Please wait a minute...
物理化学学报  2019, Vol. 35 Issue (6): 624-629    DOI: 10.3866/PKU.WHXB201807035
论文     
偶氮苯基型离子液体溶液对空气中湿度的变色响应
潘明光1,*(),赵永升2,曾小勤1,邹建新1,*()
1 上海交通大学材料科学与工程学院,轻合金精密成型国家工程研究中心,金属基复合材料国家重点实验室,上海 200240
2 上海交通大学微纳电子学系,上海 200240
Moisture-Responsive Behavior in the Azophenolic Ionic Liquid Solution Accompanied by a Naked-Eye Color Change
Mingguang PAN1,*(),Yongsheng ZHAO2,Xiaoqin ZENG1,Jianxin ZOU1,*()
1 National Engineering Research Center of Light Alloy Net Forming, State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
2 Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
 全文: PDF(1453 KB)   HTML 输出: BibTeX | EndNote (RIS) | Supporting Info
摘要:

室温离子液体对空气湿度发生比色响应,在现有的文献中鲜有报道。本论文主要报道偶氮苯酚型离子液体溶液可自发地发生明显的颜色变化,这主要是由于偶氮苯酚阴离子与水分子形成氢键的缘故。该工作通过借助核磁共振技术、紫外-可见吸收光谱、实验结果及理论计算对其中的机理进行了深入的分析。具体地说,由紫外-可见吸收光谱可知,随着时间的推移,离子液体溶液在455 nm左右的吸收峰强度逐渐降低,同时在343 nm左右的吸收峰强度逐渐增强,并伴有由橙红色向浅黄色的颜色转变。这一自响应的现象也可以从核磁共振光谱中观测到。当溶液放置时间足够长时,偶氮苯酚阴离子的氢谱出峰全部向低场发生位移,且在高场处没有新峰产生。所以,很容易将刺激源锁定在空气中的气体比如弱酸性的二氧化碳以及湿度上。由此,我们向溶液中通入二氧化碳气体,溶液可从橙红色变为浅橙红色,但却不能进一步变为浅黄色,从而排除了二氧化碳的可能性。反之,我们却发现,向溶液(乙腈作溶剂)中逐渐加入少量的水,在474 nm的吸收峰强度逐渐减弱,且在347 nm处的吸收峰强度逐渐增强,并伴随由橙红色向浅黄色的颜色变化,这与氯仿、四氯化碳溶液自发过程中产生的颜色变化几乎一致。并且,将两只装有离子液体溶液的比色皿分别放置在相对湿度为28%和100%的条件下,发现在较低的相对湿度下,溶液需要比在高湿度下长得多的时间实现整个的颜色转变,这表明湿度是引起溶液发生自发颜色变化最可能的刺激源。由高斯09软件计算(在B3LYP/6-31++G(p, d)水平)可知,偶氮苯酚阴离子的氧原子和水分子的氢原子之间的距离为0.174 nm,相应的键角为171.12°;同时,偶氮苯酚阴离子中的氧原子与水发生作用后,氧原子的ADCH电荷由原来的−0.52变为−0.62。进一步地,由约化密度梯度分析可知,在−0.04 a.u.左右出现尖头可归属于O∙∙∙H―O氢键。所有以上数据表明,空气中湿度是通过以与离子液体的阴离子形成氢键的方式,诱使离子液体溶液对其发生响应并伴随着肉眼可见的颜色变化。据我们所知,这是首次发现离子液体溶液可以对空气中湿度发生变色响应。我们希望这个工作可以加深对一些貌似反常现象背后科学道理的理解。

关键词: 刺激响应湿度比色变化氢键离子液体溶液    
Abstract:

Room temperature ionic liquids (ILs) that can exhibit a colorimetric response to moisture in the air are rarely reported in the literature. In this study, an azophenolic IL solution exhibited a spontaneous a colorimetric response, driven by the formation of hydrogen bonding between the [PhN=NPhO] anion and moisture in the air. This phenomenon was clearly understood using ultraviolet-visible (UV-Vis) absorption spectroscopy, nuclear magnetic resonance (NMR) spectra, experimental data, and theoretical calculations. Specifically, in the UV-Vis absorption spectra, absorption around 455 nm decreased, while the band around 343 nm increased in the IL CHCl3 solution as time progressed; this was accompanied by a color change from orange to faint yellow. This spontaneous, self-responsive process was further observed using 1H NMR data. When the IL solution was placed with sufficient time, all the 1H NMR peaks of the azophenolic anion shifted downfield, but no new signals appeared in the upfield region. The reason for this was easily identified as the stimuli in the air, such as CO2 and moisture. When pure CO2 was bubbled through the IL CHCl3 solution, the solution color changed from its original orange to light orange, but could not change further to faint yellow, which ruled out CO2 gas as a stimulus. When a small amount of water was gradually added to the IL solution (MeCN solvent), the absorption band around 474 nm decreased, coupled with an increase in the absorption band around 347 nm. This was accompanied by a color