Please wait a minute...
物理化学学报
最新录用     
高光学质量氮化碳薄膜的制备和表征
曹丹丹, 吕荣, 于安池
中国人民大学化学系, 北京 100872
Preparation and Characterization of Carbon Nitride Film with High Optical Quality
CAO Dandan, LÜ Rong, YU Anchi
Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
 全文: PDF(620 KB)   输出: BibTeX | EndNote (RIS) |
摘要: 氮化碳(graphitic carbon nitride,g-CN)作为一种非金属半导体材料已被广泛应用于多种能源相关领域研究中。目前由于制备高质量g-CN薄膜的困难,大大限制了其在实际器件上的应用。本文中,我们报道了一种可制备高光学质量g-CN薄膜的方法:即由三聚氰胺先通过热聚合制备本体g-CN粉末,再由本体g-CN粉末经过气相沉积在ITO导电玻璃或钠钙玻璃基底上制备g-CN薄膜。扫描电子显微镜和原子力显微镜的测量结果表明在ITO玻璃基底上形成的g-CN薄膜形貌结构均一且致密,厚度约为300 nm。扫描电镜能量色散能谱和X射线光电子能谱测量结果表明在ITO玻璃基底上制备的g-CN薄膜的化学组成与本体g-CN粉末的化学组成基本一致。同时,我们发现制备的g-CN薄膜和本体g-CN粉末一样在光照射下可以有效降解亚甲基蓝染料。此外,我们还测量了制备的g-CN薄膜的稳态吸收光谱、稳态荧光光谱、荧光寿命和价带谱,并运用吸收光谱和价带谱数据确定了其能带结构。
关键词: 氮化碳薄膜两步法气相沉积形貌组成稳态吸收荧光光谱时间相关单光子计数    
Abstract: Graphitic carbon nitride (g-CN), as a nonmetal semiconductor material, has been widely used in various fields, such as photocatalysis, electrocatalysis, batteries, light-emitting diodes, and solar cells, owing to its unique electronic and photophysical properties. However, the application of g-CN in practical devices remains limited because of the difficulties in fabricating g-CN films of high quality. In this work, we report a method for preparing a g-CN film with high optical quality on a substrate of indium tin oxide (ITO) glass and/or soda lime (NaCa) glass by using melamine as a precursor. First, we prepared the bulk g-CN from melamine in a muffle furnace via thermal polymerization. Then, we fabricated the g-CN film on the ITO and/or NaCa glass substrate with fine-milled, bulk g-CN in a tube furnace using thermal vapor deposition. With this two-step method, a yellow, transparent g-CN film with high optical quality was successfully fabricated on both the ITO and/or NaCa glass substrates. To check the quality of the film, we used scanning electron microscopy (SEM) to study the morphology of the fabricated g-CN film on the ITO glass substrate. Both the high-resolution and low-resolution SEM image results show that the obtained g-CN film on the ITO glass substrate had a homogeneous and dense structure without a corrugated surface, illustrating that it had good surface roughness. Then, we investigated the thickness and surface roughness of the g-CN film via atomic force microscopy (AFM). The AFM results show that the thickness of the g-CN film deposited on the ITO glass substrate was around 300 nm and that the surface roughness of the g-CN film deposited on the ITO glass substrate was less than 40 nm. To verify the chemical composition of the obtained g-CN film on the ITO glass substrate, we performed X-ray photoelectron spectroscopy (XPS) and energy-dispersive spectroscopy (EDS) analyses. Both the XPS and EDS results demonstrate that the chemical composition of the g-CN film deposited on the ITO glass substrate was similar to that of bulk g-CN powder. More importantly, we determined the band structure for the g-CN film deposited on the ITO glass substrate by using a combination of steady-state absorption and high-resolution valence band XPS analysis. It was found that the determined band structure for the g-CN film deposited on the ITO glass substrate was close to that of bulk g-CN powder, also indicating that its chemical composition was similar to that of bulk g-CN. Meanwhile, we also found that the prepared g-CN film on the ITO glass substrate effectively degraded methylene blue dye under Xe lamp irradiation, which was similar to the effect of bulk g-CN powder. All analyses performed demonstrate that the two-step method presented in this study could successfully fabricate a g-CN film with high optical quality. In addition, we also analyzed the fluorescence lifetime of the g-CN film deposited on the ITO glass substrate by using a homemade time-correlated single-photon counting apparatus and found that it was much shorter than that of bulk g-CN.
