Please wait a minute...
物理化学学报
最新录用     
基于金属有机框架衍生的Fe-N-C纳米复合材料作为高效的氧还原催化剂
王倩倩, 刘大军, 何兴权
长春理工大学化学化工系, 长春 130022
Metal-Organic Framework-Derived Fe-N-C Nanohybrids as Highly-Efficient Oxygen Reduction Catalysts
WANG Qianqian, LIU Dajun, HE Xingquan
Department of Chemistry and Chemical Engineering, Changchun University of Science and Technology, Changchun 130022, P. R. China
 全文: PDF(1091 KB)   输出: BibTeX | EndNote (RIS) | Supporting Info
摘要: 开发用于氧还原反应(ORR)的低成本和高性能的非贵金属催化剂(NPMC)对于燃料电池的商业化至关重要。在这里,我们介绍了一种简单合成的由Fe3C纳米粒子包裹在介孔N掺杂碳(Fe-NC)中的NPMC材料,包括MIL-100(Fe)与葡萄糖和尿素的物理混合,以及随后在惰性气体下的热解。由此获得的Fe-N-C-900(在900℃下制备的材料)表现出优异的电催化活性,高耐久性和对ORR卓越的甲醇耐受性,其催化性能与商业Pt/C在碱性介质中的催化性能相当。Fe-N-C-900在ORR中表现出优异的催化活性和稳定性,这是由于其较大的BET比表面积,较大的孔体积,氮掺杂剂,活性Fe3C纳米粒子以及其中活性官能团之间的协同效应。
关键词: 电催化剂氧还原反应金属有机框架Fe3C纳米粒子协同效应    
Abstract: Environmentally friendly and renewable energy technologies, such as fuel cells and metal-air batteries, hold great promise for solving current energy and environmental challenges. The oxygen reduction reaction (ORR) plays a pivotal role in this top-drawer question. However, the sluggish kinetics of the ORR and prohibitive costs limit the global scalability of such devices. Traditionally, platinum-based electrocatalysts exhibit the best performance for ORRs in both acid and alkaline electrolytes. However, to significantly reduce the cost and realize sustainable development, utilization of Pt must be replaced or significantly reduced in the ORR cathode for fuel cell applications. Therefore, developing earth-abundant and high-performance non-precious metal catalysts (NPMCs) for ORR is of critical importance for the commercialization of fuel cells. In comparison to traditional catalysts, metal-organic frameworks (MOFs) are ideal precursors that integrate metal, nitrogen, and carbon functionalities together into one ordered 3D crystal structure. MOFs, assembled by secondary building of units comprised of metals and organic linkers with strong bonding, have received significant research attention because they possess permanent porosity, a three-dimensional (3D) structure, and can be prepared using a diversity of metals and organic linkers. High surface area, and microporous carbon materials can be easily obtained by carbonization of MOFs at high temperatures. In particular, MOF-derived carbon nanocomposites, which were prepared from transition metals, and have the form M-N-C (M=Fe or Co), have demonstrated remarkably improved catalytic activity and stability. Herein, we report an NPMC material consisting of Fe3C nanoparticles encapsulated in mesoporous N-doped carbon (Fe-N-C), synthesized by a simple strategy involving physical mixing of MIL-100(Fe) with glucose and urea, and subsequent pyrolysis under inert atmosphere. The strong interaction between metal atoms and nitrogen atoms is beneficial in generating more active sites, and sites with a higher intrinsic catalytic activity, via carbonization. The as-obtained catalysts exhibit remarkable ORR activity in alkaline media, with the best catalyst (Fe-N-C-900, which is synthesized at 900℃) featuring a more positive onset potential (0.96 V vs the reversible hydrogen electrode (RHE)), a more positive half-wave potential (0.83 V vs RHE), a much higher diffusion limiting current density (6.28 mA·cm-2) and a larger electron-transfer number (n), even at low overpotentials, compared with other contrast materials. Fe-N-C-900's excellent catalytic activity and stability in ORR are due to its large BET surface area, its large total pore volume, its nitrogen dopants, its active Fe3C nanoparticles and the cooperative effects among its reactive functionalities.
