Please wait a minute...
物理化学学报  2019, Vol. 35 Issue (4): 442-450    DOI: 10.3866/PKU.WHXB201805163
论文     
高光学质量氮化碳薄膜的制备和表征
曹丹丹,吕荣,于安池*()
Preparation and Characterization of Carbon Nitride Film with High Optical Quality
Dandan CAO,Rong LÜ,Anchi YU*()
 全文: PDF(2404 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

氮化碳(graphitic carbon nitride,g-CN)作为一种非金属半导体材料已被广泛应用于多种能源相关领域研究中。目前由于制备高质量g-CN薄膜的困难,大大限制了其在实际器件上的应用。本文中,我们报道了一种可制备高光学质量g-CN薄膜的方法:即由三聚氰胺先通过热聚合制备本体g-CN粉末,再由本体g-CN粉末经过气相沉积在ITO导电玻璃或钠钙玻璃基底上制备g-CN薄膜。扫描电子显微镜和原子力显微镜的测量结果表明在ITO玻璃基底上形成的g-CN薄膜形貌结构均一且致密,厚度约为300 nm。扫描电镜能量色散能谱和X射线光电子能谱测量结果表明在ITO玻璃基底上制备的g-CN薄膜的化学组成与本体g-CN粉末的化学组成基本一致。同时,我们发现制备的g-CN薄膜和本体g-CN粉末一样在光照射下可以有效降解亚甲基蓝染料。此外,我们还测量了制备的g-CN薄膜的稳态吸收光谱、稳态荧光光谱、荧光寿命和价带谱,并运用吸收光谱和价带谱数据确定了其能带结构。

关键词: 氮化碳薄膜两步法气相沉积形貌组成稳态吸收荧光光谱时间相关单光子计数    
Abstract:

Graphitic carbon nitride (g-CN), as a nonmetal semiconductor material, has been widely used in various fields, such as photocatalysis, electrocatalysis, batteries, light-emitting diodes, and solar cells, owing to its unique electronic and photophysical properties. However, the application of g-CN in practical devices remains limited because of the difficulties in fabricating g-CN films of high quality. In this work, we report a method for preparing a g-CN film with high optical quality on a substrate of indium tin oxide (ITO) glass and/or soda lime (NaCa) glass by using melamine as a precursor. First, we prepared the bulk g-CN from melamine in a muffle furnace via thermal polymerization. Then, we fabricated the g-CN film on the ITO and/or NaCa glass substrate with fine-milled, bulk g-CN in a tube furnace using thermal vapor deposition. With this two-step method, a yellow, transparent g-CN film with high optical quality was successfully fabricated on both the ITO and/or NaCa glass substrates. To check the quality of the film, we used scanning electron microscopy (SEM) to study the morphology of the fabricated g-CN film on the ITO glass substrate. Both the high-resolution and low-resolution SEM image results show that the obtained g-CN film on the ITO glass substrate had a homogeneous and dense structure without a corrugated surface, illustrating that it had good surface roughness. Then, we investigated the thickness and surface roughness of the g-CN film via atomic force microscopy (AFM). The AFM results show that the thickness of the g-CN film deposited on the ITO glass substrate was around 300 nm and that the surface roughness of the g-CN film deposited on the ITO glass substrate was less than 40 nm. To verify the chemical composition of the obtained g-CN film on the ITO glass substrate, we performed X-ray photoelectron spectroscopy (XPS) and energy-dispersive spectroscopy (EDS) analyses. Both the XPS and EDS results demonstrate that the chemical composition of the g-CN film deposited on the ITO glass substrate was similar to that of bulk g-CN powder. More importantly, we determined the band structure for the g-CN film deposited on the ITO glass substrate by using a combination of steady-state absorption and high-resolution valence band XPS analysis. It was found that the determined band structure for the g-CN film deposited on the ITO glass substrate was close to that of bulk g-CN powder, also indicating that its chemical composition was similar to that of bulk g-CN. Meanwhile, we also found that the prepared g-CN film on the ITO glass substrate effectively degraded methylene blue dye under Xe lamp irradiation, which was similar to the effect of bulk g-CN powder. All analyses performed demonstrate that the two-step method presented in this study could successfully fabricate a g-CN film with high optical quality. In addition, we also analyzed the fluorescence lifetime of the g-CN film deposited on the ITO glass substrate by using a homemade time-correlated single-photon counting apparatus and found that it was much shorter than that of bulk g-CN.

