Please wait a minute...
物理化学学报  2019, Vol. 35 Issue (7): 766-774    DOI: 10.3866/PKU.WHXB201809038
论文     
表面活性剂与叶酸的相互作用及其对光氧化降解的影响
罗思琪1,2,王美娜1,赵微微1,王毅琳1,2,*()
1 中国科学院化学研究所,胶体界面与化学热力学实验室,北京 100190
2 中国科学院大学,北京 100049
Interactions between Surfactants and Folic Acid and the Effects of Surfactants on the Photodegradation of Folic Acid
Siqi LUO1,2,Meina WANG1,Weiwei ZHAO1,Yilin WANG1,2,*()
1 Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
2 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
 全文: PDF(999 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

表面活性剂与有机小分子作用不仅能提高表面活性剂的聚集能力,还能提高小分子的溶解度、稳定性等应用性能,因此研究二者之间的相互作用机理对于促进表面活性剂的发展和实际应用具有重要意义。本工作提出了一种利用功能有机小分子调控表面活性剂聚集行为,进而提高不稳定小分子自身稳定性的新策略。利用表面张力、紫外可见吸收光谱、荧光光谱、动态光散射、等温滴定量热和核磁共振技术研究了在pH为7.0时,叶酸分别与十二烷基硫酸钠(SDS)、十二烷基三甲基溴化铵(DTAB)、季铵盐Gemini 12-6-12和季铵盐线性三聚12-3-12-3-12四种表面活性剂之间的相互作用及其导致的叶酸光氧化降解性能的变化,结果表明,阴离子表面活性剂SDS抑制叶酸光氧化降解的效率较低,而阳离子表面活性剂都能够显著抑制叶酸的光氧化降解,且随着表面活性剂寡聚度的增加,抑制效果增强,所需表面活性剂的浓度显著降低,寡聚表面活性剂12-3-12-3-12的抑制效率高达96%。

关键词: 叶酸表面活性剂寡聚度相互作用光氧化降解    
Abstract:

Interactions between surfactants and small organic molecules not only enhance the surface activity of the surfactants and induce aggregate transitions in them, but also improve the solubility and stability of the organic molecules. Understanding the interaction between surfactants and small molecules will help in widening the scope of application of surfactants. Folic acid, a member of the vitamin B family, has a pteridine ring, para-aminobenzoic acid, and glutamic acid, and is crucial for many reactions inside the human body. The unique structure of folic acid also facilitates the preparation of functional materials such as liquid crystals and gels. However, the poor solubility and precipitation of folic acid limit its applications. Therefore, it is essential to improve the solubility and stability of folic acid. Surfactants are efficient in solubilizing and stabilizing small molecules. The interactions of folic acid with four types of surfactants, namely, an anionic surfactant, sodium dodecyl sulfate (SDS); a cationic surfactant, dodecyl trimethylammonium bromide (DTAB); a cationic ammonium gemini surfactant, 12-6-12; and a cationic ammonium trimeric surfactant, 12-3-12-3-12; have been investigated at pH 7.0 by surface tension measurements, ultraviolet-visible (UV) absorption spectroscopy, dynamic light scattering, isothermal titration calorimetry, and nuclear magnetic resonance spectroscopy. At pH 7.0, the carboxylic acid groups of folic acid are deprotonated, so each folic acid molecule carries two negative charges. The addition of a small amount of folic acid sharply reduces the critical micelle concentration (CMC) of cationic surfactants and their surface tension at the CMC. However, the surface activity and aggregation of SDS show only minimal changes with the introduction of folic acid. In addition, the photodegradation of folic acid in the presence of different surfactants is studied by fluorescence and UV absorption spectroscopy. When irradiated with UV light, folic acid undergoes rapid degradation in aqueous solution, in the absence of any surfactants. In contrast, the degradation is greatly suppressed in the presence of surfactants. The extent of suppression by cationic surfactants is more significant than that by the anionic surfactant. The residual folic acid concentration increases from nearly 0 in the absence of any surfactant to 43%, 89%, 96%, and 96% in the presence of SDS, DTAB, 12-6-12, and 12-3-12-3-12, respectively, in the concentration range studied. The amount of surfactant required to prevent the degradation decreases with an increase in the degree of oligomerization of the cationic surfactants. The greater number of binding sites and hydrophobic tails in the gemini and oligomeric surfactants result in much stronger electrostatic and hydrophobic interactions with folic acid. In addition, the close and compact packing in these surfactant molecules prevents folic acid from coming in contact with oxygen, thereby retaining its stability and preserving its properties. This work provides a new methodology for regulating the surface activity of the surfactants and their aggregation in the presence of small functional molecules, which in turn improves the stability of the small molecules that are otherwise unstable.