Key words: Electrocatalyst    Oxygen reduction reaction    Metal-organic frameworks    Fe3C nanoparticles    Synergistic effect
收稿日期: 2018-09-03 出版日期: 2018-11-08
中图分类号:  O646  
基金资助: 吉林省自然科学基金(20160101298JC)资助项目
通讯作者: 何兴权     E-mail: hexingquan@hotmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王倩倩, 刘大军, 何兴权. 基于金属有机框架衍生的Fe-N-C纳米复合材料作为高效的氧还原催化剂[J]. 物理化学学报, 10.3866/PKU.WHXB201809003.

WANG Qianqian, LIU Dajun, HE Xingquan. Metal-Organic Framework-Derived Fe-N-C Nanohybrids as Highly-Efficient Oxygen Reduction Catalysts. Acta Phys. -Chim. Sin., 10.3866/PKU.WHXB201809003.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201809003        http://www.whxb.pku.edu.cn/CN/Y0/V/I/0

(1) Liu, X.; Liu, W.; Ko, M.; Park, M.; Kim, M. G.; Oh, P.; Chae, S.; Park, S.; Casimir, A.; Wu, G.; Cho, J. Adv. Funct. Mater. 2015, 25, 5799. doi:10.1002/adfm.201502217
(2) Qiao, X. C.; Liao, S. J.; Zheng, R. P.; Deng, Y. J.; Song, H. Y.; Du, L. ACS Sustainable Chem. Eng. 2016, 4, 4131. doi: 10.1021/acssuschemeng.6b00451
(3) Li, R.; Wei, Z. D.; Gou, X. L. ACS Catal. 2015, 5, 4133. doi: 10.1021/acscatal.5b00601
(4) Guo, X.; Li, L.; Zhang, X. H.; Chen, J. H. ChemElectroChem 2015, 2, 404. doi:10.1002/celc.201402342
(5) Li, P. X.; Ma, R. G.; Zhou, Y.; Chen, Y. F.; Liu, Q.; Peng, G. H.; Wang, J. C. RSC Adv. 2016, 6, 70763. doi:10.1039/c6ra14394f
(6) He, B. C.; Chen, X. X.; Lu, J. M.; Yao, S. D.; Wei, J.; Zhao, Q.; Jing, D. S.; Huang, X. N.; Wang, T. Electroanalysis 2016, 28, 2435. doi: 10.1002/elan.201600258
(7) Wu, Z. S.; Yang, S. B.; Sun, Y.; Parvez, K.; Feng, X. L.; Müllen, K. J. Am. Chem. Soc. 2012, 134, 9082. doi:10.1021/ja3030565
(8) Sa, Y. J.; Park, C.; Jeong, H. Y.; Park, S. H.; Lee, Z.; Kim, K. T.; Park, G. G.; Joo, S. H. Angew. Chem. Int. Ed. 2014, 126, 4186. doi: 10.1002/ange.201307203
(9) Lv, G. J.; Cui, L. L.; Wu, Y. Y.; Liu, Y.; Pu, T.; He, X. Q. Phys. Chem. Chem. Phys. 2013, 15, 13093. doi:10.1039/c3cp51577j
(10) Zhang, C.; An, B.; Yang, L.; Wu, B. B.; Shi, W.; Wang, Y. C.; Long, L. S.; Wang, C.; Lin, W. B. J. Mater. Chem. A 2016, 4, 4457. doi:10.1039/c6ta00768f
(11) Liu, X. J.; Li, L. G.; Zhou, W. J.; Zhou, Y. C.; Niu, W. H.; Chen, S. W. ChemElectroChem 2015, 2, 803. doi:10.1002/celc.201500002
(12) Zhang, C. Z.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y. L. Adv. Mater. 2013, 25, 4932. doi:10.1002/adma.201301870
(13) Zhang, J. T.; Qu, L. T.; Shi, G. Q.; Liu, J. Y.; Chen, J. F.; Dai, L. M. Angew. Chem. Int. Ed. 2016, 128, 2270. doi:10.1002/anie.201510495