Key words: Carbon nitride film    Two-step method of vapor deposition    Morphology    Composition    Steady-state absorption    Fluorescence spectroscopy    Time-correlated single-photon counting     
收稿日期: 2018-04-03 出版日期: 2018-05-16
中图分类号:  O649  
基金资助: 国家自然科学基金(21773306)
通讯作者: 于安池     E-mail: yuac@ruc.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
曹丹丹
吕荣
于安池

引用本文:

曹丹丹,吕荣,于安池. 高光学质量氮化碳薄膜的制备和表征[J]. 物理化学学报, 2019, 35(4): 442-450, 10.3866/PKU.WHXB201805163

Dandan CAO,Rong LÜ,Anchi YU. Preparation and Characterization of Carbon Nitride Film with High Optical Quality. Acta Phys. -Chim. Sin., 2019, 35(4): 442-450, 10.3866/PKU.WHXB201805163.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201805163        http://www.whxb.pku.edu.cn/CN/Y2019/V35/I4/442

图1  (a)一步法获得基底为ITO玻璃的g-CN薄膜;(b)两步法获得基底为ITO玻璃的g-CN薄膜;(c)两步法获得基底为石英玻璃的g-CN薄膜;(d)两步法获得基底为钠钙玻璃的g-CN薄膜
图2  (a) g-CN薄膜的低倍数SEM图;(b) g-CN薄膜的高倍数SEM图;(c) g-CN薄膜非接触模式下的AFM图;(d)沿图(c)AFM图中白色直线g-CN薄膜的高度分布曲线图
图3  (a) g-CN薄膜的EDS能谱图;(b) ITO的EDS能谱图;(c) g-CN薄膜C 1s XPS谱图及其高斯拟合分峰图;(d) g-CN薄膜N 1s XPS谱图及其高斯拟合分峰图
图4  (a) g-CN薄膜和空白ITO导电玻璃紫外可见吸收谱图;(b) g-CN薄膜的Tauc Plot图;(c) g-CN薄膜的XPS价带谱图;(d) g-CN薄膜的能带结构示意图;(e) g-CN薄膜在光照不同时刻时对亚甲基蓝染料的降解照片图;(f)空白ITO玻璃在光照不同时刻时对亚甲基蓝染料的降解照片图
图5  (a) g-CN薄膜稳态荧光谱图(在荧光发射最大处进行了归一化);(b)检测波长为520 nm时g-CN薄膜荧光寿命图(激发波长:395 nm,在荧光发射最大处进行了归一化)
1 Wang X. ; Maeda K. ; Thomas A. ; Takanabe K. ; Xin G. ; Carlsson J. M. ; Domen K. ; Antonietti M. Nat. Mater. 2009, 8 (1), 76.
doi: 10.1038/nmat2317
2 Zhou L. ; Zhang H. ; Sun H. ; Liu S. ; Tade M. O. ; Wang S. ; Jin W. Catal. Sci. Technol. 2016, 6 (19), 7002.
doi: 10.1039/c6cy01195k
3 Wen J. ; Xie J. ; Chen X. ; Li X. Appl. Surf. Sci. 2017, 391, 72.
doi: 10.1016/j.apsusc.2016.07.030
4 Miller T. S. ; Jorge A. B. ; Suter T. M. ; Sella A. ; Cora F. ; McMillan P. F. Phys. Chem. Chem. Phys. 2017, 19 (24), 15613.
doi: 10.1039/c7cp02711g
5 Ong W. J. ; Tan L. L. ; Ng Y. H. ; Yong S. T. ; Chai S. P. Chem. Rev. 2016, 116 (12), 7159.
doi: 10.1021/acs.chemrev.6b00075
6 Cao S. ; Yu J. J. Phys. Chem. Lett. 2014, 5 (12), 2101.
doi: 10.1021/jz500546b
7 Martin D. J. ; Qiu K. ; Shevlin S. A. ; Handoko A. D. ; Chen X. ; Guo Z. ; Tang J. Angew. Chem. Int. Ed. 2014, 53 (35), 9240.
