TiO2 Nanotube Arrays
Cheng GONG1,2,Siwan XIANG1,2,Zeyang ZHANG1,2,Lan SUN1,2,*(),Chenqing YE2,Changjian LIN1
1 State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, P. R. China
2 Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, Fujian Province, P. R. China
 全文: PDF(2847 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

TiO2纳米管阵列具有较高的光催化活性,但可见光吸收弱,限制了其太阳能利用和环境应用。窄带隙的钙钛矿(ABO3)型氧化物能够吸收大范围波段的可见光,且稳定性高,但光催化活性低。本文首先采用溶胶-凝胶法合成了LaCoO3纳米颗粒,然后利用电泳沉积技术将LaCoO3纳米颗粒修饰于TiO2纳米管阵列表面,构筑了LaCoO3-TiO2纳米管阵列。扫描电子显微镜(SEM)、透射电子显微镜(SEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)的表征结果显示溶胶-凝胶法合成的纳米颗粒为LaCoO3,其尺寸均匀,结晶度高,平均粒径约为100 nm。LaCoO3纳米颗粒与TiO2纳米管阵列之间的结合力好。紫外可见吸收光谱(DRS)显示,随着电泳沉积时间的延长,LaCoO3-TiO2纳米管阵列的吸收带边逐渐红移700 nm。可见光下光催化降解甲基橙(MO)的结果表明,电泳沉积15 min制得的LaCoO3-TiO2纳米管阵列对MO的光催化效率最高,其降解速率是相同条件下TiO2纳米管阵列的4倍。光致发光光谱和电化学阻抗谱证实LaCoO3纳米颗粒的负载有效地促进了光生电荷的分离和传输,可见光光催化活性明显增强。

关键词: LaCoO3TiO2纳米管阵列可见光光催化甲基橙    
Abstract:

TiO2 nanotube arrays (NTAs) have high photocatalytic activity; however, their weak visible light absorption limits their solar energy utilization and environmental application. Perovskite (ABO3)-type oxides with a narrow band gap can absorb visible light in a wide wavelength range and have excellent stability; however, their photocatalytic activity is relatively low. Coupling TiO2 NTAs with ABO3 to form heterojunctions is one of the most promising approaches to extend the optical absorption of TiO2 NTAs into the visible-light range and promote the separation rate of photogenerated electron–hole pairs. However, to date, constructing ABO3-TiO2 NTA heterostructured composites has been extremely challenging owing to the different crystallization temperatures of anatase TiO2 NTAs and ABO3. In this work, LaCoO3 nanoparticles were first synthesized using a sol-gel method. The as-prepared LaCoO3 nanoparticles were then modified on the surface of the TiO2 NTAs using an electrophoretic deposition technique, and a series of LaCoO3-TiO2 NTAs photocatalysts were thus constructed by controlling the deposition time. Results of the scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) demonstrated that the nanoparticles prepared through the sol-gel method were LaCoO3 with a uniform size and high crystallization. The average diameter of the LaCoO3 nanoparticles was 100 nm. The binding strength between the LaCoO3 nanoparticles and the TiO2 NTAs was strong. The UV-visible absorption spectra (diffuse reflectance spectroscopy; DRS) demonstrated that the absorption band edge of the LaCoO3-TiO2 NTAs was gradually red-shifted into the visible light region with the increase in electrophoretic time. The LaCoO3-TiO2 NTAs prepared by the electrophoretic deposition technique for 15 min exhibited a strong light absorption in the wide wavelength range from 250 to 700 nm, which was the same as that of the LaCoO3 nanoparticles loaded on a Ti foil. The results of the photocatalytic degradation of methyl orange (MO) under visible light irradiation demonstrated that the photocatalytic degradation rate of MO over LaCoO3-TiO2 NTAs was considerably higher than those of TiO2 NTAs and LaCoO3 nanoparticles loaded on a Ti foil. The LaCoO3-TiO2 NTAs prepared by the electrophoretic deposition technique for 15 min showed the highest photocatalytic degradation rate of MO, which was a four-fold enhancement compared to that of TiO2 NTs under the same conditions. The p-n heterojunctions between the LaCoO3 nanoparticles and the TiO2 nanotubes were responsible for the enhanced visible light photocatalytic activity. The results of the electrochemical impedance spectroscopy (EIS) and photoluminescence spectroscopy (PL) tests demonstrated that the loading of the LaCoO3 nanoparticles effectively promoted the separation and transport of photogenerated charges, thereby enhancing the visible light photocatalytic activity of the TiO2 NTAs.