Key words: Carbon nitride film    Two-step method of vapor deposition    Morphology    Composition    Steady-state absorption    Fluorescence spectroscopy    Time-correlated single-photon counting
收稿日期: 2018-04-03 出版日期: 2018-05-16
中图分类号:  O649  
基金资助: 国家自然科学基金(21773306)资助项目
通讯作者: 于安池     E-mail: yuac@ruc.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

曹丹丹, 吕荣, 于安池. 高光学质量氮化碳薄膜的制备和表征[J]. 物理化学学报, 10.3866/PKU.WHXB201805163.

CAO Dandan, LÜ Rong, YU Anchi. Preparation and Characterization of Carbon Nitride Film with High Optical Quality. Acta Phys. -Chim. Sin., 10.3866/PKU.WHXB201805163.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201805163        http://www.whxb.pku.edu.cn/CN/Y0/V/I/0

(1) Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8 (1), 76. doi: 10.1038/nmat2317
(2) Zhou, L.; Zhang, H.; Sun, H.; Liu, S.; Tade, M. O.; Wang, S.; Jin, W. Catal. Sci. Technol. 2016, 6 (19), 7002. doi: 10.1039/c6cy01195k
(3) Wen, J.; Xie, J.; Chen, X.; Li, X. Appl. Surf. Sci. 2017, 391, 72. doi: 10.1016/j.apsusc.2016.07.030
(4) Miller, T. S.; Jorge, A. B.; Suter, T. M.; Sella, A.; Cora, F.; McMillan, P. F. Phys. Chem. Chem. Phys. 2017, 19 (24), 15613. doi: 10.1039/c7cp02711g
(5) Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Chem. Rev. 2016, 116 (12), 7159. doi: 10.1021/acs.chemrev.6b00075
(6) Cao, S.; Yu, J. J. Phys. Chem. Lett. 2014, 5 (12), 2101. doi: 10.1021/jz500546b
(7) Martin, D. J.; Qiu, K.; Shevlin, S. A.; Handoko, A. D.; Chen, X.; Guo, Z.; Tang, J. Angew. Chem. Int. Ed. 2014, 53 (35), 9240. doi: 10.1002/anie.201403375
(8) Han, Q.; Wang, B.; Gao, J.; Cheng, Z.; Zhao, Y.; Zhang, Z.; Qu, L. ACS Nano 2016, 10 (2), 2745. doi: 10.1021/acsnano.5b07831
(9) Ou, H.; Lin, L.; Zheng, Y.; Yang, P.; Fang, Y.; Wang, X. Adv. Mater. 2017, 29 (22), 1700008. doi: 10.1002/adma.201700008
(10) Lin, Z.; Wang, X. Angew. Chem. Int. Ed. 2013, 52 (6), 1735. doi: 10.1002/anie.201209017
(11) Jiang, W.; Luo, W.; Wang, J.; Zhang, M.; Zhu, Y. J. Photochem. Photobiol. C 2016, 28, 87. doi: 10.1016/j.jphotochemrev.2016.06.001
(12) Wang, X.; Blechert, S.; Antonietti, M. ACS Catal. 2012, 2 (8), 1596. doi: 10.1021/cs300240x
(13) Zhang, Y.; Thomas, A.; Antonietti, M.; Wang, X. J. Am. Chem. Soc. 2009, 131 (1), 50. doi: 10.1021/ja808329f
(14) Shi, Y.; Jiang, S.; Zhou, K.; Bao, C.; Yu, B.; Qian, X.; Wang, B.; Hong, N.; Wen, P.; Gui, Z.; Hu, Y.; Yuen, R. K. ACS Appl. Mater. Interfaces 2014, 6 (1), 429. doi: 10.1021/am4044932
(15) Jiang, L. L.; Wang, Z. K.; Li, M.; Zhang, C. C.; Ye, Q. Q.; Hu, K. H.; Lu, D. Z.; Fang, P. F.; Liao, L. S. Adv. Funct. Mater. 2018, 28 (7), 1705875. doi: 10.1002/adfm.201705875