doi: 10.1002/anie.201403375
8 Han Q. ; Wang B. ; Gao J. ; Cheng Z. ; Zhao Y. ; Zhang Z. ; Qu L. ACS Nano 2016, 10 (2), 2745.
doi: 10.1021/acsnano.5b07831
9 Ou H. ; Lin L. ; Zheng Y. ; Yang P. ; Fang Y. ; Wang X. Adv. Mater. 2017, 29 (22), 1700008.
doi: 10.1002/adma.201700008
10 Lin Z. ; Wang X. Angew. Chem. Int. Ed. 2013, 52 (6), 1735.
doi: 10.1002/anie.201209017
11 Jiang W. ; Luo W. ; Wang J. ; Zhang M. ; Zhu Y. J. Photochem. Photobiol. C 2016, 28, 87.
doi: 10.1016/j.jphotochemrev.2016.06.001
12 Wang X. ; Blechert S. ; Antonietti M. ACS Catal. 2012, 2 (8), 1596.
doi: 10.1021/cs300240x
13 Zhang Y. ; Thomas A. ; Antonietti M. ; Wang X. J. Am. Chem. Soc. 2009, 131 (1), 50.
doi: 10.1021/ja808329f
14 Shi Y. ; Jiang S. ; Zhou K. ; Bao C. ; Yu B. ; Qian X. ; Wang B. ; Hong N. ; Wen P. ; Gui Z. ; Hu Y. ; Yuen R. K. ACS Appl. Mater. Interfaces 2014, 6 (1), 429.
doi: 10.1021/am4044932
15 Jiang L. L. ; Wang Z. K. ; Li M. ; Zhang C. C. ; Ye Q. Q. ; Hu K. H. ; Lu D. Z. ; Fang P. F. ; Liao L. S. Adv. Funct. Mater. 2018, 28 (7), 1705875.
doi: 10.1002/adfm.201705875
16 Afshari M. ; Dinari M. ; Momeni M. M. Ultrason. Sonochem. 2018, 42, 631.
doi: 10.1016/j.ultsonch.2017.12.023
17 Liu D. G. ; Bai W. Q. ; Pan Y. J. ; Tu J. P. Diamond Relat. Mater. 2015, 55, 102.
doi: 10.1016/j.diamond.2015.03.015
18 Liu D. G. ; Tu J. P. ; Hong C. F. ; Gu C. D. ; Mao S. X. Surf. Coat. Int. 2010, 205 (1), 152.
doi: 10.1016/j.surfcoat.2010.06.022
19 Dong Z. B. ; Lu Y. F. ; Gao K. ; Shi L. Q. ; Sun J. ; Xu N. ; Wu J. D. Thin Solid Films 2008, 516 (23), 8594.
doi: 10.1016/j.tsf.2008.06.013
20 Ge L. ; Han C. Appl. Catal. B: Environ. 2012, 117-118, 268.
doi: 10.1016/j.apcatb.2012.01.021
21 Yang Y. X. ; Guo Y. N. ; Liu F. Y. ; Yuan X. ; Guo Y. H. ; Zhang S. Q. ; Guo W. ; Huo M. X. Appl. Catal. B: Environ. 2013, 142, 828.
doi: 10.1016/j.apcatb.2013.06.026
22 Ye L. ; Chen S. Appl. Surf. Sci. 2016, 389, 1076.
doi: 10.1016/j.apsusc.2016.08.038
23 Bu Y. ; Chen Z. ; Yu J. ; Li W. Electrochim. Acta 2013, 88, 294.
doi: 10.1016/j.electacta.2012.10.049
24 Shalom M. ; Gimenez S. ; Schipper F. ; Herraiz-Cardona I. ; Bisquert J. ; Antonietti M. Angew. Chem. Int. Ed. 2014, 53 (14), 3654.
