Please wait a minute...
物理化学学报  2019, Vol. 35 Issue (7): 740-748    DOI: 10.3866/PKU.WHXB201809003
论文     
基于金属有机框架衍生的Fe-N-C纳米复合材料作为高效的氧还原催化剂
王倩倩,刘大军,何兴权*()
Metal-Organic Framework-Derived Fe-N-C Nanohybrids as Highly-Efficient Oxygen Reduction Catalysts
Qianqian WANG,Dajun LIU,Xingquan HE*()
 全文: PDF(1673 KB)   HTML 输出: BibTeX | EndNote (RIS) | Supporting Info
摘要:

开发用于氧还原反应(ORR)的低成本和高性能的非贵金属催化剂(NPMC)对于燃料电池的商业化至关重要。在这里,我们介绍了一种简单合成的由Fe3C纳米粒子包裹在介孔N掺杂碳(Fe-NC)中的NPMC材料,包括MIL-100(Fe)与葡萄糖和尿素的物理混合,以及随后在惰性气体下的热解。由此获得的Fe-N-C-900 (在900 ℃下制备的材料)表现出优异的电催化活性,高耐久性和对ORR卓越的甲醇耐受性,其催化性能与商业Pt/C在碱性介质中的催化性能相当。Fe-N-C-900在ORR中表现出优异的催化活性和稳定性,这是由于其较大的BET比表面积,较大的孔体积,氮掺杂剂,活性Fe3C纳米粒子以及其中活性官能团之间的协同效应。

关键词: 电催化剂氧还原反应金属有机框架Fe3C纳米粒子协同效应    
Abstract:

Environmentally friendly and renewable energy technologies, such as fuel cells and metal-air batteries, hold great promise for solving current energy and environmental challenges. The oxygen reduction reaction (ORR) plays a pivotal role in this top-drawer question. However, the sluggish kinetics of the ORR and prohibitive costs limit the global scalability of such devices. Traditionally, platinum-based electrocatalysts exhibit the best performance for ORRs in both acid and alkaline electrolytes. However, to significantly reduce the cost and realize sustainable development, utilization of Pt must be replaced or significantly reduced in the ORR cathode for fuel cell applications. Therefore, developing earth-abundant and high-performance non-precious metal catalysts (NPMCs) for ORR is of critical importance for the commercialization of fuel cells. In comparison to traditional catalysts, metal-organic frameworks (MOFs) are ideal precursors that integrate metal, nitrogen, and carbon functionalities together into one ordered 3D crystal structure. MOFs, assembled by secondary building of units comprised of metals and organic linkers with strong bonding, have received significant research attention because they possess permanent porosity, a three-dimensional (3D) structure, and can be prepared using a diversity of metals and organic linkers. High surface area, and microporous carbon materials can be easily obtained by carbonization of MOFs at high temperatures. In particular, MOF-derived carbon nanocomposites, which were prepared from transition metals, and have the form M-N-C (M = Fe or Co), have demonstrated remarkably improved catalytic activity and stability. Herein, we report an NPMC material consisting of Fe3C nanoparticles encapsulated in mesoporous N-doped carbon (Fe-N-C), synthesized by a simple strategy involving physical mixing of MIL-100(Fe) with glucose and urea, and subsequent pyrolysis under inert atmosphere. The strong interaction between metal atoms and nitrogen atoms is beneficial in generating more active sites, and sites with a higher intrinsic catalytic activity, via carbonization. The as-obtained catalysts exhibit remarkable ORR activity in alkaline media, with the best catalyst (Fe-N-C-900, which is synthesized at 900 ℃) featuring a more positive onset potential (0.96 V vs the reversible hydrogen electrode (RHE)), a more positive half-wave potential (0.83 V vs RHE), a much higher diffusion limiting current density (6.28 mA·cm-2) and a larger electron-transfer number (n), even at low overpotentials, compared with other contrast materials. Fe-N-C-900's excellent catalytic activity and stability in ORR are due to its large BET surface area, its large total pore volume, its nitrogen dopants, its active Fe3C nanoparticles and the cooperative effects among its reactive functionalities.