Key words: LaCoO3    TiO2 nanotube arrays    Visible light    Photocatalysis    Methyl orange
收稿日期: 2018-05-29 出版日期: 2018-07-25
中图分类号:  O644  
基金资助: 国家自然科学基金(21621091);广东省自然科学基金(2016A030313845)
通讯作者: 孙岚     E-mail: sunlan@xmu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
弓程
向思弯
张泽阳
孙岚
叶陈清
林昌健

引用本文:

弓程,向思弯,张泽阳,孙岚,叶陈清,林昌健. LaCoO3-TiO2纳米管阵列的构筑及可见光光催化性能[J]. 物理化学学报, 2019, 35(6): 616-623, 10.3866/PKU.WHXB201805082

Cheng GONG,Siwan XIANG,Zeyang ZHANG,Lan SUN,Chenqing YE,Changjian LIN. Construction and Visible-Light-Driven Photocatalytic Properties of LaCoO3-TiO2 Nanotube Arrays. Acta Phys. -Chim. Sin., 2019, 35(6): 616-623, 10.3866/PKU.WHXB201805082.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201805082        http://www.whxb.pku.edu.cn/CN/Y2019/V35/I6/616

图1  LaCoO3纳米颗粒的SEM图(a)、EDX图(b)、TEM图(c)和HRTEM图(d)
图2  LaCoO3纳米颗粒的XRD谱图
图3  LaCoO3纳米颗粒中La 3d和Co 2p高分辨XPS谱图
图4  TiO2纳米管阵列(a, b)和电泳沉积时间分别为1 min (c)、7 min (d)、15 min (e)和25 min (f)制得的LaCoO3-TiO2纳米管阵列的SEM图
图5  TiO2纳米管阵列和LaCoO3-TiO2纳米管阵列XRD图
图6  LaCoO3-TiO2纳米管阵列的XPS图
图7  TiO2纳米管阵列、LaCoO3和电泳沉积不同时间制得的LaCoO3-TiO2纳米管阵列的DRS谱图
图8  不同光催化剂可见光光催化降解MO的动力学曲线
图9  不同光催化剂的PL光谱(a)和可见光照射下的EIS谱图(b)
图10  可见光照射下LaCoO3纳米颗粒和TiO2纳米管阵列之间光生电荷分离和传输示意图
1 Wu L. ; Zhang M. ; Li J. ; Cen C. ; Li X Res. Chem. Intermed 2016, 42, 4569.
doi: 10.1007/s11164-015-2297-6
2 Xiao F. X. ; Liu B Nanoscale 2017, 9, 17118.
doi: 10.1039/c7nr06697j
3 Leung D. Y. ; Fu X. ; Wang C. ; Ni M. ; Leung M. K. ; Wang X ChemSusChem 2010, 3, 681.
doi: 10.1002/cssc.201000014
4 Wang J. ; Lin Z Chem. Mater 2010, 22, 579.
doi: 10.1021/cm903164k
5 Wang M. ; Ioccozia J. ; Sun L. ; Lin C. ; Lin Z Energy Environ. Sci 2014, 7, 2182.
doi: 10.1039/c4ee00147h
6 Zhou H. ; Ge J. ; Zhang M. ; Yuan S Res. Chem. Intermed 2016, 42, 1929.
doi: 10.1007/s11164-015-2126-y
7 Xiao F. X. ; Liu B Adv. Mater. Interfaces 2018, 5, 1701098.
doi: 10.1002/admi.201701098
8 Wu Z ; Gong C ; Yu J ; Sun L ; Xiao W. ; Lin C. J. Mater. Chem. A 2017, 5, 1292.
