物理化学学报 >> 2019, Vol. 35 >> Issue (9): 1014-1020.doi: 10.3866/PKU.WHXB201811039
所属专题: 碳氢键活化
陈强1,2,姜利学1,2,3,李海方1,2,3,陈娇娇1,2,3,赵艳霞1,2,*(),何圣贵1,2,3,*(
)
收稿日期:
2018-11-28
录用日期:
2018-12-27
发布日期:
2019-01-03
通讯作者:
赵艳霞,何圣贵
E-mail:chemzyx@iccas.ac.cn;shengguihe@iccas.ac.cn
基金资助:
Qiang CHEN1,2,Li-Xue JIANG1,2,3,Hai-Fang LI1,2,3,Jiao-Jiao CHEN1,2,3,Yan-Xia ZHAO1,2,*(),Sheng-Gui HE1,2,3,*(
)
Received:
2018-11-28
Accepted:
2018-12-27
Published:
2019-01-03
Contact:
Yan-Xia ZHAO,Sheng-Gui HE
E-mail:chemzyx@iccas.ac.cn;shengguihe@iccas.ac.cn
Supported by:
摘要:
3d过渡金属物种活化甲烷的研究已有较多报道,但人们对3d前过渡金属物种与甲烷反应体系的报道非常少,与之相关的甲烷活化机理的认识仍然非常有限。在本工作中,我们通过气相质谱实验和密度泛函理论计算证实了VB+离子可以在热碰撞条件下活化甲烷产生氢气和碳硼化合物,由于强的静电相互作用,甲烷活化优先发生在VB+离子的V原子位点。甲烷的活化转化涉及二态反应性,在反应的入口处需要经历从高自旋六重态到低自旋四重态的自旋反转。由于V―CH3以及B―H化学键较强,H3C―H键断裂以V―B单元协同插入而非单个V或B原子插入C―H键的方式进行。对VB+活化甲烷的机理认识可以为新型3d过渡金属催化剂活化甲烷的研究提供理论基础。
MSC2000:
陈强,姜利学,李海方,陈娇娇,赵艳霞,何圣贵. 钒硼双原子阳离子活化甲烷研究[J]. 物理化学学报, 2019, 35(9): 1014-1020.
Qiang CHEN,Li-Xue JIANG,Hai-Fang LI,Jiao-Jiao CHEN,Yan-Xia ZHAO,Sheng-Gui HE. Thermal Activation of Methane by Diatomic Vanadium Boride Cations[J]. Acta Physico-Chimica Sinica, 2019, 35(9): 1014-1020.
Fig 3
DFT calculated potential energy profiles for the reaction of VB+ with CH4 on the sextet and quartet states The relative energies (ΔH0 in eV) of the reaction intermediates, transition states, and products with respect to the separated reactants (6VB+ + CH4) are given in eV. The bond lengths are given in pm."
Fig 4
DFT calculated potential energy curves (PECs) for spin conversions occurring in the 6I1 → 4TS1 and 6R → 4I1' steps in Fig. 3 The black line in (a) is the relaxed PEC obtained by the IRC calculations starting from 4TS1 → 4I1. The black line in (b) is the relaxed PEC obtained by decreasing the distance between B atom in 4R and the C atom in CH4 (4VB+ + CH4). The optimized geometries from the black lines (quartet state) were used for single-point energy calculations of the sextet state (red lines). The energies of the crossing points (CP1 and CP2) relative to the separated reactants (6VB+ + CH4) are given. Color online."
1 |
Shilov A. E. ; Shul'pin G. B. Chem. Rev. 1997, 97, 2879.
doi: 10.1021/cr9411886 |
2 |
Wang V. C. ; Maji S. ; Chen P. P. ; Lee H. K. ; Yu S. S. ; Chan S. I. Chem. Rev. 2017, 117, 8574.
doi: 10.1021/acs.chemrev.6b00624 |
3 |
Labinger J. A. ; Bercaw J. E. Nature 2002, 417, 507.
doi: 10.1038/417507a |
4 |
Olivos-Suarez A. I. ; Szécsényi À. ; Hensen E. J. M. ; Ruiz-Martinez J. ; Pidko E. A. ; Gascon J. ACS Catal. 2016, 6, 2965.
doi: 10.1021/acscatal.6b00428 |
5 |
Böhme D. K. ; Schwarz H. Angew. Chem. Int. Ed. 2005, 44, 2336.
doi: 10.1002/anie.200461698 |
6 |
Johnson G. E. ; Mitrić R. ; Bonačić-Koutecký V. ; Castleman A. W. Jr. Chem. Phys. Lett. 2009, 475, 1.
doi: 10.1016/j.cplett.2009.04.003 |
7 |
Zhai H.-J. ; Wang L. -S. Chem. Phys. Lett. 2010, 500, 185.
doi: 10.1016/j.cplett.2010.10.001 |
8 |
Yin S. ; Bernstein E. R. Int. J. Mass Spectrom. 2012, 321-322, 49.