Key words: Electrocatalyst    Oxygen reduction reaction    Metal-organic frameworks    Fe3C nanoparticles    Synergistic effect
收稿日期: 2018-09-03 出版日期: 2018-11-08
中图分类号:  O646  
基金资助: the Natural Science Foundation of Jilin Province, China(20160101298 JC); 
通讯作者: 何兴权     E-mail: hexingquan@hotmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王倩倩
刘大军
何兴权

引用本文:

王倩倩,刘大军,何兴权. 基于金属有机框架衍生的Fe-N-C纳米复合材料作为高效的氧还原催化剂[J]. 物理化学学报, 2019, 35(7): 740-748, 10.3866/PKU.WHXB201809003

Qianqian WANG,Dajun LIU,Xingquan HE. Metal-Organic Framework-Derived Fe-N-C Nanohybrids as Highly-Efficient Oxygen Reduction Catalysts. Acta Phys. -Chim. Sin., 2019, 35(7): 740-748, 10.3866/PKU.WHXB201809003.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201809003        http://www.whxb.pku.edu.cn/CN/Y2019/V35/I7/740

Fig 1  XRD patterns of Fe-N-C-900, Fe -C-900, Fe-N-900 and MIL-900.
Fig 2  (a, b) SEM images of Fe-N-C-900 under different magnifications; (c) TEM and (d) HRTEM images of Fe-N-C-900.
Fig 3  TEM image with the corresponding C, N, O and Fe element mapping images of the Fe-N-C-900.
Fig 4  (a) Raman spectra of Fe-N-C-800, -900 and -1000. (b) N2 adsorption and desorption isotherms of Fe-N-C-800, -900, -1000, Fe-C-900, Fe-N-900 and MIL-900 samples. (c) XPS survey of Fe-N-C-800, -900 and -1000. High-resolution N 1s XPS spectra of Fe-N-C-800 (d), Fe-N-C-900 (e) andFe-N-C-1000 (f).
Fig 5  (a) CV curves of Fe-N-C-900 in O2- and N2-saturated 0.1 mol·L-1 KOH solutions with a scan rate of 100 mV·s-1. (b) LSV curves of Fe-N-C-900, Fe-C-900, Fe-N-900, MIL-900 and Pt/C. (c) LSV curves of Fe-N-C-T catalysts at a rotation speed of 1600 r·min-1 with a scan rate of 10 mV s-1. (d) LSV curves of Fe-N-C-900 at different rotation speeds in O2-saturated 0.1 mol·L-1 KOH. (e) The corresponding Koutecky-Levich plots of ORR for Fe-N-C-900. (f) Tafel plots obtained from the RDE measurements on Fe-N-C-900 and Pt/C catalysts in O2-saturated 0.1 mol·L-1 KOH at 1600 r·min-1.
Fig 6  (a) Rotating ring disk electrode (RRDE) measurements of Fe-N-C-900 and Pt/C in O2-saturated 0.1 mol·L-1 KOH at a rotation speed of 1600 r·min-1 with a scan rate of 10 mV s-1. (b) Electron transfer number of Fe-N-C-900 and Pt/C. (c) Peroxide percentage of Fe-N-C-900 and Pt/C. (d) Chronoamperometric response of Fe-N-C-900 and Pt/C to addition of methanol at 300 s. (e) Chronoamperometric response of Fe-N-C-900 and Pt/C in O2-saturated 0.1 mol·L-1 KOH.
