Please wait a minute...
物理化学学报  2019, Vol. 35 Issue (4): 355-360    DOI: 10.3866/PKU.WHXB201805161
所属专题: 非富勒烯有机太阳能电池
通讯     
通过非共价构象锁定和端基工程策略设计高效率的A-D-A型稠环电子受体
冯诗语,路皓,刘泽坤,刘亚辉,李翠红*(),薄志山*()
Designing a High-Performance A-D-A Fused-Ring Electron Acceptor via Noncovalently Conformational Locking and Tailoring Its End Groups
Shiyu FENG,Hao LU,Zekun LIU,Yahui LIU,Cuihong LI*(),Zhishan BO*()
 全文: PDF(1021 KB)   HTML 输出: BibTeX | EndNote (RIS) | Supporting Info
摘要:

近年来,非富勒烯太阳能电池的发展迅猛。目前报道的高效率的非富勒烯稠环电子受体主要采用受体-给体-受体(A-D-A)型结构。本工作中,我们在给受体间引入3, 4-二己氧基噻吩作桥,用5, 6-二氯-3-(二氰基亚甲基)靛酮作端基设计合成了一种新的稠环电子受体(ITOIC-2Cl)。一方面,可以通过S···O和O···H等作用在分子内形成非共价键构象锁促进分子的平面性;另一方面,通过增加端基的缺电子性可以增强分子内的电荷迁移。在两者的协同作用下,ITOIC-2Cl的光谱吸收拓宽到近红外区,这有利于获得宽的光谱响应。将ITOIC-2Cl与一种吸收互补的给体聚合物(PBDB-T)共混制备活性层,我们用原子力显微镜(AFM)和透射电子显微镜(TEM)表征其形貌,发现共混薄膜可以形成纤维状的互传网络结构和合适纳米尺寸的相分离,这有利于电荷的分离和传输,从而获得高的短路电流(Jsc)和填充因子(FF)。最终,基于PBDB-T:ITOIC的电池,我们获得了9.37%的光电转换效率,其开路电压(Voc)为0.886 V,Jsc为17.09 mA·cm−2,FF为61.8%。这些研究结果为我们提供了一种设计高效率的非富勒烯稠环电子受体的有效的策略。

关键词: 非富勒烯聚合物太阳能电池稠环电子受体构象锁定分子内电荷转移    
Abstract:

Recently, non-fullerene polymer solar cells (NPSCs) have been developed rapidly because of the flexible energy-level variability and excellent optical absorption properties of non-fullerene electron acceptors. Among them, fused-ring electron acceptors (FREAs) with acceptor-donor- acceptor (A-D-A) structures have been extensively exploited in high-performance NPSCs. These FREAs often employ central aromatic fused rings attached to several rigid side-chains and flanked by two electron-deficient terminals. Many efforts have focused on the modification of the central flat conjugated backbone in order to gain broad and strong absorption and dense stacking. However, the preparation of such FREAs is relatively complex, especially for large fused-ring structures. In a previous work, we provided a simple and useful method to extend the effective conjugation length and broaden the absorption spectrum of the acceptor by noncovalent intramolecular interactions. On this basis, in this work, we have designed and synthesized a new A-D-A-type FREA (ITOIC-2Cl) that uses 4, 9-dihydro-s-indaceno[1, 2-b:5, 6-b']dithiophene (IDT) as a central donor unit, bis(alkoxy)-substituted thiophene rings as conformational locking π-bridges between the donor and acceptor units, and cyanoindanones modified with two high-electron-affinity chlorine atoms as end-capping acceptor units. On one hand, we can attain good backbone planarity in the solid state via the noncovalent conformational locking induced by sulfur−oxygen (S···O) and oxygen−hydrogen (CH···O) interactions, which are not strong enough to lock the coplanar conformation in solution, thus simultaneously endowing ITOIC-2Cl with good solubility. On the other hand, we can enhance the intramolecular charge transfer by enhancing the electron deficiency of the terminal groups. The optical