doi: 10.1039/c6ta07420k
9 Chen C. ; Ye M. ; Lv M. ; Gong C. ; Guo W. ; Lin C. Electrochim. Acta 2014, 121, 175.
doi: 10.1016/j.electacta.2013.12.106
10 Chen H. ; Fu W. ; Yang H. ; Sun P. ; Zhang Y ; Wang L. ; Zhao W. ; Zhou X. ; Zhao H. ; Jing Q. ; Qi X ; Li Y. Electrochim. Acta 2010, 56, 919.
doi: 10.1016/j.electacta.2010.10.003
11 Su Y. ; Wu Z. ; Wu Y. ; Yu Y. ; Sun L. ; Lin C. J. Mater. Chem. A 2015, 3, 8537.
doi: 10.1039/c5ta00839e
12 Sun L. ; Wu Z. ; Xiang S. ; Yu Y. ; Wang Y. ; Lin C. ; Lin Z RSC Adv 2017, 7, 17551.
doi: 10.1039/c6ra27388b
13 Britoa J. F. ; Tavella F. ; Genovese C. ; Ampelli C. ; Zanoni M. V. B. ; Centi G. ; Perathoner S Appl. Catal. B: Environ 2018, 224, 136.
doi: 10.1016/j.apcatb.2017.09.071
14 Xiao F. X. ; Zhang J. J Mater. Chem. A 2017, 5, 23681.
doi: 10.1039/c7ta08415c
15 Xie K. ; Wu Z. ; Wang M. ; Yu J. ; Gong C. ; Sun L. ; Lin C Electrochem. Commun 2016, 63, 56.
doi: 10.1016/j.elecom.2015.12.013
16 Zeng Z. ; Xiao F. X. ; Phan H. ; Chen S. ; Y Z. ; Wang R. ; Nguyen T. Q. ; Tan T. T. Y. J. Mater. Chem. A 2018, 6, 1700.
doi: 10.1039/c7ta09119b
17 Mao Z. ; Lin H. ; Xu M. ; Miao J. ; He S. ; Li Q. J Appl. Electrochem 2018, 48, 147.
doi: 10.1007/s10800-017-1138-2
18 Zhang W. ; Liu J. ; Guo Z. ; Yao S. ; Wang H. J Mater. Sci: Mater. Electron 2017, 28, 9505.
doi: 10.1007/s10854-017-6694-z
19 Zhao Q. ; Ren Y. ; Li X. ; Shi Y Mater. Res. Bull 2016, 83, 396.
doi: 10.1016/j.materresbull.2016.06.031
20 Xiang S. ; Zhang Z. ; Gong C. ; Wu Z. ; Sun L. ; Ye C. ; Lin C. Mater Lett 2018, 216, 1.
doi: 10.1016/j.matlet.2017.12.101
21 Grabowska E Appl. Catal. B: Environ 2016, 186, 97.
doi: 10.1016/j.apcatb.2015.12.035
22 Meziani D. ; Reziga A. ; Rekhila G. ; Bellal B. ; Trari M Energy Convers. Manage 2014, 82, 244.
doi: 10.1016/j.enconman.2014.03.028
23 Guo J. ; Dai Y. ; Chen X. ; Zhou L. ; Liu T. J Alloy. Compd 2017, 696, 226.
doi: 10.1016/j.jallcom.2016.11.251