1 Liu X. ; Liu W. ; Ko M. ; Park M. ; Kim M. G. ; Oh P. ; Chae S. ; Park S. ; Casimir A. ; Wu G. ; Cho J Adv. Funct. Mater 2015, 25, 5799.
doi: 10.1002/adfm.201502217
2 Qiao X. C. ; Liao S. J. ; Zheng R. P. ; Deng Y. J. ; Song H. Y. ; Du L ACS Sustainable Chem. Eng 2016, 4, 4131.
doi: 10.1021/acssuschemeng.6b00451
3 Li R. ; Wei Z. D. ; Gou X. L ACS Catal 2015, 5, 4133.
doi: 10.1021/acscatal.5b00601
4 Guo X. ; Li L. ; Zhang X. H. ; Chen J. H ChemElectroChem 2015, 2, 404.
doi: 10.1002/celc.201402342
5 Li P. X. ; Ma R. G. ; Zhou Y. ; Chen Y. F. ; Liu Q. ; Peng G. H. ; Wang J. C RSC Adv 2016, 6, 70763.
doi: 10.1039/c6ra14394f
6 He B. C. ; Chen X. X. ; Lu J. M. ; Yao S. D. ; Wei J. ; Zhao Q. ; Jing D. S. ; Huang X. N. ; Wang T Electroanalysis 2016, 28, 2435.
doi: 10.1002/elan.201600258
7 Wu Z. S. ; Yang S. B. ; Sun Y. ; Parvez K. ; Feng X. L. ; Müllen K. J Am. Chem. Soc 2012, 134, 9082.
doi: 10.1021/ja3030565
8 Sa Y. J. ; Park C. ; Jeong H. Y. ; Park S. H. ; Lee Z. ; Kim K. T. ; Park G. G. ; Joo S. H Angew. Chem. Int. Ed 2014, 126, 4186.
doi: 10.1002/ange.201307203
9 Lv G. J. ; Cui L. L. ; Wu Y. Y. ; Liu Y. ; Pu T. ; He X. Q Phys. Chem. Chem. Phys 2013, 15, 13093.
doi: 10.1039/c3cp51577j
10 Zhang C. ; An B. ; Yang L. ; Wu B. B. ; Shi W. ; Wang Y. C. ; Long L. S. ; Wang C. ; Lin W. B. J.Mater. Chem. A 2016, 4, 4457.
doi: 10.1039/c6ta00768f
11 Liu X. J. ; Li L. G. ; Zhou W. J. ; Zhou Y. C. ; Niu W. H. ; Chen S. W ChemElectroChem 2015, 2, 803.
doi: 10.1002/celc.201500002
12 Zhang C. Z. ; Mahmood N. ; Yin H. ; Liu F. ; Hou Y. L Adv. Mater 2013, 25, 4932.
doi: 10.1002/adma.201301870
13 Zhang J. T. ; Qu L. T. ; Shi G. Q. ; Liu J. Y. ; Chen J. F. ; Dai L. M Angew. Chem.Int. Ed 2016, 128, 2270.
doi: 10.1002/anie.201510495
14 Sheng Z. H. ; Shao L. ; Chen J. J. ; Bao W. J. ; Wang F. B. ; Xia X. H ACS Nano 2011, 5, 4350.
doi: 10.1021/nn103584t
15 Chang Y. Q. ; Hong F. ; He C. X. ; Zhang Q. L. ; Liu J. H Adv. Mater 2013, 25, 4794.
doi: 10.1002/adma.201301002
16 Liang H. W. ; Wei W. ; Wu Z. S. ; Feng X. L. ; Mu?llen K. J. Am. Chem. Soc 2013, 135, 16002.
doi: 10.1021/ja407552k
17 Jiang W. J. ; Gu L. ; Li L. ; Zhang Y. ; Zhang X. ; Zhang L. J. ; Wang J. Q. ; Hu J. S. ; Wei Z. D. ; Wan L. J. J.Am. Chem. Soc 2016, 138, 3570.
doi: 10.1021/jacs.6b00757
18 Li J. K. ; Ghoshal S. ; Liang W. ; Sougrati M. T. ; Jaouen F. ; Halevi B. ; McKinney S. ; McCool G. ; Ma C. R. ; Yuan X. X ; et al Science 2016, 9, 2418.