(14) Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao, W. J.; Wang, F. B.; Xia, X. H. ACS Nano 2011, 5, 4350. doi:10.1021/nn103584t
(15) Chang, Y. Q.; Hong, F.; He, C. X.; Zhang, Q. L.; Liu, J. H. Adv. Mater. 2013, 25, 4794. doi:10.1002/adma.201301002
(16) Liang, H. W.; Wei, W.; Wu, Z. S.; Feng, X. L.; Müllen, K. J. Am. Chem. Soc. 2013, 135, 16002. doi:10.1021/ja407552k
(17) Jiang, W. J.; Gu, L.; Li, L.; Zhang, Y.; Zhang, X.; Zhang, L. J.; Wang, J. Q.; Hu, J. S.; Wei, Z. D.; Wan, L. J. J. Am. Chem. Soc. 2016, 138, 3570. doi:10.1021/jacs.6b00757
(18) Li, J. K.; Ghoshal, S.; Liang, W.; Sougrati, M. T.; Jaouen, F.; Halevi, B.; McKinney, S.; McCool, G.; Ma, C. R.; Yuan, X. X.; et al. Science 2016, 9, 2418. doi:10.1039/c6ee01160h
(19) Li, Z. T.; Sun, H. D.; Wei, L. Q.; Jiang, W. J.; Wu, M. B.; Hu, J. S. ACS Appl. Mater. Interfaces 2017, 9, 5272. doi: 10.1021/acsami.6b15154
(20) Lu, H. Y.; Yan, J. J.; Zhang, Y. F.; Huang, Y. P.; Gao, W.; Fan, W.; Liu, T. X. ChemNanoMat 2016, 2, 972. doi: 10.1002/cnma.201600173
(21) Li, J. S.; Li, S. L.; Tang, Y. J.; Han, M.; Dai, Z. H.; Bao, J. C.; Lan, Y. Q. Chem. Commun. 2015, 51, 2710. doi:10.1039/c4cc09062d
(22) Nandan, R.; Nanda, K. K. J. Mater. Chem. A 2017, 5, 16843. doi: 10.1039/c7ta04597b
(23) Ren, G. Y.; Lu, X. Y.; Li, Y. N.; Zhu, Y.; Dai, L. M.; Jiang, L. ACS Appl. Mater. Interfaces 2016, 8, 4118. doi:10.1021/acsami.5b11786
(24) Aijaz, A.; Masa, J.; Rösler, C.; Antoni, H.; Fischer, R. A.; Schuhmann, W.; Muhler, M. Chem. Eur. J. 2017, 23, 12125. doi: 10.1002/chem.201701389
(25) Yang, W. X.; Liu, X. J.; Yue, X. Y.; Jia, J. B.; Guo, S. J. J. Am. Chem. Soc. 2015, 137, 1436. doi:10.1021/ja5129132
(26) Liu, Y. L.; Xu, X. Y.; Sun, P. C.; Chen, T. H. Int. J. Hydrogen Energy 2015, 40, 4531. doi:10.1016/j.ijhydene.2015.02.018
(27) Wang, Z. L.; Xiao, S.; Zhu, Z. L.; Long, X.; Zheng, X. L.; Lu, X. H.; Yang, S. H. ACS Appl. Mater. Interfaces 2015, 7, 4048. doi: 10.1021/am507744y
(28) Yang, J.; Wang, X.; Li, B.; Ma, L.; Shi, L.; Xiong, Y. J.; Xu, H. X. Adv. Funct. Mater. 2017, 27, 1606497. doi:10.1002/adfm.201606497
(29) Peera, S. G.; Arunchander, A.; Sahu, A. K. Nanoscale 2016, 8, 14650. doi:10.1039/c6nr02263d
(30) Tian, W. J.; Zhang, H. Y.; Sun, H. Q.; Suvorva, A.; Saunders, M.; Tade, M.; Wang, S. B. Adv. Funct. Mater. 2016, 26, 8651. doi: 10.1002/adfm.201603937