change from orange to faint yellow, which was almost identical to the self-responsive process in CHCl3 and CCl4. Moreover, two cuvettes of IL CHCl3 solution were placed under relative humidities of 28% and 100%, respectively; the IL CHCl3 solution required a much longer time to exhibit a complete color change from orange to faint yellow under a lower relative humidity, demonstrating that moisture is the most likely stimulus triggering the self-responsive color change of the IL solution. As revealed by the Gaussian 09 program at the B3LYP/6-31++G(p, d) level, the distance between the oxygen atom on the azophenolic anion and the hydrogen atom on the H2O molecule was 0.174 nm, and the corresponding angle was 171.12°. Furthermore, the atomic dipole moment corrected Hirshfeld (ADCH) charge of the oxygen atom on the azophenolic anion was −0.52, and it increased to −0.62 after the azophenolic anion interacted with the H2O. Reduced density gradient analysis revealed that the spike corresponding to O∙∙∙H―O for the IL-H2O complex was located at around −0.04 a.u.. All the above data indicate that the presence of hydrogen bonding rendered the IL solution responsive to the moisture stimulus, and this response was accompanied by a color change that was visible to the naked eye. To the best of our knowledge, this is the first demonstration of a colorimetric change in an IL solution in response to moisture. We hope this work can help us to gain insight into some seemingly abnormal phenomena that occur during the research process.

Key words: Stimuli-responsive    Moisture    Colorimetric change    Hydrogen bonding    Ionic liquid solution
收稿日期: 2018-07-16 出版日期: 2018-08-27
中图分类号:  O645  
基金资助: the China Postdoctoral Science Foundation(2017M621476);the China Postdoctoral Science Foundation(2017M621477);National Natural Science Foundation of China(51771112)
通讯作者: 潘明光,邹建新     E-mail: panmingguang@sjtu.edu.cn;zoujx@sjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
潘明光
赵永升
曾小勤
邹建新

引用本文:

潘明光,赵永升,曾小勤,邹建新. 偶氮苯基型离子液体溶液对空气中湿度的变色响应[J]. 物理化学学报, 2019, 35(6): 624-629, 10.3866/PKU.WHXB201807035

Mingguang PAN,Yongsheng ZHAO,Xiaoqin ZENG,Jianxin ZOU. Moisture-Responsive Behavior in the Azophenolic Ionic Liquid Solution Accompanied by a Naked-Eye Color Change. Acta Phys. -Chim. Sin., 2019, 35(6): 624-629, 10.3866/PKU.WHXB201807035.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201807035        http://www.whxb.pku.edu.cn/CN/Y2019/V35/I6/624

Scheme 1  Chemical structure of the IL [P66614][PhN=NPhO] used in this study.
Solvent λmax/nm a Color of solution b
CCl4 414 yellow
PhH 424 yellow
CHCl3 456 orange
MeCN 474 orange
DMSO 490 orange
MeOH 374 light yellow
Table 1  The fresh solutions of [P66614][PhN=NPhO] determined by UV-Vis absorption spectroscopy at 25 ℃.
Fig 1  UV-Vis absorption spectra of [P66614][PhN=NPhO] solution (solvent, CHCl3) on the daytime of 0, 5, 10, 15, 20, 30, 40, 60, 90, 120, 180 min (a), later after a day (an orange dotted line), and photographs of this self-responsive process (b). The concentration of [P66614][PhN=NPhO] was around 5.0 × 10–5 mol·L–1, and the relative humidity in the air is around 42%. Color online.