doi: 10.1039/c6ee01160h
19 Li Z. T. ; Sun H. D. ; Wei L. Q. ; Jiang W. J. ; Wu M. B. ; Hu J. S ACS Appl. Mater. Interfaces 2017, 9, 5272.
doi: 10.1021/acsami.6b15154
20 Lu H. Y. ; Yan J. J. ; Zhang Y. F. ; Huang Y. P. ; Gao W. ; Fan W. ; Liu T. X ChemNanoMat 2016, 2, 972.
doi: 10.1002/cnma.201600173
21 Li J. S. ; Li S. L. ; Tang Y. J. ; Han M. ; Dai Z. H. ; Bao J. C. ; Lan Y. Q Chem. Commun 2015, 51, 2710.
doi: 10.1039/c4cc09062d
22 Nandan R. ; Nanda K. K. J.Mater. Chem. A 2017, 5, 16843.
doi: 10.1039/c7ta04597b
23 Ren G. Y. ; Lu X. Y. ; Li Y. N. ; Zhu Y. ; Dai L. M. ; Jiang L ACS Appl. Mater. Interfaces 2016, 8, 4118.
doi: 10.1021/acsami.5b11786
24 Aijaz A. ; Masa J. ; R sler C. ; Antoni H. ; Fischer R. A. ; Schuhmann W. ; Muhler M. Chem. Eur. J 2017, 23, 12125.
doi: 10.1002/chem.201701389
25 Yang W. X. ; Liu X. J. ; Yue X. Y. ; Jia J. B. ; Guo S. J. J.Am. Chem. Soc 2015, 137, 1436.
doi: 10.1021/ja5129132
26 Liu Y. L. ; Xu X. Y. ; Sun P. C. ; Chen T. H. Int. J.Hydrogen Energy 2015, 40, 4531.
doi: 10.1016/j.ijhydene.2015.02.018
27 Wang Z. L. ; Xiao S. ; Zhu Z. L. ; Long X. ; Zheng X. L. ; Lu X. H. ; Yang S. H ACS Appl. Mater. Interfaces 2015, 7, 4048.
doi: 10.1021/am507744y
28 Yang J. ; Wang X. ; Li B. ; Ma L. ; Shi L. ; Xiong Y. J. ; Xu H. X Adv. Funct. Mater 2017, 27, 1606497.
doi: 10.1002/adfm.201606497
29 Peera S. G. ; Arunchander A. ; Sahu A. K Nanoscale 2016, 8, 14650.
doi: 10.1039/c6nr02263d
30 Tian W. J. ; Zhang H. Y. ; Sun H. Q. ; Suvorva A. ; Saunders M. ; Tade M. ; Wang S. B Adv. Funct. Mater 2016, 26, 8651.
doi: 10.1002/adfm.201603937
31 Proietti E. ; Jaouen F. ; Lefèvre M. ; Larouche N. ; Tian J. ; Herranz J. ; Dodelet J. P Nat. Commun 2011, 2, 416.
doi: 10.1038/ncomms1427
32 Ahn S. H. ; Manthiram A Small 2017, 13, 1603437.
doi: 10.1002/smll.201603437
33 Wang X. J. ; Zhang H. G. ; Lin H. H. ; Gupta S. ; Wang C. ; Tao Z.X. ; Fu H. ; Wang T. ; Zheng J. ; Wu G. ; et al Nano Energy 2016, 25, 110.
doi: 10.1016/j.nanoen.2016.04.042
34 Lai Q. X. ; Su Q. ; Gao Q. W. ; Liang Y. Y. ; Wang Y. X. ; Yang Z. ; Zhang X. G. ; He J. P. ; Tong H ACS Appl. Mater. Interfaces 2015, 7, 18170.
doi: 10.1021/acsami.5b05834
35 Niu W. H. ; Li L. G. ; Liu X. J. ; Wang N. ; Liu J. ; Zhou W. J. ; Tang Z. H. ; Chen S. W. J.Am. Chem. Soc 2015, 137, 5555.
doi: 10.1021/jacs.5b02027
36 Xiao M. L. ; Zhu J. B. ; Feng L. G. ; Liu C. P. ; Xing W Adv. Mater 2015, 27, 2521.
doi: 10.1002/adma.201500262
37 Hu Y. ; Jensen J. O. ; Zhang W. ; Cleemann L. N. ; Xing W. ; Bjerrum N. J. ; Li Q. F Angew. Chem. Int. Ed 2014, 126, 3749.