doi: 10.1002/anie.201309415
25 Thomas A. ; Fischer A. ; Goettmann F. ; Antonietti M. ; Müller J. O. ; Schl?gl R. ; Carlsson J. M. J. Mater. Chem. 2008, 18 (41), 4893.
doi: 10.1039/b800274f
26 Zhang H. ; Li S. ; Lu R. ; Yu A. ACS Appl. Mater. Interfaces 2015, 7 (39), 21868.
doi: 10.1021/acsami.5b06309
27 Bian J. ; Li Q. ; Huang C. ; Li J. ; Guo Y. ; Zaw M. ; Zhang R. Q. Nano Energy 2015, 15, 353.
doi: 10.1016/j.nanoen.2015.04.012
28 Ye L. ; Wang D. ; Chen S. ACS Appl. Mater. Interfaces 2016, 8 (8), 5280.
doi: 10.1021/acsami.5b11326
29 Che W. ; Cheng W. ; Yao T. ; Tang F. ; Liu W. ; Su H. ; Huang Y. ; Liu Q. ; Liu J. ; Hu F. ; Pan Z. ; Sun Z. ; Wei S. J. Am. Chem. Soc. 2017, 139 (8), 3021.
doi: 10.1021/jacs.6b11878
30 Wu X. C. ; Hong J. M. ; Han Z. J. ; Tao Y. R. Chem. Phys. Lett. 2003, 373 (1-2), 28.
doi: 10.1016/s0009-2614(03)00582-7
31 Lau V. W. ; Mesch M. B. ; Duppel V. ; Blum V. ; Senker J. ; Lotsch B. V. J. Am. Chem. Soc. 2015, 137 (3), 1064.
doi: 10.1021/ja511802c
32 Praus P. ; Svoboda L. ; Ritz M. ; Troppová I. ; ?ihor M. ; Ko?í K. Mater. Chem. Phys. 2017, 193, 438.
doi: 10.1016/j.matchemphys.2017.03.008
33 Zhang J. ; Zhang M. ; Zhang G. ; Wang X. ACS Catal. 2012, 2 (6), 940.
doi: 10.1021/cs300167b
34 Lin L. ; Ou H. ; Zhang Y. ; Wang X. ACS Catal. 2016, 6 (6), 3921.
doi: 10.1021/acscatal.6b00922
35 Cui Y. ; Zhang J. ; Zhang G. ; Huang J. ; Liu P. ; Antonietti M. ; Wang X. J. Mater. Chem. 2011, 21 (34), 13032.
doi: 10.1039/c1jm11961c
36 Jorge A. B. ; Martin D. J. ; Dhanoa M. T. S. ; Rahman A. S. ; Makwana N. ; Tang J. ; Sella A. ; Corà F. ; Firth S. ; Darr J. A. ; McMillan P. F. J. Phys. Chem. C 2013, 117 (14), 7178.
doi: 10.1021/jp4009338
37 Deifallah M. ; McMillan P. F. ; Corà F. J. Phys. Chem. C 2008, 112 (14), 5447.
doi: 10.1021/jp711483t
38 Wang Y. ; Zhao J. ; Li Y. ; Wang C. Appl. Catal. B 2018, 226, 544.
doi: 10.1016/j.apcatb.2018.01.005
39 Yang F. ; Kuznietsov V. ; Lublow M. ; Merschjann C. ; Steigert A. ; Klaer J. ; Thomas A. ; Schedel-Niedrig T. J. Mater. Chem. A 2013, 1, 6407.
doi: 10.1039/c3ta10360a
40 Peng G. ; Xing L. ; Barrio J. ; Volokh M. ; Shalom M. Angew. Chem. Int. Ed. 2018, 57 (5), 1186.
doi: 10.1002/anie.201711669
41 Ye C. ; Li J. X. ; Li Z. J. ; Li X. B. ; Fan X. B. ; Zhang L. P. ; Chen B. ; Tung C. H. ; Wu L. Z. ACS Catal. 2015, 5 (11), 6973.
