Please wait a minute...
物理化学学报  2019, Vol. 35 Issue (2): 139-144    DOI: 10.3866/PKU.WHXB201805111
通讯     
α-Cu2Se精细结构的球差校正扫描透射电镜表征
陈陆,刘军,王勇*(),张泽*()
Characterization of α-Cu2Se Fine Structure by Spherical-Aberration-Corrected Scanning Transmission Electron Microscope
Lu CHEN,Jun LIU,Yong WANG*(),Ze ZHANG*()
 全文: PDF(2388 KB)   HTML 输出: BibTeX | EndNote (RIS) | Supporting Info
摘要:

目前学界对Cu2Se低温α相的结构仍未认识清楚,而解决这一问题对理解Cu2Se在相变过程中热电性能提升等特性具有重要意义。本文首次报道了由球差校正扫描透射电镜(STEM)拍摄到的沿α-Cu2Se $ {{\left[ \bar{1}\bar{1}2 \right]}_{\text{c}}}$带轴的原子级分辨率高角环形暗场(HAADF)像,揭示了由Se原子以多种形式有序起伏产生的复杂结构。结合电子衍射图谱,分析了包含不同层数、通过相互组合构成α-Cu2Se晶体的多种结构变体。使用QSTEM软件对构建的结构变体进行高分辨图像模拟,得到了与实验对应的HAADF像。该工作为更全面地理解α-Cu2Se的结构提供了新的重要信息。

关键词: α-Cu2Se聚焦离子束电子衍射球差校正STEM有序起伏    
Abstract:

The structure of low-temperature α-Cu2Se, which is of great importance for understanding the mechanism of the significant increase in thermoelectric performance during the α-β phase transition of Cu2Se, has still not been fully solved. Because it is restricted by the quality of polycrystal and powder specimens and the accuracy of characterization methods such as the conventional transmission electron microscopy (TEM) and X-ray diffraction (XRD), direct observation with atomic-scale resolution to reveal the structural details has not been realized, although electron diffraction and high-resolution transmission electron microscopy (HRTEM) studies have indicated the complexity of the α-Cu2Se layered structure. Owing to developments in the focused ion beam (FIB) milling preparation method, high-quality single crystalline specimens with specific crystallographic orientations can be prepared to ensure that atomic-resolution images along a specific orientation can be acquired. Furthermore, the developments in aberration correction technology in TEM and scanning transmission electron microscopy (STEM) allow us to observe the subtle details of structural variation and evolution. Herein, we report, for the first time, the atomic-resolution high-angle annular dark field (HAADF) images acquired along the $ {{\left[ \bar{1}\bar{1}2 \right]}_{\text{c}}}$ axis of α-Cu2Se using spherical-aberration (Cs)-corrected STEM from FIB-prepared single crystalline specimens. The observations revealed that the complex structure is generated by ordered fluctuations of Se atoms with various forms, including that some of the Se atoms on the two sides of the Cu deficiency layer get closer to each other than the others and the neighboring Cu deficiency layers have different forms of ordered Se fluctuations. These characteristics can only be observed along the $ {{\left[ \bar{1}\bar{1}2 \right]}_{\text{c}}}$ axis, while these details were not visible in a previous study along the $ <\bar{1}10{{>}_{\text{c}}} $ axis or in our results obtained along the ${{\left[ \bar{1}01 \right]}_{\text{c}}} $ axis. By combining the electron diffraction patterns, several models of the unit cell variants were established, including the two-layer and four-layer cells (both have two different shapes) and the two-layer variants with and without central symmetry. These variants can also transform into each other, and an α-Cu2Se crystal can be formed through the random assembly of these variants. Using the program QSTEM, the corresponding HAADF images of these variants were simulated. The simulation results were similar to the experimental HAADF images and reflected most of the observed details, including the different forms of the ordered fluctuations of Se atoms and the dispersion of Cu atoms, which indicates that our structure models of α-Cu2Se are reasonable. This work provides new critical information for thoroughly understanding the structure of α-Cu2Se and the α-β phase transition of Cu2Se.

Key words: α-Cu2Se    Focused ion beam    Electron diffraction    Cs-correction    STEM    Ordered fluctuation
收稿日期: 2018-04-09 出版日期: 2018-05-11
中图分类号:  O649  
基金资助: 国家自然科学基金(51390474);国家自然科学基金(11327901)
通讯作者: 王勇,张泽     E-mail: yongwang@zju.edu.cn;zezhang@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈陆
刘军
王勇
张泽

引用本文:

陈陆, 刘军, 王勇, 张泽. α-Cu2Se精细结构的球差校正扫描透射电镜表征[J]. 物理化学学报, 2019, 35(2): 139-144, 10.3866/PKU.WHXB201805111

Lu CHEN, Jun LIU, Yong WANG, Ze ZHANG. Characterization of α-Cu2Se Fine Structure by Spherical-Aberration-Corrected Scanning Transmission Electron Microscope. Acta Phys. -Chim. Sin., 2019, 35(2): 139-144, 10.3866/PKU.WHXB201805111.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201805111        http://www.whxb.pku.edu.cn/CN/Y2019/V35/I2/139