doi: 10.1002/ange.201400358
38 Xia B. Y. ; Yan Y. ; Li N. ; Wu H. B. ; Lou X. W. ; Wang X Nat. Energy 2016, 1, 15006.
doi: 10.1038/NENERGY.2015.6
39 Ye L. ; Chai G. L. ; Wen Z. H Adv. Funct. Mater 2017, 27, 1606190.
doi: 10.1002/adfm.201606190
40 Xu Y. ; Tu W. G. ; Zhang B. W. ; Yin S. M. ; Huang Y. Z. ; Kraft M. ; Xu R Adv. Mater 2017, 29, 1605957.
doi: 10.1002/adma.201605957
41 Gu W. L. ; Hu L. Y. ; Li J. ; Wang E. K ACS Appl. Mater. Interfaces 2016, 8, 35281.
doi: 10.1021/acsami.6b12031
42 Deng Y. J. ; Dong Y. Y. ; Wang G. H. ; Sun K. L. ; Shi X. D. ; Zheng L. ; Li X. H. ; Liao S. J ACS Appl. Mater. Interfaces 2017, 9, 9699.
doi: 10.1021/acsami.6b16851
43 You B. ; Jiang N. ; Sheng M. L. ; Drisdell W. S. ; Yano J. ; Sun Y. J ACS Catal 2015, 5, 7068.
doi: 10.1021/acscatal.5b02325
44 Wang D. K. ; Wang M. T. ; Li Z. H ACS Catal 2015, 5, 6852.
doi: 10.1021/acscatal.5b01949
45 Dou S. ; Tao L. ; Huo J. ; Wang S. Y. ; Dai L. M Energy Environ. Sci 2016, 9, 1320.
doi: 10.1039/c6ee00054a
46 Zhu Q. L. ; Xia W. ; Akita T. ; Zou R. Q. ; Xu Q Adv. Mater 2016, 28, 6391.
doi: 10.1002/adma.201600979
47 Zhu J. B. ; Xiao M. L. ; Zhang Y. L. ; Jin Z. ; Peng Z. Q. ; Liu C. P. ; Chen S. L. ; Ge J. J. ; Xing W ACS Catal 2016, 6, 6335.