doi: 10.1021/acscatal.5b02185
42 Zhang Y. ; Pan Q. ; Chai G. ; Liang M. ; Dong G. ; Zhang Q. ; Qiu J. Sci. Rep. 2013, 3, 1943.
doi: 10.1038/srep01943
43 Elbanna O. ; Fujitsuka M. ; Majima T. ACS Appl. Mater. Interfaces 2017, 9 (40), 34844.
doi: 10.1021/acsami.7b08548
44 Niu P. ; Zhang L. ; Liu G. ; Cheng H. M. Adv. Funct. Mater. 2012, 22 (22), 4763.
doi: 10.1002/adfm.201200922
45 Niu P. ; Liu G. ; Cheng H. M. J. Phys. Chem. C 2012, 116 (20), 11013.
doi: 10.1021/jp301026y
46 Zhang H. ; Yu A. J. Phys. Chem. C 2014, 118 (22), 11628.
doi: 10.1021/jp503477x
[1] 王喆,贾康乐,刘同庆,胡俊文,李学丰,董金凤. pH和光对复合型乳液拓扑结构的调控[J]. 物理化学学报, 2019, 35(1): 84-91.
[2] 周劲媛,张锦,刘忠范. 石墨双炔的合成方法[J]. 物理化学学报, 2018, 34(9): 977-991.
[3] 程晓蒙,焦东霞,梁志豪,魏金金,李宏平,杨俊佼. 聚苯乙烯-聚4-乙烯基吡啶两亲嵌段共聚物在CO2膨胀液体中的组装行为[J]. 物理化学学报, 2018, 34(8): 945-951.
[4] 韩杰,梁秋菊,曲轶,刘剑刚,韩艳春. 基于苝二酰亚胺类非富勒烯受体共混体系凝聚态结构调控[J]. 物理化学学报, 2018, 34(4): 391-406.
[5] 邓丹,周二军,魏志祥. 氟化策略:高效有机光伏材料的设计与应用[J]. 物理化学学报, 2018, 34(11): 1239-1249.
[6] 陈芳,刘圆圆,王建龙,苏宁宁,李丽洁,陈红春. 混合溶剂对β-HMX结晶形貌影响的分子动力学模拟[J]. 物理化学学报, 2017, 33(6): 1140-1148.
[7] 常孟方,李磊,曹潇丹,贾梦辉,周加胜,陈缙泉,徐建华. 基于时间分辨方法的LicT蛋白荧光动力学特性[J]. 物理化学学报, 2017, 33(5): 1065-1070.
[8] 杨利,张国英,刘影,张同来. 高氯酸碳酰肼过渡金属配合物晶体形态的理论和实验研究[J]. 物理化学学报, 2017, 33(12): 2463-2471.
[9] 常乔婉,肖菲,徐源,邵敏华. 核-壳结构氧还原反应电催化剂[J]. 物理化学学报, 2017, 33(1): 9-17.
[10] 肖娟,张浩力. 新型有机-无机杂化钙钛矿发光材料的研究进展[J]. 物理化学学报, 2016, 32(8): 1894-1912.
[11] 刘珊珊,徐征,赵谡玲,梁志琴,朱薇. 氟离子浓度对稀土掺杂上转换发光纳米材料形貌及荧光寿命的影响[J]. 物理化学学报, 2016, 32(8): 2108-2112.
[12] 刘晓灵,宋继梅,董纳,胡刚,杨捷,司维,李文慧. 鳞状BiOBr/Bi2WO6的合成及其吸附性能[J]. 物理化学学报, 2016, 32(7): 1844-1850.
[13] 孙梦婷,黄碧纯,马杰文,李时卉,董立夫. 二氧化锰在低温NH3-SCR催化反应上的形貌效应[J]. 物理化学学报, 2016, 32(6): 1501-1510.
[14] 虎学梅,高相东,李效民,顾正莹,施鹰,吴永庆. 脉冲激光沉积制备SrSn1-xCoxO3外延薄膜的微结构表征及能带调控[J]. 物理化学学报, 2016, 32(4): 828-833.
[15] 刘庆彬,蔚翠,何泽召,王晶晶,李佳芦,伟立,冯志红. 蓝宝石衬底上化学气相沉积法生长石墨烯[J]. 物理化学学报, 2016, 32(3): 787-792.