Key words: Folic acid    Surfactant    Oligomeric degree    Interaction    Photo-degradation
收稿日期: 2018-09-25 出版日期: 2018-11-07
中图分类号:  O648  
基金资助: 国家自然科学基金(21633002)
通讯作者: 王毅琳     E-mail: yilinwang@iccas.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
罗思琪
王美娜
赵微微
王毅琳

引用本文:

罗思琪, 王美娜, 赵微微, 王毅琳. 表面活性剂与叶酸的相互作用及其对光氧化降解的影响[J]. 物理化学学报, 2019, 35(7): 766-774, 10.3866/PKU.WHXB201809038

Siqi LUO, Meina WANG, Weiwei ZHAO, Yilin WANG. Interactions between Surfactants and Folic Acid and the Effects of Surfactants on the Photodegradation of Folic Acid. Acta Phys. -Chim. Sin., 2019, 35(7): 766-774, 10.3866/PKU.WHXB201809038.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201809038        http://www.whxb.pku.edu.cn/CN/Y2019/V35/I7/766

图1  叶酸与4种表面活性剂(SDS、DTAB、12-6-12和12-3-12-3-12)的化学结构式
图2  (a) pH 7.0时SDS和DTAB单一组分及与100 μmol·L?1叶酸的混合体系的表面张力随表面活性剂浓度(CS)的变化曲线;(b)叶酸的最大吸收波长(λmax)随表面活性剂浓度的变化曲线
图3  pH 7.0时(a) SDS,(b) DTAB,(c) 12-6-12 (d) 12-3-12-3-12在100 μmol·L?1叶酸存在时聚集体尺寸分布随表面活性剂浓度的变化
图4  pH 7.0时100 μmol·L?1叶酸在(a) SDS,(b) DTAB,(c) 12-6-12,(d) 12-3-12-3-12存在时剩余量随时间的变化
图5  pH 7.0时叶酸溶液滴定(a) SDS,(b) DTAB,(c) 12-6-12,(d) 12-3-12-3-12的ITC曲线
图6  (a) SDS,(b) DTAB,(c) 12-6-12在叶酸存在时的NOE光谱
1 Off M. K. ; Steindal A. E. ; Porojnicu A. C. ; Juzeniene A. ; Vorobey A. ; Johnsson A. ; Moan J. J. Photochem. Photobiol. B 2005, 80, 47.
doi: 10.1016/j.jphotobiol.2005.03.001
2 Juzeniene A. ; Tam T. T. T. ; Iani V. ; Moan J. T. J. Photochem. Photobiol. B 2013, 126, 11.
doi: 10.1016/j.jphotobiol.2013.05.011
3 Hu J. M. ; Qian Y. F. ; Wang X. F. ; Liu T. ; Liu S. Y. Langmuir 2012, 28, 2073.
doi: 10.1021/la203992q
4 Leamon C. P. ; Reddy J. A. Adv. Drug Deliv. Rev. 2004, 56, 1127.
doi: 10.1016/j.addr.2004.01.008
5 Li W. J. ; Shi J. ; Zhang C. ; Li M. ; Gan L. ; Xu H. B. ; Yang. X. L. J. Mater. Chem. B 2014, 2, 4901.
doi: 10.1039/c4tb00502c
6 Zhu J. ; Liao L. ; Zhu L. N. ; Kong J. L. ; Liu B. H. Acta Chim. Sinica 2013, 71, 69.
doi: 10.6023/A12090680
朱杰; 廖蕾; 朱丽娜; 孔继烈; 刘宝红. 化学学报, 2013, 71, 69.
doi: 10.6023/A12090680
7 Bonazzi S. ; DeMorais M. M. ; Gottarelli G. ; Mariani P. ; Spada G. P. Angew. Chem. Int. Ed. 1993, 32, 248.
doi: 10.1002/anie.199302481
8 Xing P. Y. ; Chu X. X. ; Du G. Y. ; Li M. Z. ; Su J. ; Hao A. Y. ; Hou Y. H. ; Li S. Y. ; Ma M. F. ; Wu L. ; et al RSC Adv. 2013, 3, 15237.
doi: 10.1039/c3ra42129e
9 Xing P. Y. ; Chu X. X. ; Ma M. F. ; Li S. Y. ; Hao A. Y. Phys. Chem. Chem. Phys. 2014, 16, 8346.
doi: 10.1039/c4cp00367e
10 Xing P. Y. ; Chu X. X. ; Ma M. F. ; Li S. Y. ; Zhang Y. M. ; Hao A. Y. RSC Adv. 2014, 4, 36633.