图1  α-Cu2Se的电子衍射图谱
图2  α-Cu2Se的HAADF像
Unit cell label a/nm b/nm c/nm α/(°) β/(°) γ/(°)
2L 0.7223 0.7206 1.4251 99.559 94.751 60.079
2R 1.4261 85.027 94.794
4L 2.8206 92.296 87.471
4R 2.8215 84.972 87.495
表1  img用于模拟的4种单胞的晶格常数
图3  不同变体的模型及其HAADF像
1 Ogorelec Z. ; Celustka B. J. Phys. Chem. Solids 1966, 27 (3), 615.
doi: 10.1016/0022-3697(66)90208-3
2 Routie R. ; Sudres M. ; Mahenc J. J. Electroanal. Chem. 1970, 25 (3), 489.
doi: 10.1016/s0022-0728(70)80110-3
3 Okamoto K. Jpn. J. Appl. Phys. 1971, 10 (4), 508.
doi: 10.1143/jjap.10.508
4 El Akkad F. ; Mansour B. ; Hendeya T. Mater. Res. Bull. 1981, 16 (5), 535.
doi: 10.1016/0025-5408(81)90119-7
5 Balapanov M. K. ; Zinnurov I. B. ; Akmanova G. R. Phys. Solid State 2006, 48 (10), 1868.
doi: 10.1134/s1063783406100076
6 Zhang Y. ; Hu C. G. ; Zheng C. H. ; Xi Y. ; Wan B. Y. J. Phys. Chem. C 2010, 114 (35), 14849.
doi: 10.1021/jp105592d
7 Xiao X. X. ; Xie W. J. ; Tang X. F. ; Zhang Q. J. Chin. Phys. B 2011, 20 (8), 087201.
doi: 10.1088/1674-1056/20/8/087201
8 Liu H. L. ; Shi X. ; Xu F. F. ; Zhang L. L. ; Zhang W. Q. ; Chen L. D. ; Li Q. ; Uher C. ; Day T. ; Snyder G. J. Nat. Mater. 2012, 11 (5), 422.
doi: 10.1038/nmat3273
9 Yu B. ; Liu W. S. ; Chen S. ; Wang H. ; Wang H. Z. ; Chen G. ; Ren Z. F. Nano Energy 2012, 1 (3), 472.
doi: 10.1016/j.nanoen.2012.02.010
10 Ballikaya S. ; Chi H. ; Salvador J. R. ; Uher C. J. Mater. Chem. A 2013, 1 (40), 12478.
doi: 10.1039/c3ta12508d
11 Brown D. R. ; Day T. ; Borup K. A. ; Christensen S. ; Iversen B. B. ; Snyder G. J. APL Mater. 2013, 1 (5), 052107.
doi: 10.1063/1.4827595
12 Liu H. L. ; Shi X. ; Kirkham M. ; Wang H. ; Li Q. ; Uher C. ; Zhang W. Q. ; Chen L. D. Mater. Lett. 2013, 93, 121.
doi: 10.1016/j.matlet.2012.11.058
13 Liu H. L. ; Yuan X. ; Lu P. ; Shi X. ; Xu F. F. ; He Y. ; Tang Y. S. ; Bai S. Q. ; Zhang W. Q. ; Chen L. D. ; et al Adv. Mater. 2013, 25 (45), 6607.
doi: 10.1002/adma.201302660
14 Brown D. R. ; Heijl R. ; Borup K. A. ; Iversen B. B. ; Palmqvist A. ; Snyder G. J. Phys. Status Solidi RRL 2016, 10 (8), 618.
doi: 10.1002/pssr.201600160
15 Heyding R. D. ; Murray R. M. Can. J. Chem. 1976, 54 (6), 841.
doi: 10.1139/v76-122
16 Oliveria M. ; McMullan R. K. ; Wuensch B. J. Solid State Ion. 1988, 28, 1332.
doi: 10.1016/0167-2738(88)90382-7
17 Sakuma T. ; Sugiyama K. ; Matsubara E. ; Waseda Y. Mater. Trans. JIM 1989, 30 (5), 365.
doi: 10.2320/matertrans1989.30.365
18 Yamamoto K. ; Kashida S. Solid State Ion. 1991, 48 (3–4), 241.
doi: 10.1016/0167-2738(91)90038-d
19 Yamamoto K. ; Kashida S. J. Solid State Chem. 1991, 93 (1), 202.
doi: 10.1016/0022-4596(91)90289-t
20 Skomorokhov A. N. ; Trots D. M. ; Knapp M. ; Bickulova N. N. ; Fuess H. J. Alloy. Compd. 2006, 421 (1–2), 64.
doi: 10.1016/j.jallcom.2005.10.079