(16) Afshari, M.; Dinari, M.; Momeni, M. M. Ultrason. Sonochem. 2018, 42, 631. doi: 10.1016/j.ultsonch.2017.12.023
(17) Liu, D. G.; Bai, W. Q.; Pan, Y. J.; Tu, J. P. Diamond Relat. Mater. 2015, 55, 102. doi: 10.1016/j.diamond.2015.03.015
(18) Liu, D. G.; Tu, J. P.; Hong, C. F.; Gu, C. D.; Mao, S. X. Surf. Coat. Int. 2010, 205 (1), 152. doi: 10.1016/j.surfcoat.2010.06.022
(19) Dong, Z. B.; Lu, Y. F.; Gao, K.; Shi, L. Q.; Sun, J.; Xu, N.; Wu, J. D. Thin Solid Films 2008, 516 (23), 8594. doi: 10.1016/j.tsf.2008.06.013
(20) Ge, L.; Han, C. Appl. Catal. B: Environ. 2012, 117118, 268. doi: 10.1016/j.apcatb.2012.01.021
(21) Yang, Y. X.; Guo, Y. N.; Liu, F. Y.; Yuan, X.; Guo, Y. H.; Zhang, S.Q.; Guo, W.; Huo, M. X. Appl. Catal. B: Environ. 2013, 142, 828. doi: 10.1016/j.apcatb.2013.06.026
(22) Ye, L.; Chen, S. Appl. Surf. Sci. 2016, 389, 1076. doi: 10.1016/j.apsusc.2016.08.038
(23) Bu, Y.; Chen, Z.; Yu, J.; Li, W. Electrochim. Acta 2013, 88, 294. doi: 10.1016/j.electacta.2012.10.049
(24) Shalom, M.; Gimenez, S.; Schipper, F.; Herraiz-Cardona, I.; Bisquert, J.; Antonietti, M. Angew. Chem. Int. Ed. 2014, 53 (14), 3654. doi: 10.1002/anie.201309415
(25) Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J. O.; Schlögl, R.; Carlsson, J. M. J. Mater. Chem. 2008, 18 (41), 4893. doi: 10.1039/b800274f
(26) Zhang, H.; Li, S.; Lu, R.; Yu, A. ACS Appl. Mater. Interfaces 2015, 7 (39), 21868. doi: 10.1021/acsami.5b06309
(27) Bian, J.; Li, Q.; Huang, C.; Li, J.; Guo, Y.; Zaw, M.; Zhang, R. Q. Nano Energy 2015, 15, 353. doi: 10.1016/j.nanoen.2015.04.012
(28) Ye, L.; Wang, D.; Chen, S. ACS Appl. Mater. Interfaces 2016, 8 (8), 5280. doi: 10.1021/acsami.5b11326
(29) Che, W.; Cheng, W.; Yao, T.; Tang, F.; Liu, W.; Su, H.; Huang, Y.; Liu, Q.; Liu, J.; Hu, F.; Pan, Z.; Sun, Z.; Wei, S. J. Am. Chem. Soc. 2017, 139 (8), 3021. doi: 10.1021/jacs.6b11878
(30) Wu, X. C.; Hong, J. M.; Han, Z. J.; Tao, Y. R. Chem. Phys. Lett. 2003, 373 (1–2), 28. doi: 10.1016/s0009-2614(03)00582-7
(31) Lau, V. W.; Mesch, M. B.; Duppel, V.; Blum, V.; Senker, J.; Lotsch, B. V. J. Am. Chem. Soc. 2015, 137 (3), 1064. doi: 10.1021/ja511802c
(32) Praus, P.; Svoboda, L.; Ritz, M.; Troppová, I.; Šihor, M.; Kočí, K. Mater. Chem. Phys. 2017, 193, 438. doi: 10.1016/j.matchemphys.2017.03.008
(33) Zhang, J.; Zhang, M.; Zhang, G.; Wang, X. ACS Catal. 2012, 2 (6), 940. doi: 10.1021/cs300167b
(34) Lin, L.; Ou, H.; Zhang, Y.; Wang, X. ACS Catal. 2016, 6 (6), 3921. doi: 10.1021/acscatal.6b00922
(35) Cui, Y.; Zhang, J.; Zhang, G.; Huang, J.; Liu, P.; Antonietti, M.; Wang, X. J. Mater. Chem. 2011, 21 (34), 13032. doi: 10.1039/c1jm11961c