doi: 10.1039/c4ra04585h
11 Akhtar M. J. ; Khan M. A. ; Ahmad I. J. Pharm. Biomed. Anal. 1999, 19, 269.
doi: 10.1016/S0731-7085(98)00038-7
12 Thomas A. H. ; Suárez G. ; Cabrerizo F. M. ; Martino R. ; Capparelli A. L. J. Photochem. Photobiol. A: Chem. 2000, 135, 147.
doi: 10.1016/S1010-6030(00)00304-X
13 Jamil Akhtar M. ; Ataullah Khan M. ; Ahmad I. J. Pharm. Biomed. Anal. 1999, 19, 269.
doi: 10.1016/S0731-7085(98)00038-7
14 Vorobey P. ; Steindal A. E. ; Off M. K. ; Vorobey A. ; Moan J. Photochem. Photobiol. 2006, 82, 817.
doi: 10.1562/2005-11-23-RA-739
15 Liang L. ; Subirade M. J. Phys. Chem. B 2010, 114, 6707.
doi: 10.1021/jp101096r
16 Bourassa P. ; Tajmir-Riahi H. A. J. Phys. Chem. B 2012, 116, 513.
doi: 10.1021/jp2083677
17 Tavares G. M. ; Croguennec T. ; Le S. ; Lerideau O. ; Hamon P. ; Carvalho A. F. ; Bouhallab S. Langmuir 2015, 31, 12481.
doi: 10.1021/acs.langmuir.5b02299
18 Madziva H. ; Kailasapathy K. ; Phillips M. J. Microencapsul. 2005, 22, 343.
doi: 10.1080/02652040500100931
19 Drummond C. J. ; Fong C. Curr. Opin. Colloid Interface Sci. 1999, 4, 449.
doi: 10.1016/S1359-0294(00)00020-0
20 Zhang H. X. ; Annunziata O. Langmuir 2008, 24, 10680.
doi: 10.1021/la802080t
21 Bhat P. A. ; Rather G. M. ; Dar A. A. J. Phys. Chem. B 2009, 113, 997.
doi: 10.1021/jp807229c
22 Xie H. J. ; Liu C. C. ; Sun Q. ; Gu Q. ; Lei Q. F. ; Fang W. J. Acta Phys. -Chim. Sin. 2016, 32, 295.
doi: 10.3866/PKU.WHXB201609231
谢湖均; 刘程程; 孙强; 顾青; 雷群芳; 方文军. 物理化学学报, 2016, 32, 295.
doi: 10.3866/PKU.WHXB201609231
23 Treger J. S. ; Ma V. Y. ; Gao Y. ; Wang C. C. ; Jeon S. ; Robinson J. M. ; Wang H. L. ; Johal M. S. Langmuir 2008, 24, 13127.
doi: 10.1021/la802080t
24 Carlotti M. E. ; Sapino S. ; Vione D. ; Pelizzetti E. ; Trotta M. J. Dispersion Sci. Technol. 2004, 25, 193.
doi: 10.1081/dis-120030666
25 Leung M. H. M. ; Colangelo H. ; Kee T. W. Langmuir 2008, 24, 5672.
doi: 10.1021/la800780w
26 Wan Z. Z. ; Ke D. ; Hong J. X. ; Wang X. Y. ; Shen W. G. Colloids Surf., A Physicochem. Eng. Aspects 2012, 414, 267.
doi: 10.1016/j.colsurfa.2012.08.046
27 Wang M. N. ; Wu C. X. ; Tang Y. Q. ; Fan Y. X. ; Han Y. C. ; Wang Y. L. Soft Matter 2014, 10, 3432.
doi: 10.1039/c4sm00086b
28 Shikata T. ; Hirata H. ; Kotaka T. Langmuir 1989, 5, 398.
doi: 10.1021/la00086a020
29 Hassan P. ; Yakhmi J. Langmuir 2007, 23, 10044.
doi: 10.1021/la701542k
30 Wattebled L. Laschewsky. Langmuir 2000, 16, 7187.
doi: 10.1021/la000517o
31 Yu D.F. ; Huang X. ; Deng M.L. ; Wang Y. L. J. Phys. Chem. B 2010, 114, 14955.