21 Eikeland E. ; Blichfeld A. B. ; Borup K. A. ; Zhao K. P. ; Overgaard J. ; Shi X. ; Chen L. D. ; Iversen B. B. IUCrJ 2017, 4, 476.
doi: 10.1107/s2052252517005553
22 Rahlfs P. Z. Phys. Chem. 1936, 31 (1), 157.
doi: 10.1515/zpch-1936-3114
23 Milat O. ; Vucic Z. ; Ruscic B. Solid State Ion. 1987, 23 (1–2), 37.
doi: 10.1016/0167-2738(87)90079-8
24 Kashida S. ; Akai J. J. Phys. C 1988, 21 (31), 5329.
doi: 10.1088/0022-3719/21/31/004
25 Frangis N. ; Manolikas C. ; Amelinckx S. Phys. Status Solidi A 1991, 126 (1), 9.
doi: 10.1002/pssa.2211260102
26 Gulay L. ; Daszkiewicz M. ; Strok O. ; Pietraszko A. Chem. Met. Alloy. 2011, 4 (3–4), 200.
27 Lu P. ; Liu H. L. ; Yuan X. ; Xu F. F. ; Shi X. ; Zhao K. P. ; Qiu W. J. ; Zhang W. Q. ; Chen L. D. J. Mater. Chem. A 2015, 3 (13), 6901.
doi: 10.1039/c4ta07100j
28 Nguyen M. C. ; Choi J. H. ; Zhao X. ; Wang C. Z. ; Zhang Z. ; Ho K. M. Phys. Rev. Lett. 2013, 111 (16), 165502.
doi: 10.1103/PhysRevLett.111.165502
29 Chi H. ; Kim H. ; Thomas J. C. ; Shi G. S. ; Sun K. ; Abeykoon M. ; Bozin E. S. ; Shi X. Y. ; Li Q. ; Shi X. ; et al Phys. Rev. B 2014, 89 (19), 195209.
doi: 10.1103/PhysRevB.89.195209
30 Choi J. H. ; Han Y. K. Curr. Appl. Phys. 2015, 15 (11), 1417.
doi: 10.1016/j.cap.2015.08.006
31 Li L. ; Gan Z. ; McCartney M. R. ; Liang H. ; Yu H. ; Gao Y. ; Wang J. ; Smith D. J. Sci. Rep. 2013, 3, 3229.
doi: 10.1038/srep03229
32 Huang W. ; Wu C. Y. ; Zeng Y. W. ; Jin C. H. ; Zhang Z. Acta Phys. -Chim. Sin. 2016, 32 (9), 2287.
doi: 10.3866/PKU.WHXB201605164
黄威; 邬春阳; 曾跃武; 金传洪; 张泽. 物理化学学报, 2016, 32 (9), 2287.
doi: 10.3866/PKU.WHXB201605164
33 Gao P. ; Zhang Z. ; Li M. ; Ishikawa R. ; Feng B. ; Liu H. J. ; Huang Y. L. ; Shibata N. ; Ma X. ; Chen S. ; et al Nat. Commun. 2017, 8, 15549.
doi: 10.1038/ncomms15549
34 Lü D. H. ; Zhu D. C. ; Jin C. H. Acta Phys. -Chim. Sin. 2017, 33 (8), 1514.
doi: 10.3866/PKU.WHXB201705123
吕丹辉; 朱丹诚; 金传洪. 物理化学学报, 2017, 33 (8), 1514.
doi: 10.3866/PKU.WHXB201705123
35 Yao S. ; Zhang X. ; Zhou W. ; Gao R. ; Xu W. ; Ye Y. ; Lin L. ; Wen X. ; Liu P. ; Chen B. ; et al Science 2017, 357 (6349), 389.
doi: 10.1126/science.aah4321
36 Takahashi T. ; Yamamoto O. ; Matsuyama F. ; Noda Y. J. Solid State Chem. 1976, 16 (1–2), 35.
doi: 10.1016/0022-4596(76)90004-9
[1] NALEWAJSKI Roman F. Chemical Reactivity Description in Density-Functional and Information Theories[J]. 物理化学学报, 2017, 33(12): 2491-2509.
[2] 冉珂, 陈清, 左建民. 准二维无定形碳结构的制备和结构表征[J]. 物理化学学报, 2012, 28(07): 1551-1555.
[3] 刘金锋;刘忠良;任鹏;徐彭寿;陈秀芳;徐现刚. 6H-SiC/3C-SiC/6H-SiC量子阱结构制备及其发光特性[J]. 物理化学学报, 2008, 24(04): 571-575.
[4] 胡盛志. 导出铅(II)—卤素键价参数的一条新途径[J]. 物理化学学报, 2007, 23(05): 786-789.
[5] Mau-Scheng Zei. 单晶电极表面研究中的超高真空技术[J]. 物理化学学报, 2004, 20(08S): 953-965.
[6] 郭敏;刁鹏;任焱杰;王斌;蔡生民. 高度取向ZnO单晶亚微米棒阵列的制备与表征[J]. 物理化学学报, 2003, 19(05): 478-480.
[7] 金安定,朱小蕾. 气相电子衍射和SF6分子中电荷的再分布[J]. 物理化学学报, 1995, 11(07): 663-666.