(36) Jorge, A. B.; Martin, D. J.; Dhanoa, M. T. S.; Rahman, A. S.; Makwana, N.; Tang, J.; Sella, A.; Corà, F.; Firth, S.; Darr, J. A.; McMillan, P. F. J. Phys. Chem. C 2013, 117 (14), 7178. doi: 10.1021/jp4009338
(37) Deifallah, M.; McMillan, P. F.; Corà, F. J. Phys. Chem. C 2008, 112 (14), 5447. doi: 10.1021/jp711483t
(38) Wang, Y.; Zhao, J.; Li, Y.; Wang, C. Appl. Catal. B 2018, 226, 544. doi: 10.1016/j.apcatb.2018.01.005
(39) Yang, F.; Kuznietsov, V.; Lublow, M.; Merschjann, C.; Steigert, A.; Klaer, J.; Thomas, A.; Schedel-Niedrig, T. J. Mater. Chem. A 2013, 1, 6407. doi: 10.1039/c3ta10360a
(40) Peng, G.; Xing, L.; Barrio, J.; Volokh, M.; Shalom, M. Angew. Chem. Int. Ed. 2018, 57 (5), 1186. doi: 10.1002/anie.201711669
(41) Ye, C.; Li, J. X.; Li, Z. J.; Li, X. B.; Fan, X. B.; Zhang, L. P.; Chen, B.; Tung, C. H.; Wu, L. Z. ACS Catal. 2015, 5 (11), 6973. doi: 10.1021/acscatal.5b02185
(42) Zhang, Y.; Pan, Q.; Chai, G.; Liang, M.; Dong, G.; Zhang, Q.; Qiu, J. Sci. Rep. 2013, 3, 1943. doi: 10.1038/srep01943
(43) Elbanna, O.; Fujitsuka, M.; Majima, T. ACS Appl. Mater. Interfaces 2017, 9 (40), 34844. doi: 10.1021/acsami.7b08548
(44) Niu, P.; Zhang, L.; Liu, G.; Cheng, H. M. Adv. Funct. Mater. 2012, 22 (22), 4763. doi: 10.1002/adfm.201200922
(45) Niu, P.; Liu, G.; Cheng, H. M. J. Phys. Chem. C 2012, 116 (20), 11013. doi: 10.1021/jp301026y
(46) Zhang, H.; Yu, A. J. Phys. Chem. C 2014, 118 (22), 11628. doi: 10.1021/jp503477x
[1] 周劲媛,张锦,刘忠范. 石墨双炔的合成方法[J]. 物理化学学报, 2018, 34(9): 977-991.
[2] 程晓蒙,焦东霞,梁志豪,魏金金,李宏平,杨俊佼. 聚苯乙烯-聚4-乙烯基吡啶两亲嵌段共聚物在CO2膨胀液体中的组装行为[J]. 物理化学学报, 2018, 34(8): 945-951.
[3] 韩杰,梁秋菊,曲轶,刘剑刚,韩艳春. 基于苝二酰亚胺类非富勒烯受体共混体系凝聚态结构调控[J]. 物理化学学报, 2018, 34(4): 391-406.
[4] 邓丹,周二军,魏志祥. 氟化策略:高效有机光伏材料的设计与应用[J]. 物理化学学报, 2018, 34(11): 1239-1249.
[5] CHENFang,LIUYuan-Yuan,WANGJian-Long,SuNing-Ning,LILi-Jie,CHENHong-Chun. 混合溶剂对β-HMX结晶形貌影响的分子动力学模拟[J]. 物理化学学报, 2017, 33(6): 1140-1148.
[6] 常孟方,李磊,曹潇丹,贾梦辉,周加胜,陈缙泉,徐建华. 基于时间分辨方法的LicT蛋白荧光动力学特性[J]. 物理化学学报, 2017, 33(5): 1065-1070.
[7] 杨利,张国英,刘影,张同来. 高氯酸碳酰肼过渡金属配合物晶体形态的理论和实验研究[J]. 物理化学学报, 2017, 33(12): 2463-2471.
[8] 常乔婉,肖菲,徐源,邵敏华. 核-壳结构氧还原反应电催化剂[J]. 物理化学学报, 2017, 33(1): 9-17.
[9] 肖娟,张浩力. 新型有机-无机杂化钙钛矿发光材料的研究进展[J]. 物理化学学报, 2016, 32(8): 1894-1912.
[10] 刘珊珊,徐征,赵谡玲,梁志琴,朱薇. 氟离子浓度对稀土掺杂上转换发光纳米材料形貌及荧光寿命的影响[J]. 物理化学学报, 2016, 32(8): 2108-2112.
[11] 刘晓灵,宋继梅,董纳,胡刚,杨捷,司维,李文慧. 鳞状BiOBr/Bi2WO6的合成及其吸附性能[J]. 物理化学学报, 2016, 32(7): 1844-1850.
[12] 孙梦婷,黄碧纯,马杰文,李时卉,董立夫. 二氧化锰在低温NH3-SCR催化反应上的形貌效应[J]. 物理化学学报, 2016, 32(6): 1501-1510.
[13] 虎学梅,高相东,李效民,顾正莹,施鹰,吴永庆. 脉冲激光沉积制备SrSn1-xCoxO3外延薄膜的微结构表征及能带调控[J]. 物理化学学报, 2016, 32(4): 828-833.
[14] 刘庆彬,蔚翠,何泽召,王晶晶,李佳芦,伟立,冯志红. 蓝宝石衬底上化学气相沉积法生长石墨烯[J]. 物理化学学报, 2016, 32(3): 787-792.
[15] 胡海峰,贺涛. 酸碱度调控氧化锌纳米材料形貌及其光催化还原CO2研究[J]. 物理化学学报, 2016, 32(2): 543-550.