24 Ling F. ; Anthony O. C. ; Xiong Q. ; Luo M. ; Pan X. ; Jia L. ; Huang J. ; Sun D. ; Li Q. Int. J. Hydrogen Energy 2016, 41, 6115.
doi: 10.1016/j.ijhydene.2015.10.036
25 Qin J. ; Lin L. ; Wang X Chem. Commun 2018, 54, 2272.
doi: 10.1039/c7cc07954k
26 Niu K. ; Liang L. ; Li J. ; Zhang F Micropor. Mesopor. Mat 2016, 220, 220.
doi: 10.1016/j.micromeso.2015.09.007
27 Hu M. ; Zhang Q. ; Gu L. ; Guo Q. ; Cao Y. ; Kareev M. ; Chakhalian J. ; Guo J Appl. Phys. Lett 2018, 112, 031603.
doi: 10.1063/1.5006298
28 Xie K. ; Gong C. ; Wang M. ; Sun L. ; Lin C. J Appl. Electrochem 2017, 47, 959.
doi: 10.1007/s10800-017-1093-y
29 Wu Z. ; Wang Y. ; Sun L. ; Mao Y. ; Wang M. ; Lin C. J. Mater. Chem. A 2014, 2, 8223.
doi: 10.1039/c4ta00850b
[1] 何妍,李豪,周莉,徐婷,彭昌军,刘洪来. 新型芳香三嗪超交联多孔聚合物去除水溶液中甲基橙[J]. 物理化学学报, 2019, 35(3): 299-306.
[2] 刘志明, 刘国亮, 洪昕林. 表面缺陷与钯的沉积对硫化镉纳米晶粒的光催化制氢性能的影响[J]. 物理化学学报, 2019, 35(2): 215-222.
[3] 卢秀利,韩莹莹,鲁统部. 石墨炔结构表征及在光电催化反应中的应用[J]. 物理化学学报, 2018, 34(9): 1014-1028.
[4] 李少海,翁波,卢康强,徐艺军. 聚胺界面修饰改善碳量子点可见光光敏化性能[J]. 物理化学学报, 2018, 34(6): 708-718.
[5] 杜新华,李阳,殷辉,向全军. Au/TiO2/MoS2等离子体复合光催化剂的制备及其增强光催化产氢活性[J]. 物理化学学报, 2018, 34(4): 414-423.
[6] 周亮,张雪华,林琳,李盼,邵坤娟,李春忠,贺涛. 无模板法水热合成CoTe及其可见光光催化还原CO2性能[J]. 物理化学学报, 2017, 33(9): 1884-1890.
[7] 宋春冬,张静,高莹,卢圆圆,王芳芳. 基于单质法合成直接Z型CuS-WO3及光催化性能[J]. 物理化学学报, 2017, 33(9): 1891-1897.
[8] 张驰,吴志娇,刘建军,朴玲钰. MoS2/TiO2复合催化剂的制备及其在紫外光下的光催化制氢活性[J]. 物理化学学报, 2017, 33(7): 1492-1498.
[9] 程若霖,金锡雄,樊向前,王敏,田建建,张玲霞,施剑林. 氮掺杂还原氧化石墨烯与吡啶共聚g-C3N4复合光催化剂及其增强的产氢活性[J]. 物理化学学报, 2017, 33(7): 1436-1445.
[10] 阮毛毛,宋乐新,王青山,夏娟,杨尊,滕越,许哲远. 纳米片自组装的(BiO)2CO3单分散微米绒球的绿色可控合成及其光催化性能[J]. 物理化学学报, 2017, 33(5): 1033-1042.
[11] 李蛟,陈忠. Ag3XO4(X = P,As,V)电子结构及光催化性质的第一性原理计算[J]. 物理化学学报, 2017, 33(5): 941-948.
[12] 白金,陈鑫,奚兆毅,王翔,李强,胡绍争. 溶剂热后处理对石墨相氮化碳光化学固氮产氨性能的影响[J]. 物理化学学报, 2017, 33(3): 611-619.
[13] 胡海龙,王晟,侯美顺,刘福生,王田珍,李天龙,董乾乾,张鑫. 水热法制备p-CoFe2O4/n-CdS及其光催化制氢性能[J]. 物理化学学报, 2017, 33(3): 590-601.
[14] 肖明,黄在银,汤焕丰,陆桑婷,刘超. Ag3PO4表面热力学性质及光催化原位过程热动力学的晶面效应[J]. 物理化学学报, 2017, 33(2): 399-406.
[15] 荆涛,戴瑛. 固溶体光催化材料的研究进展[J]. 物理化学学报, 2017, 33(2): 295-304.