and electrochemical properties of ITOIC-2Cl were systematically explored. Moreover, in combination with the donor polymer of [(2, 6-(4, 8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1, 2-b:4, 5-b']dithiophene))-alt-(5, 5-(1', 3'-di-2-thienyl-5', 7'-bis(2-ethylhexyl)benzo[1', 2'-c:4', 5'-c']dithiophene-4, 8-dione))] (PBDB-T), the photovoltaic performances of the devices and the corresponding blend morphologies were studied. ITOIC-2Cl exhibited a broad absorption spectrum up to 900 nm, which is beneficial for broad harvesting of photons across the visible and NIR region. The PBDB-T:ITOIC-2Cl-based blend films exhibited favorable fibrous nanostructures with appropriate nanoscale phase separation, verified by atomic force microscopy and transmission electron microscopy characterizations. This morphology is beneficial for charge transport. Through the space-charge-limited current measurement, the PBDB-T:ITOIC-2Cl-based device exhibited the high hole/electron mobility of 1.85 × 10−4/1.19 × 10−4 cm2∙V−1∙s−1. The PBDB-T:ITOIC-2Cl-based devices obtained a high power conversion efficiency of 9.37%, with an open-circuit voltage (Voc) of 0.886 V, short-circuit current (Jsc) of 17.09 mA cm−2, and a fill factor (FF) of 61.8%. These results thus demonstrate the efficacy of the proposed strategy for designing high-performance non-fullerene FREAs.

Key words: Non-fullerene    Polymer solar cell    Fused-ring electron acceptor    Conformational locking    Intramolecular charge transfer
收稿日期: 2018-04-23 出版日期: 2018-05-16
中图分类号:  O646  
基金资助: 国家自然科学基金(21574013);北京市自然科学基金(2182030)
通讯作者: 李翠红,薄志山     E-mail: licuihong@bnu.edu.cn;zsbo@bnu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
冯诗语
路皓
刘泽坤
刘亚辉
李翠红
薄志山

引用本文:

冯诗语, 路皓, 刘泽坤, 刘亚辉, 李翠红, 薄志山. 通过非共价构象锁定和端基工程策略设计高效率的A-D-A型稠环电子受体[J]. 物理化学学报, 2019, 35(4): 355-360, 10.3866/PKU.WHXB201805161

Shiyu FENG, Hao LU, Zekun LIU, Yahui LIU, Cuihong LI, Zhishan BO. Designing a High-Performance A-D-A Fused-Ring Electron Acceptor via Noncovalently Conformational Locking and Tailoring Its End Groups. Acta Phys. -Chim. Sin., 2019, 35(4): 355-360, 10.3866/PKU.WHXB201805161.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201805161        http://www.whxb.pku.edu.cn/CN/Y2019/V35/I4/355

图1  ITOIC-2Cl的合成路径和给体聚合物PBDB-T的化学结构
图2  (a) ITOIC-2Cl在溶液和薄膜中以及PBDB薄膜和共混薄膜的吸收光谱;(b) ITOIC-2Cl的循环伏安曲线
D : A Voc/V Jsc/(mA∙cm−2) FF/% PCE/% best/averagea
2 : 1 0.903 ± 0.002 11.38 ± 0.85 47.4 ± 0.9 5.46 4.88 ± 0.46
1.5 : 1 0.894 ± 0.006 13.64 ± 0.42 52.4 ± 1.2 6.61 6.39 ± 0.15
1 : 1 0.893 ± 0.003 16.06 ± 0.60 61.1 ± 0.9 8.90 8.75 ± 0.20
1 : 1.5 0.884 ± 0.002 17.10 ± 0.31 61.6 ± 0.7 9.37 9.31 ± 0.08
1 : 2 0.870 ± 0.011 16.42 ± 0.83 51.3 ± 0.5 7.64 7.32 ± 0.39
表1  基于PBDB-T:ITOIC-2Cl的太阳能电池在AM1.5G光谱下的光伏性能参数
图3  基于PBDB-T:ITOIC-2Cl的电池在AM1.5G光谱下的(a)电流–电压曲线,(b)外量子效率
图4  PBDB-T:ITOIC-2Cl共混薄膜的AFM (2.0 μm × 2.0 μm)高度图(a)和TEM图(b)