doi: 10.1021/jp106031d
32 Jiang L. X. ; Huang J. B. ; Bahramian A. ; Li P. X. ; Thomas R. K. ; Penfold J. Langmuir 2012, 28, 327.
doi: 10.1021/la2040938
33 Wang R. J. ; Tian M. Z. ; Wang Y. L. Soft Matter 2014, 10, 1705.
doi: 10.1039/c3sm52819g
34 Wang M. N. ; Fan Y. X. ; Han Y. C. ; Nie Z. X. ; Wang Y. L. Langmuir 2013, 29, 14839.
doi: 10.1021/la403582y
35 Laschewsky A. ; Wattebled L. ; Arotarena M. ; Habib-Jiwan J. ; Rakotoaly R. H. Langmuir 2005, 21, 7170.
doi: 10.1021/la050952o
36 Hou Y. B. ; Han Y. C. ; Deng M. L. ; Wang Y. L. Langmuir 2008, 26, 28.
doi: 10.1021/la903672r
37 In M. ; Bec V. ; Aguerre-Chariol O. ; Zana R. Langmuir 2000, 16, 141.
doi: 10.1021/la990645g
38 Fan Y. X. ; Han Y. C. ; Wang Y. L. Acta Phys. -Chim. Sin. 2016, 32, 214.
doi: 10.3866/PKU.WHXB201511022
范雅珣; 韩玉淳; 王毅琳. 物理化学学报, 2016, 32, 214.
doi: 10.3866/PKU.WHXB201511022
39 Zana R. ; Levy H. ; Papoutsi D. ; Beinert G. Langmuir 1995, 11, 3694.
doi: 10.1021/la00010a018
40 Lou P. X. ; Wang Y. J. ; Bai G. Y. ; Fan C. Y. ; Wang Y. L. Acta Phys. -Chim. Sin. 2013, 29, 1401.
doi: 10.3866/PKU.WHXB201304282
娄朋晓; 王玉洁; 白光月; 范朝英; 王毅琳. 物理化学学报, 2013, 29, 1401.
doi: 10.3866/PKU.WHXB201304282
[1] 谢文,何欢,董家新,郭清莲,刘义. 桑色素与血清白蛋白相互作用热力学行为[J]. 物理化学学报, 2019, 35(7): 725-733.
[2] 刘恒昌,冯玉军. CO2诱导的五嵌段非离子共聚物与阴离子氟碳表面活性剂的相互作用[J]. 物理化学学报, 2019, 35(4): 408-414.
[3] 沈艳芳,程龙玖. 八电子Pd4四面体团簇的电子结构稳定性分析[J]. 物理化学学报, 2018, 34(7): 830-836.
[4] 宁红岩,杨其磊,杨晓,李鹰霞,宋兆钰,鲁逸人,张立红,刘源. 碳纤维负载Rh-Mn紧密接触的催化剂及其合成气制乙醇催化性能[J]. 物理化学学报, 2017, 33(9): 1865-1874.
[5] 张晨辉,赵欣,雷津美,马悦,杜凤沛. 非离子表面活性剂Triton X-100溶液在不同生长期小麦叶片表面的润湿行为[J]. 物理化学学报, 2017, 33(9): 1846-1854.
[6] 赵文荣,郝京诚,HeinzHoffmann. 磁性非对称双链长表面活性剂囊泡凝胶[J]. 物理化学学报, 2017, 33(8): 1655-1664.
[7] 田茂章,张帆,马骋,马德胜,蒋凌翔,薛荣荣,刘卡尔顿,黄建滨. 基于广义阴阳表面活性剂体系对不同黏度区间原油的普适性降黏作用[J]. 物理化学学报, 2017, 33(8): 1665-1671.
[8] 甘永平,林沛沛,黄辉,夏阳,梁初,张俊,王奕顺,韩健峰,周彩红,张文魁. 表面活性剂对氧化铝修饰富锂锰基正极材料的影响[J]. 物理化学学报, 2017, 33(6): 1189-1196.
[9] 孔伟伟,郭爽,张永民,刘雪锋. 含硒磺基甜菜碱表面活性剂界面性能的氧化-还原响应行为[J]. 物理化学学报, 2017, 33(6): 1205-1213.
[10] 何禹,王一波. B972-PFD:一种高精度的色散校正密度泛函方法[J]. 物理化学学报, 2017, 33(6): 1149-1159.
[11] 黄于芬,张海龙,杨铮铮,赵明,黄木兰,梁艳丽,王健礼,陈耀强. CeO2的添加对柴油车氧化催化剂Pt/SiO2-Al2O3的NO氧化性能提高的影响[J]. 物理化学学报, 2017, 33(6): 1242-1252.
[12] 白光月,刘君玲,王九霞,王玉洁,李艳娜,赵扬,姚美焕. 阳离子双子表面活性剂诱导的α-CT超活性和构象变化[J]. 物理化学学报, 2017, 33(5): 976-983.
[13] 王晓雯,李蕾,王长生. 卤素阴离子和取代苯间Anion-π作用强度的快速计算[J]. 物理化学学报, 2017, 33(4): 755-762.
[14] 张婷,沈杰. 含酯基Gemini表面活性剂在有机醇-水体系中的胶束热力学及聚集行为[J]. 物理化学学报, 2017, 33(4): 795-802.
[15] 袁鸿,张静,魏学红,方慧敏,袁世芳,吴立新. 基于铕取代多金属氧簇的手性发光液晶材料[J]. 物理化学学报, 2017, 33(2): 407-412.