Fig 2  UV-Vis absorption spectra of [P66614][PhN=NPhO] solution (solvent, MeCN) after adding 0, 10, 30, 60, 100, 150, 250, 400 μL of water into the solution. Inset: the color changing process by adding water into the solution gradually. The concentration of [P66614][PhN=NPhO] was 5.0 × 10–5 mol·L–1. Color online.
Scheme 2  Possible pathway for the self- and photo-responsive process in the IL solution.
Fig 3  Typical optimized structures of PhN=NPhOH (a) and [PhN=NPhO]-H2O complex (b).
Fig 4  RDG scatter plots (isovalue = 0.5 a.u.) and surface plots (s = 0.7 a.u.) of (a, b) [PhN=NPhO] anion, and (c, d) [PhN=NPhO]-H2O complex. The isosurfaces are colored on a blue-green-red scale according to values of sign (λ2)ρ, ranging from –0.03 to 0.020 a.u. Blue indicates strong attractive interactions and green indicates weak Van der Waals interactions. Color online.
1 Wojtecki R. J. ; Meador M. A. ; Rowan S. J Nat. Mater 2011, 10, 14.
doi: 10.1038/nmat2891
2 Stuart M. A. C. ; Huck W. T. S. ; Genzer J. ; Müller M. ; Ober C. ; Stamm M. ; Sukhorukov G. B. ; Szleifer I. ; Tsukruk V. V. ; Urban M. ; et al Nat. Mater 2010, 9, 101.