1 Yu G. ; Gao J. ; Hummelen J. C. ; Wudl F. ; Heeger A. J. Science 1995, 270 (5243), 1789.
doi: 10.1126/science.270.5243.1789
2 Lu L. Y. ; Zheng T. Y. ; Wu Q. H. ; Schneider A. M. ; Zhao D. L. ; Yu L. P. Chem. Rev. 2015, 115 (23), 12666.
doi: 10.1021/acs.chemrev.5b00098
3 Li Y. F. Acc. Chem. Res. 2012, 45 (5), 723.
doi: 10.1021/ar2002446
4 Krebs F. C. Sol. Energy Mater. Sol. Cells 2009, 93 (4), 393.
doi: 10.1016/j.solmat.2008.12.008
5 Zhao Y.F. ; Zou W.J. ; Li H. ; Lu K. ; Yan W. ; Wei Z. X. Chin. J. Polym. Sci. 2017, 35 (2), 261.
doi: 10.1007/s10118-017-1875-z
6 Gelinas S. ; Rao A. ; Kumar A. ; Smith S. L. ; Chin A. W. ; Clark J. ; van der Poll T. S. ; Bazan G. C. ; Friend R. H. Science 2014, 343 (6170), 512.
doi: 10.1126/science.1246249
7 Zhao J. B. ; Li Y. K. ; Yang G. F. ; Jiang K. ; Lin H. R. ; Ade H. ; Ma W. ; Yan H. Nat. Energy, 2016, 1, 15027.
doi: 10.1038/nenergy.2015.27
8 Lin Y. Z. ; Zhang Z. G. ; Bai H. T. ; Wang J. Y. ; Yao Y. H. ; Li Y. F. ; Zhu D. B. ; Zhan X. W. Energy Environ. Sci. 2015, 8 (2), 610.
doi: 10.1039/c4ee03424d
9 Lin Y. Z. ; Wang J. Y. ; Zhang Z. G. ; Bai H. T. ; Li Y. F. ; Zhu D. B. ; Zhan X. W. Adv. Mater. 2015, 27 (7), 1170.
doi: 10.1002/adma.201404317
10 Fan Q. P. ; Su W. Y. ; Wang Y. ; Guo B. ; Jiang Y. F. ; Guo X. ; Liu F. ; Russell T. P. ; Zhang M. J. ; Li Y. F. Sci. China Chem., 2018, 61, 531.
doi: 10.1007/s11426-017-9199-1
11 Zhao W. C. ; Li S. S. ; Yao H. F. ; Zhang S. Q. ; Zhang Y. ; Yang B. ; Hou J. H. J. Am. Chem. Soc. 2017, 139 (21), 7148.
doi: 10.1021/jacs.7b02677
12 Zhang S. ; Qin Y. ; Zhu J. ; Hou J. Adv. Mater. 2018.
doi: 10.1002/adma.201800868
13 Liu Y. H. ; Zhang Z. ; Feng S. Y. ; Li M. ; Wu L. L. ; Hou R. ; Xu X. J. ; Chen X. B. ; Bo Z. S. J. Am. Chem. Soc. 2017, 139 (9), 3356.
doi: 10.1021/jacs.7b00566
14 Hou J. H. ; Inganas O. ; Friend R. H. ; Gao F. Nat. Mater. 2018, 17 (2), 119.
doi: 10.1038/nmat5063
15 Zhang G. ; Zhao J. ; Chow P. C. Y. ; Jiang K. ; Zhang J. ; Zhu Z. ; Zhang J. ; Huang F. ; Yan H. Chem. Rev. 2018.
doi: 10.1021/acs.chemrev.7b00535
16 Yan C. ; Barlow S. ; Wang Z. ; Yan H. ; Jen A. K. Y. ; Marder S. R. ; Zhan X. Nat. Rev. Mater., 2018, 3, 18003.
doi: 10.1038/natrevmats.2018.3
17 Yang Y. ; Jiang X. ; Zhan X. W. ; Chen X. G. Acta Phys. -Chim. Sin., 2019, 35, 257.
doi: 10.3866/PKU.WHXB201803191
杨阳; 蒋秀; 占肖卫; 陈兴国. 物理化学学报, 2019, 35, 257.