(31) Proietti, E.; Jaouen, F.; Lefèvre, M.; Larouche, N.; Tian, J.; Herranz, J.; Dodelet, J. P. Nat. Commun. 2011, 2, 416. doi: 10.1038/ncomms1427
(32) Ahn, S. H.; Manthiram, A. Small 2017, 13, 1603437. doi: 10.1002/smll.201603437
(33) Wang, X. J.; Zhang, H. G.; Lin, H. H.; Gupta, S.; Wang, C.; Tao, Z. X.; Fu, H.; Wang, T.; Zheng, J.; Wu, G.; et al. Nano Energy 2016, 25, 110. doi:10.1016/j.nanoen.2016.04.042
(34) Lai, Q. X.; Su, Q.; Gao, Q. W.; Liang, Y. Y.; Wang, Y. X.; Yang, Z.; Zhang, X. G.; He, J. P.; Tong, H. ACS Appl. Mater. Interfaces 2015, 7, 18170. doi:10.1021/acsami.5b05834
(35) Niu, W. H.; Li, L. G.; Liu, X. J.; Wang, N.; Liu, J.; Zhou, W. J.; Tang, Z. H.; Chen, S. W. J. Am. Chem. Soc. 2015, 137, 5555. doi: 10.1021/jacs.5b02027
(36) Xiao, M. L.; Zhu, J. B.; Feng, L. G.; Liu, C. P.; Xing, W. Adv. Mater. 2015, 27, 2521. doi:10.1002/adma.201500262
(37) Hu, Y.; Jensen, J. O.; Zhang, W.; Cleemann, L. N.; Xing, W.; Bjerrum, N. J.; Li, Q. F. Angew. Chem. Int. Ed. 2014, 126, 3749. doi: 10.1002/ange.201400358
(38) Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. Nat. Energy 2016, 1, 15006. doi:10.1038/NENERGY.2015.6
(39) Ye, L.; Chai, G. L.; Wen, Z. H. Adv. Funct. Mater. 2017, 27, 1606190. doi:10.1002/adfm.201606190
(40) Xu, Y.; Tu, W. G.; Zhang, B. W.; Yin, S. M.; Huang, Y. Z.; Kraft, M.; Xu, R. Adv. Mater. 2017, 29, 1605957. doi:10.1002/adma.201605957
(41) Gu, W. L.; Hu, L. Y.; Li, J.; Wang, E. K. ACS Appl. Mater. Interfaces 2016, 8, 35281. doi:10.1021/acsami.6b12031
(42) Deng, Y. J.; Dong, Y. Y.; Wang, G. H.; Sun, K. L.; Shi, X. D.; Zheng, L.; Li, X. H.; Liao, S. J. ACS Appl. Mater. Interfaces 2017, 9, 9699. doi:10.1021/acsami.6b16851
(43) You, B.; Jiang, N.; Sheng, M. L.; Drisdell, W. S.; Yano, J.; Sun, Y. J. ACS Catal. 2015, 5, 7068. doi:10.1021/acscatal.5b02325
(44) Wang, D. K.; Wang, M. T.; Li, Z. H. ACS Catal. 2015, 5, 6852. doi: 10.1021/acscatal.5b01949
(45) Dou, S.; Tao, L.; Huo, J.; Wang, S. Y.; Dai, L. M. Energy Environ. Sci. 2016, 9, 1320. doi:10.1039/c6ee00054a
(46) Zhu, Q. L.; Xia, W.; Akita, T.; Zou, R. Q.; Xu, Q. Adv. Mater. 2016, 28, 6391. doi:10.1002/adma.201600979
(47) Zhu, J. B.; Xiao, M. L.; Zhang, Y. L.; Jin, Z.; Peng, Z. Q.; Liu, C. P.; Chen, S. L.; Ge, J. J.; Xing, W. ACS Catal. 2016, 6, 6335. doi: 10.1021/acscatal.6b01503
(48) Hao, Y. C.; Lu, Z. Y.; Zhang, G. X.; Chang, Z.; Luo, L.; Sun, X. M. Energy Technology. 2017, 5, 1265. doi:10.1002/ente.201600559
(49) Yang, Z. K.; Lin, L.; Xu, A. W. Small 2016, 12, 5710. doi: 10.1002/smll.201601887