doi: 10.1038/nmat2614
3 Lendlein A. ; Jiang H. ; Jünger O. ; Langer R. Nature 2005, 434, 879.
doi: 10.1038/nature03496
4 Ma M. ; Guo L. ; Anderson D. G. ; Langer R. Science 2013, 339, 186.
doi: 10.1126/science.1230262
5 Kim J. ; Hanna J. A. ; Byun M. ; Santangelo C. D. ; Hayward R. C. Science 1201, 335, 1201.
doi: 10.1126/science.1215309
6 Yan X. ; Wang F. ; Zeng B. ; Huang F Chem. Soc. Rev 2012, 41, 6042.
doi: 10.1039/C2CS35091B
7 Folmer B. J. B. ; Sijbesma R. P. ; Versteegen R. M. ; van der Rijt J. A. J. ; Meijer E. W Adv. Mater 2000, 12, 874.
doi: 10.1002/1521-4095(200006)12:12<874::AID-ADMA874>3.0.CO;2-C
8 Liao X. ; Chen G. ; Liu X. ; Chen W. ; Chen F. ; Jiang M Angew. Chem. Int. Ed 2010, 49, 4409.
doi: 10.1002/ange.201000141
9 Xie T. Nature 2010, 464, 267.
doi: 10.1038/nature08863
10 Aida T. ; Meiger E. W. ; Stupp S. I. Science 2012, 335, 813.
doi: 10.1126/science.1205962
11 Jeon Y. J. ; Bharadwaj P. K. ; Choi S. ; Lee J. W. ; Kim K Angew. Chem. Int. Ed 2002, 41, 4474.
doi: 10.1002/1521-3773(20021202)41:23<4474::AID-ANIE4474>3.0.CO;2-S
12 Thibault R. J. ; Hotchkiss P. J. ; Gray M. ; Rotello V. M. J Am. Chem. Soc 2003, 125, 11249.
doi: 10.1021/ja034868b
13 Wilson A. J. Soft Matter 2007, 3, 409.
doi: 10.1039/B612566B
14 Zhang X. ; Wang C Chem. Soc. Rev 2011, 40, 94.
doi: 10.1039/B919678C
15 Tao W. ; Liu Y. ; Jiang B. ; Yu S. ; Huang W. ; Zhou Y. ; Yan D. J Am. Chem. Soc 2012, 134, 762.
doi: 10.1021/ja207924w
16 Neal J. A. ; Mozhdehi D. ; Guan Z. J Am. Chem. Soc 2015, 137, 4846.
doi: 10.1021/jacs.5b01601
17 Xu X. ; Song C. ; Miller B. G. ; Scaoni A. W Ind. Eng. Chem. Res 2005, 44, 8113.
doi: 10.1021/ie050382n
18 McDanel W. M. ; Cowan M. G. ; Chisholm N. O. ; Gin D. L. ; Noble R. D. J Membr. Sci 2015, 492, 303.
doi: 10.1016/j.memsci.2015.05.034
19 Zeng R. ; Zhang J. ; Huang W. ; Dietzel W. ; Kainer K. U. ; Blawert C. ; Ke W Trans. Nonferrous Met. Soc 2006, 16.
doi: 10.1016/S1003-6326(06)60297-5
20 Li C. ; Chen L Chem. Soc. Rev 2006, 35, 68.
doi: 10.1039/B507207G
21 Wu W. Z. ; Han B. X. ; Gao H. X. ; Liu Z. M. ; Jiang T. ; Huang J Angew. Chem. Int. Ed 2004, 43, 2415.
doi: 10.1002/ange.200353437
22 Huang J. F. ; Luo H. M. ; Liang C. D. ; Sun I. W. ; Baker G. A. ; Dai S. J Am. Chem. Soc 2005, 127, 12784.
doi: 10.1021/ja053965x
23 Armond M. ; Endres F. ; MacFarlane D. R. ; Ohno H. ; Scrosati B Nat. Mater 2009, 8, 621.
doi: 10.1038/nmat2448
24 Cui G. ; Wang J. ; Zhang S Chem. Soc. Rev 2016, 45, 4307.
doi: 10.1039/C5CS00462D
25 Zeng S. ; Zhang X. ; Bai L. ; Zhang X. ; Wang H. ; Wang J. ; Bao D. ; Li M. ; Liu X. ; Zhang S Chem. Rev 2017, 117, 9625.
doi: 10.1021/acs.chemrev.7b00072
26 Han B Acta Phys. -Chim. Sin 2018, 34, 451.
doi: 10.3866/PKU.WHXB201710122
韩布兴. 物理化学学报, 2018, 34, 451.
doi: 10.3866/PKU.WHXB201710122
27 Zhao Y. ; Pan M. ; Kang X. ; Tu W. ; Gao H. ; Zhang X Chem. Eng. Sci 2018, 189, 43.
doi: 10.1016/j.ces.2018.05.044
28 Pan M. ; Zhao Y. ; Zeng X. ; Zou J Energy Fuels 2018, 32, 6130.
doi: 10.1021/acs.energyfuels.8b00879
29 Jessop P. G. ; Heldebrant D. J. ; Li X. ; Eckert C. A. ; Liotta C. L Nature 2005, 436, 1102.
doi: 10.1038/4361102a
30 Liu Y. ; Tang T. ; Barashkov N. N. ; Irgibaeva I. S. ; Lam J. W. Y. ; Hu R. ; Birimzhanova D. ; Yu Y. ; Tang B. Z. J Am. Chem. Soc 2010, 132, 13951.
doi: 10.1021/ja103947j
31 Che S. ; Dao R. ; Zhang W. ; Lv X. ; Li H. ; Wang C Chem. Commun 2017, 53, 3862.
doi: 10.1039/C7CC00676D
32 Wang C. ; Luo H. ; Jiang D. E. ; Li H. ; Dai S Angew. Chem. Int. Ed 2010, 49, 5978.
doi: 10.1002/ange.201002641
33 Jin Z. ; Xie D. X. ; Zhang X. B. ; Gong Y. J. ; Tan W Anal. Chem 2012, 84, 4253.
doi: 10.1021/ac300676v
34 Must I. ; Vonder V. ; Kassik F. ; P?ldsalu I. ; Johanson U. ; Punning A. ; Aabloo A Sensor Actuat. B-Chem 2014, 202, 114.
doi: 10.1016/j.snb.2014.05.074
35 Sullivan-González F. ; Scovazzo P. ; Amos R. ; Bae S.-K. J. Membr. Sci 2017, 533, 190.
doi: 10.1016/j.memsci.2017.03.026
36 Pan M. ; Cao N. ; Lin W. ; Luo X. ; Chen K. ; Che S. ; Li H. ; Wang C ChemSusChem 2016, 9, 2351.
doi: 10.1002/cssc.201600402
37 Frisch M. J. ; Trucks G. W. ; Schlegel H. B. ; Scuseria G. E. ; Robb M. A. ; Cheeseman J. R. ; Scalmani G. ; Barone V. ; Mennucci B. ; Petersson G. A. ; et al Gaussian 09 Revision C..01; Wallingford, CT: Gaussian Inc, 2010.