doi: 10.3866/PKU.WHXB201803191
18 Feng S. Y. ; Ma D. Y. ; Wu L. L. ; Liu Y. H. ; Zhang C. E. ; Xu X. J. ; Chen X. B. ; Yan S. K. ; Bo Z. S. Sci. China Chem. 2018.
doi: 10.1007/s11426-018-9252-9
19 Yao H. F. ; Chen Y. ; Qin Y. P. ; Yu R. N. ; Cui Y. ; Yang B. ; Li S. S. ; Zhang K. ; Hou J. H. Adv. Mater. 2016, 28 (37), 8283.
doi: 10.1002/adma.201602642
20 Tang M. L. ; Oh J. H. ; Reichardt A. D. ; Bao Z. N. J. Am. Chem. Soc. 2009, 131 (10), 3733.
doi: 10.1021/ja809045s
21 Li Y. X. ; Lin J. D. ; Che X. Z. ; Qu Y. ; Liu F. ; Liao L. S. ; Forrest S. R. J. Am. Chem. Soc. 2017, 139 (47), 17114.
doi: 10.1021/jacs.7b11278
22 Cui Y. ; Yang C. Y. ; Yao H. F. ; Zhu J. ; Wang Y. M. ; Jia G. X. ; Gao F. ; Hou J. H. Adv. Mater. 2017, 29 (43)
doi: 10.1002/adma.201703080
23 Zhang C. ; Nguyen T. H. ; Sun J. Y. ; Li R. ; Black S. ; Bonner C. E. ; Sun S. S. Macromolecules 2009, 42 (3), 663.
doi: 10.1021/ma802621b
24 Yao H. F. ; Cui Y. ; Yu R. N. ; Gao B. W. ; Zhang H. ; Hou J. H. Angew. Chem. Int. Ed. 2017, 56 (11), 3045.
doi: 10.1002/anie.201610944
25 Xu X. P. ; Zhang G. J. ; Zhao Y. Z. ; Liu J. ; Li Y. ; Peng Q. Chin. J. Polym. Sci. 2017, 35 (2), 249.
26 Li Y. X. ; Qian D. P. ; Zhong L. ; Lin J. D. ; Jiang Z. Q. ; Zhang Z. G. ; Zhang Z. J. ; Li Y. F. ; Liao L. S. ; Zhang F. L. Nano Energy, 2016, 27, 430.
doi: 10.1016/j.nanoen.2016.07.019
27 Feng S. Y. ; Hou R. ; Xu Q. ; Liu Y. H. ; Zhang J. Q. ; Gong X. ; Li C. H. ; Lu K. ; Wei Z. X. ; Bo Z. S. Sol. Energy Mater. Sol. Cells, 2016, 154, 42.
doi: 10.1016/j.solmat.2016.04.026
28 Yuan J. ; Hua Y. ; Zhu C. ; Shen P. ; Wan M. X. ; Feng L. L. ; Zou Y. P. Acta Phys. -Chim. Sin., 2018, 34, 1272.
doi: 10.3866/PKU.WHXB201803221
袁俊; 刘晔; 朱灿; 沈平; 万梅秀; 冯柳柳; 邹应萍. 物理化学学报, 2018, 34, 1272.
doi: 10.3866/PKU.WHXB201803221
29 Feng S. Y. ; Zhang C. E. ; Liu Y. H. ; Bi Z. Z. ; Zhang Z. ; Xu X. J. ; Ma W. ; Bo Z. S. Adv. Mater. 2017, 29 (42)
doi: 10.1002/adma.201703527
30 Zhang C. E. ; Feng S. Y. ; Liu Y. H. ; Hou R. ; Zhang Z. ; Xu X. J. ; Wu Y. Z. ; Bo Z. S. ACS Appl. Mater. Interfaces 2017, 9 (39), 33906.
doi: 10.1021/acsami.7b09915
31 Li W. W. ; Hendriks K. H. ; Furlan A. ; Roelofs W. S. C. ; Wienk M. M. ; Janssen R. A. J. J. Am. Chem. Soc. 2013, 135 (50), 18942.