(50) Niu, W. H.; Li, L. G.; Liu, J; Wang, N.; Li, W.; Tang, Z. H.; Zhou, W. J.; Chen, S. W. Small 2016, 12, 1900. doi:10.1002/smll.201503542
(51) Shi, W.; Wang, Y. C.; Chen, C.; Yang, X. D.; Zhou, Z. Y.; Sun, S. G. Chin. J. Catal. 2016, 37, 1103. doi:10.1016/S1872-2067(16)62471-3
(52) Zhang, Y. Q.; Zhang, X. L.; Ma, X. X.; Guo, W. H.; Wang, C. C.; Asefa, T.; He, X. Q. Sci. Report 2017, 7, 43366. doi: 10.1038/srep43366
(53) Yang, Y.; Zhao, L.; Hu, X. L.; Guan, Y.; Xue, J. H.; Zhu, Z.; Cui, L. L. Chem. Select. 2017, 2, 4176. doi:10.1002/slct.201700538
(54) Wang, Y.; Chen, X. T.; Lin, Q. P.; Kong, A. G.; Zhai, Q. G.; Xie, S. L.; Feng, P. Y. Nanoscale 2017, 9, 862. doi:10.1039/c6nr07268b
(55) Jiang, H.; Liu, Y. S.; Hao, J. Y.; Wang, Y. Q.; Li, W. Z.; Li, J. ACS Sustainable Chem. Eng. 2017, 5, 5341. doi: 10.1021/acssuschemeng.7b00655
(56) Zhao, Y.; Kamiya, K.; Hashimoto, K.; Nakanishi, S. J. Phys. Chem. C 2015, 119, 2583. doi:10.1021/jp511515q
(57) Yuan, Y.; Yang, L.; He, B.; Pervaiz, E.; Shao, Z.; Yang, M. Nanoscale 2017, 9, 6259. doi:10.1039/c7nr02264f
(58) Song, L.; Wang, T.; Ma, Y. O.; Xue, H. R.; Guo, H.; Fan, X. L.; Xia, W.; Gong, H.; He, J. P. Chem. Eur. J. 2017, 23, 3398. doi: 10.1002/chem.201605026
[1] 杨晓冬,陈驰,周志有,孙世刚. 碳基非贵金属氧还原电催化剂的活性位结构研究进展[J]. 物理化学学报, 2019, 35(5): 472-485.
[2] 陈驰,张雪,周志有,张新胜,孙世刚. S掺杂促进Fe/N/C催化剂氧还原活性的实验与理论研究[J]. 物理化学学报, 2017, 33(9): 1875-1883.
[3] 周扬,程庆庆,黄庆红,邹志青,严六明,杨辉. 高分散钴氮共掺杂碳纳米纤维氧还原催化剂[J]. 物理化学学报, 2017, 33(7): 1429-1435.
[4] 莫周胜,秦玉才,张晓彤,段林海,宋丽娟. 环己烯对噻吩在CuY分子筛上吸附的影响机制[J]. 物理化学学报, 2017, 33(6): 1236-1241.
[5] 王俊,魏子栋. 非贵金属氧还原催化剂的研究进展[J]. 物理化学学报, 2017, 33(5): 886-902.
[6] 吕洋,宋玉江,刘会园,李焕巧. 内核含Pd的Pt基核壳结构电催化剂[J]. 物理化学学报, 2017, 33(2): 283-294.
[7] 白晓芳,陈为,王白银,冯光辉,魏伟,焦正,孙予罕. 二氧化碳电化学还原的研究进展[J]. 物理化学学报, 2017, 33(12): 2388-2403.
[8] 玄翠娟,王杰,朱静,王得丽. 基于金属有机框架化合物纳米电催化剂的研究进展[J]. 物理化学学报, 2017, 33(1): 149-164.
[9] 许瀚,童叶翔,李高仁. Pd纳米晶的调控合成及其在燃料电池中的应用[J]. 物理化学学报, 2016, 32(9): 2171-2184.
[10] 田春霞,杨军帅,李丽,张小华,陈金华. 新型耐甲醇氧还原电催化剂——氮掺杂中空碳微球@铂纳米粒子复合材料[J]. 物理化学学报, 2016, 32(6): 1473-1481.
[11] 唐伟,王兢. 金属氧化物异质结气体传感器气敏增强机理[J]. 物理化学学报, 2016, 32(5): 1087-1104.
[12] 胡丽芳,何杰,刘媛,赵芸蕾,陈凯. TiO2-HNbMoO6复合材料的结构特征及其光催化性能[J]. 物理化学学报, 2016, 32(3): 737-744.
[13] 朱红,骆明川,蔡业政,孙照楠. 核壳结构催化剂应用于质子交换膜燃料电池氧还原的研究进展[J]. 物理化学学报, 2016, 32(10): 2462-2474.
[14] 王俊,李莉,魏子栋. 不同氮掺杂石墨烯氧还原反应活性的密度泛函理论研究[J]. 物理化学学报, 2016, 32(1): 321-328.
[15] 罗柳轩,沈水云,朱凤鹃,章俊良. 单原子层Pd壳的Pt3Ni纳米立方体的甲酸氧化性能[J]. 物理化学学报, 2016, 32(1): 337-342.