38 Bortolus P. ; Monti S. J Phys. Chem 1979, 83, 648.
doi: 10.1021/j100469a002
39 Johnson E. R. ; Keinan S. ; Mori-Sanche P. ; Contretras-Garicia J. ; Cohen A. J. ; Yang W. J Am. Chem. Soc 2010, 132, 6498.
doi: 10.1021/ja100936w
40 Wang C. ; Luo X. ; Luo H. ; Jiang D. E. ; Li H. ; Dai S Angew. Chem. Int. Ed 2011, 50, 4918.
doi: 10.1002/ange.201008151
41 Cao L. ; Zhu P. ; Zhao Y. ; Zhao J. J Hazard Mater 2018, 352, 17.
doi: 10.1016/j.jhazmat.2018.03.025
[1] 陈雯慧,陈胜利. 墨水溶剂对低铂含量质子交换膜燃料电池性能的影响[J]. 物理化学学报, 2019, 35(5): 517-522.
[2] 侯玉翠,么聪菲,吴卫泽. 低共熔溶剂:一种应用在混合物分离过程中的绿色溶剂[J]. 物理化学学报, 2018, 34(8): 873-885.
[3] 陈文君,薛智敏,王晋芳,蒋静云,赵新辉,牟天成. 低共熔溶剂的热稳定性研究[J]. 物理化学学报, 2018, 34(8): 904-911.
[4] 郭瑞,张嘉霖,赵宋焘,余小江,钟舒,孙硕,李震宇,陈伟. 基于全氟酞菁铜和碗烯双分子体系在银和石墨表面自组装行为的低温扫描隧道显微镜研究[J]. 物理化学学报, 2017, 33(3): 627-632.
[5] 王利,石何霞,王文元,施宏,邵翔. 三聚氰胺与蜜勒胺在Au (111)表面的自组装和氢键识别[J]. 物理化学学报, 2017, 33(2): 393-398.
[6] 孙怡然,于飞,马杰. 纳米受限水的研究进展[J]. 物理化学学报, 2017, 33(11): 2173-2183.
[7] 刘姗姗,季姗,陈启斌,彭昌军,刘洪来. 超分子聚合物刷PVP-Chol表面图案化及其力诱导的可逆结构转变[J]. 物理化学学报, 2016, 32(9): 2318-2326.
[8] 王云赫,秦圆,姚曼,王旭东,李淑颖,王栋,陈婷. BIC和HA体系的氢键驱动的HOPG表面手性自组装分子动力学模拟[J]. 物理化学学报, 2016, 32(9): 2255-2263.
[9] 伍绍贵,冯丹. 碱基对在DNA双螺旋链上分离的自由能计算[J]. 物理化学学报, 2016, 32(5): 1282-1288.
[10] 王素敏,赵绒娜,王奇观,郭浩,李金华,张文慧. 脲基嘧啶酮四氢键二茂铁二聚体:电子相互作用的调控[J]. 物理化学学报, 2016, 32(3): 611-616.
[11] 胡爱彬,潘志权,程清蓉,周红. 方酸与2, 6-二苯并咪唑的超分子自组装及氢键实验与理论研究[J]. 物理化学学报, 2016, 32(3): 665-670.
[12] 边高峰,黄华,占玲玲,吕晓静,曹枫,张诚,张玉建. 有机荧光分子2-氰基-3-(3, 4-二甲氧基苯基)-2-丙烯酰胺的可逆压致变色和质子刺激响应性能[J]. 物理化学学报, 2016, 32(2): 589-594.
[13] 梁梅清,殷鸿尧,冯玉军. 智能水基泡沫研究进展[J]. 物理化学学报, 2016, 32(11): 2652-2662.
[14] 周瑜,徐静,王楠楠,尉志武. 超额光谱及其研究进展[J]. 物理化学学报, 2016, 32(1): 239-248.
[15] 郑东,袁相爱,马晶. 邻位甲基红水溶液的光谱性质随pH值的变化:含时密度泛函理论计算与实验研究[J]. 物理化学学报, 2016, 32(1): 290-300.