doi: 10.1021/acscatal.6b01503
48 Hao Y. C. ; Lu Z. Y. ; Zhang G. X. ; Chang Z. ; Luo L. ; Sun X. M Energy Technology 2017, 5, 1265.
doi: 10.1002/ente.201600559
49 Yang Z. K. ; Lin L. ; Xu A. W Small 2016, 12, 5710.
doi: 10.1002/smll.201601887
50 Niu W. H. ; Li L. G. ; Liu J. ; Wang N. ; Li W. ; Tang Z. H. ; Zhou W. J. ; Chen S. W Small 2016, 12, 1900.
doi: 10.1002/smll.201503542
51 Shi W. ; Wang Y. C. ; Chen C. ; Yang X. D. ; Zhou Z. Y. ; Sun S. G. Chin. J.Catal 2016, 37, 1103.
doi: 10.1016/S1872-2067(16)62471-3
52 Zhang Y. Q. ; Zhang X. L. ; Ma X. X. ; Guo W. H. ; Wang C. C. ; Asefa T. ; He X. Q Sci. Report 2017, 7, 43366.
doi: 10.1038/srep43366
53 Yang Y. ; Zhao L. ; Hu X. L. ; Guan Y. ; Xue J. H. ; Zhu Z. ; Cui L. L Chem. Select 2017, 2, 4176.
doi: 10.1002/slct.201700538
54 Wang Y. ; Chen X. T. ; Lin Q. P. ; Kong A. G. ; Zhai Q. G. ; Xie S. L. ; Feng P. Y Nanoscale 2017, 9, 862.
doi: 10.1039/c6nr07268b
55 Jiang H. ; Liu Y. S. ; Hao J. Y. ; Wang Y. Q. ; Li W. Z. ; Li J ACS Sustainable Chem. Eng 2017, 5, 5341.
doi: 10.1021/acssuschemeng.7b00655
56 Zhao Y. ; Kamiya K. ; Hashimoto K. ; Nakanishi S. J.Phys. Chem. C 2015, 119, 2583.
doi: 10.1021/jp511515q
57 Yuan Y. ; Yang L. ; He B. ; Pervaiz E. ; Shao Z. ; Yang M Nanoscale 2017, 9, 6259.
doi: 10.1039/c7nr02264f
58 Song L. ; Wang T. ; Ma Y. O. ; Xue H. R. ; Guo H. ; Fan X. L. ; Xia W. ; Gong H. ; He J. P. Chem. Eur. J 2017, 23, 3398.
doi: 10.1002/chem.201605026
[1] 杨晓冬,陈驰,周志有,孙世刚. 碳基非贵金属氧还原电催化剂的活性位结构研究进展[J]. 物理化学学报, 2019, 35(5): 472-485.
[2] 陈驰,张雪,周志有,张新胜,孙世刚. S掺杂促进Fe/N/C催化剂氧还原活性的实验与理论研究[J]. 物理化学学报, 2017, 33(9): 1875-1883.
[3] 周扬,程庆庆,黄庆红,邹志青,严六明,杨辉. 高分散钴氮共掺杂碳纳米纤维氧还原催化剂[J]. 物理化学学报, 2017, 33(7): 1429-1435.
[4] 莫周胜,秦玉才,张晓彤,段林海,宋丽娟. 环己烯对噻吩在CuY分子筛上吸附的影响机制[J]. 物理化学学报, 2017, 33(6): 1236-1241.
[5] 王俊,魏子栋. 非贵金属氧还原催化剂的研究进展[J]. 物理化学学报, 2017, 33(5): 886-902.
[6] 吕洋,宋玉江,刘会园,李焕巧. 内核含Pd的Pt基核壳结构电催化剂[J]. 物理化学学报, 2017, 33(2): 283-294.
[7] 白晓芳,陈为,王白银,冯光辉,魏伟,焦正,孙予罕. 二氧化碳电化学还原的研究进展[J]. 物理化学学报, 2017, 33(12): 2388-2403.
[8] 玄翠娟,王杰,朱静,王得丽. 基于金属有机框架化合物纳米电催化剂的研究进展[J]. 物理化学学报, 2017, 33(1): 149-164.
[9] 许瀚,童叶翔,李高仁. Pd纳米晶的调控合成及其在燃料电池中的应用[J]. 物理化学学报, 2016, 32(9): 2171-2184.
[10] 田春霞,杨军帅,李丽,张小华,陈金华. 新型耐甲醇氧还原电催化剂——氮掺杂中空碳微球@铂纳米粒子复合材料[J]. 物理化学学报, 2016, 32(6): 1473-1481.
[11] 唐伟,王兢. 金属氧化物异质结气体传感器气敏增强机理[J]. 物理化学学报, 2016, 32(5): 1087-1104.
[12] 胡丽芳,何杰,刘媛,赵芸蕾,陈凯. TiO2-HNbMoO6复合材料的结构特征及其光催化性能[J]. 物理化学学报, 2016, 32(3): 737-744.
[13] 朱红,骆明川,蔡业政,孙照楠. 核壳结构催化剂应用于质子交换膜燃料电池氧还原的研究进展[J]. 物理化学学报, 2016, 32(10): 2462-2474.
[14] 罗柳轩,沈水云,朱凤鹃,章俊良. 单原子层Pd壳的Pt3Ni纳米立方体的甲酸氧化性能[J]. 物理化学学报, 2016, 32(1): 337-342.
[15] 王俊,李莉,魏子栋. 不同氮掺杂石墨烯氧还原反应活性的密度泛函理论研究[J]. 物理化学学报, 2016, 32(1): 321-328.