doi: 10.1021/ja4101003
32 Jia G. X. ; Zhang S. Q. ; Yang L. Y. ; He C. ; Fan H. L. ; Hou J. H. Acta Phys. -Chim. Sin., 2019, 35, 76.
doi: 10.3866/PKU.WHXB201712063
贾国骁; 张少青; 杨丽燕; 何畅; 范慧俐; 侯剑辉. 物理化学学报, 2019, 35, 76.
doi: 10.3866/PKU.WHXB201712063
[1] 章中强, 张书华, 刘志玺, 张志国, 李永舫, 李昌治, 陈红征. 骨架非稠合的电子受体在聚合物太阳能电池中的应用[J]. 物理化学学报, 2019, 35(4): 394-400.
[2] 许青青,常春梅,李万宾,郭冰,国霞,张茂杰. 基于一种新型聚噻吩衍生物为给体的非富勒烯聚合物太阳能电池[J]. 物理化学学报, 2019, 35(3): 268-274.
[3] 薛佩瑶,张俊祥,辛景明,RECHJeromy,李腾飞,孟凯鑫,王嘉宇,马伟,尤为,MARDER Seth R.,韩平畴,占肖卫. 第三组份端基对有机太阳能电池性能的影响[J]. 物理化学学报, 2019, 35(3): 275-283.
[4] 贾国骁,张少青,杨丽燕,何畅,范慧俐,侯剑辉. A-D-A型小分子电子给体光伏材料的端基修饰及其光伏性能[J]. 物理化学学报, 2019, 35(1): 76-83.
[5] 周士超,冯贵涛,夏冬冬,李诚,武永刚,李韦伟. 萘酰亚胺-卟啉星型电子受体分子的构筑及其在非富勒烯太阳能电池中的应用[J]. 物理化学学报, 2018, 34(4): 344-347.
[6] 韩杰,梁秋菊,曲轶,刘剑刚,韩艳春. 基于苝二酰亚胺类非富勒烯受体共混体系凝聚态结构调控[J]. 物理化学学报, 2018, 34(4): 391-406.
[7] 袁俊,刘晔,朱灿,沈平,万梅秀,冯柳柳,邹应萍. 基于侧链不对称喹喔啉聚合物的高效非富勒烯太阳电池[J]. 物理化学学报, 2018, 34(11): 1272-1278.
[8] 国霞,凡群平,崔超华,张志国,张茂杰. 基于无规三元共聚物的非卤溶液加工型高效聚合物太阳能电池[J]. 物理化学学报, 2018, 34(11): 1279-1285.
[9] 何畅,侯剑辉. 基于非富勒烯受体的溶液加工型全小分子太阳能电池研究进展[J]. 物理化学学报, 2018, 34(11): 1202-1210.
[10] 张少青,侯剑辉. 面向非富勒烯型有机光伏电池的聚合物给体材料设计[J]. 物理化学学报, 2017, 33(12): 2327-2338.
[11] 胥国成,邓先云,李军丽,张睿,谢云鹏,屠国力,夏江滨,卢兴. 碘化铅作为空穴传输层在P3HT:PC61BM聚合物太阳能电池中的增强效果[J]. 物理化学学报, 2016, 32(6): 1307-1313.
[12] 黄斌,代钰,班鑫鑫,蒋伟,张兆杭,孙开涌,林保平,孙岳明. 基于三苯胺/二苯砜的热激活延迟荧光材料[J]. 物理化学学报, 2015, 31(8): 1621-1628.
[13] 武娜, 骆群, 吴振武, 马昌期. 电极界面缓冲层对P3HT:PC61BM太阳能电池热稳定性的影响[J]. 物理化学学报, 2015, 31(7): 1413-1420.
[14] 杨文静,张玉瑾,王传奎. 基于4-氨基-1, 8萘酰亚胺的双光子荧光H2S探针光学性质与响应机理分析[J]. 物理化学学报, 2015, 31(12): 2303-2309.
[15] 崔俐丽, 周丹红, 李苗苗. 红移型Cu(II)离子比率荧光探针的光物理性质[J]. 物理化学学报, 2013, 29(04): 745-753.