doi: 10.1016/j.ijms.2012.06.001 |
9 |
O'Hair R. A. J. Int. J. Mass Spectrom. 2015, 377, 121.
doi: 10.1016/j.ijms.2014.05.003 |
10 |
Lang S. M. ; Bernhardt T. M. ; Chernyy V. ; Bakker J. M. ; Barnett R. N. ; Landman U. Angew. Chem. Int. Ed. 2017, 56, 13406.
doi: 10.1002/anie.201706009 |
11 |
Asmis K. R. ; Fielicke A. Top. Catal. 2018, 61, 1.
doi: 10.1007/s11244-018-0906-5 |
12 |
Roithová J. ; Schrӧder D. Chem. Rev. 2010, 110, 1170.
doi: 10.1021/cr900183p |
13 |
Schwarz H. Angew. Chem. Int. Ed. 2011, 50, 10096.
doi: 10.1002/anie.201006424 |
14 |
Schwarz H. ; González-Navarrete P. ; Li J. ; Schlangen M. ; Sun X. ; Weiske T. ; Zhou S. Organometallics 2017, 36, 8.
doi: 10.1021/acs.organomet.6b00372 |
15 |
Wang D. ; Ding X. -L. ; Liao H. ; Dai J Acta Phys. -Chim. Sin. 2019.
doi: 10.3866/PKU.WHXB201809006 |
王丹; 丁迅雷; 廖珩璐; 戴佳钰. 物理化学学报, 2019.
doi: 10.3866/PKU.WHXB201809006 |
|
16 |
Buckner S. W. ; MacMahon T. J. ; Byrd G. D. ; Freiser B. S. Inorg. Chem. 1989, 28, 3511.
doi: 10.1021/ic00317a024 |
17 |
Irikura K. K. ; Beauchamp J. L. J. Am. Chem. Soc. 1991, 113, 2769.
doi: 10.1021/ja00007a070 |
18 |
Irikura K. K. ; Beauchamp J. L. J. Phys. Chem. 1991, 95, 8344.
doi: 10.1021/j100174a057 |
19 |
Shayesteh A. ; Lavrov V. V. ; Koyanagi G. K. ; Bohme D. K. J. Phys. Chem. A 2009, 113, 5602.
doi: 10.1021/jp900671c |
20 |
Schröder D. ; Schwarz H. Angew. Chem. Int. Ed. Engl. 1990, 29, 1433.
doi: 10.1002/anie.199014331 |
21 |
Schröeder D. ; Fiedler A. ; Hrusak J. ; Schwarz H. J. Am. Chem. Soc. 1992, 114, 1215.
doi: 10.1021/ja00030a014 |
22 |
Chen Y.-M. ; Clemmer D. E. ; Armentrout P. B. J. Am. Chem. Soc. 1994, 116, 7815.
doi: 10.1021/ja00096a044 |
23 |
Ryan M. F. ; Fiedler A. ; Schröeder D. ; Schwarz H. Organometallics 1994, 13, 4072.
doi: 10.1021/om00022a051 |
24 |
Ryan M. F. ; Fiedler A. ; Schroeder D. ; Schwarz H. J. Am. Chem. Soc. 1995, 117, 2033.
doi: 10.1021/ja00112a017 |
25 |
Schröder D. ; Schwarz H. ; Clemmer D. E. ; Chen Y. ; Armentrout P. B. ; Baranov V. I. ; Böhme D. K. Int. J. Mass Spectrom. Ion Processes 1997, 161, 175.
doi: 10.1016/S0168-1176(96)04428-X |
26 |
Aguirre F. ; Husband J. ; Thompson C. J. ; Stringer K. L. ; Metz R. B. J. Chem. Phys. 2002, 116, 4071.
doi: 10.1063/1.1448489 |
27 |
Dietl N. ; van der Linde C. ; Schlangen M. ; Beyer M. K. ; Schwarz H. Angew. Chem. Int. Ed. 2011, 50, 4966.
doi: 10.1002/anie.201100606 |
28 |
Ard S. G. ; Melko J. J. ; Ushakov V. G. ; Johnson R. ; Fournier J. A. ; Shuman N. S. ; Guo H. ; Troe J. ; Viggiano A. A. J. Phys. Chem. A 2014, 118, 2029.
doi: 10.1021/jp5000705 |
29 |
Yue L. ; Li J. ; Zhou S. ; Sun X. ; Schlangen M. ; Shaik S. ; Schwarz H. Angew. Chem. Int. Ed. 2017, 56, 10219.
doi: 10.1002/anie.201703485 |
30 |
Carlin T. J. ; Sallans L. ; Cassady C. J. ; Jacobson D. B. ; Freiser B. S. J. Am. Chem. Soc. 1983, 105, 6320.
doi: 10.1021/ja00358a027 |
31 |
Zhang Q. ; Bowers M. T. J. Phys. Chem. A 2004, 108, 9755.
doi: 10.1021/jp047943t |
32 |
Liu S. ; Geng Z. ; Wang Y. ; Yan Y. J. Phys. Chem. A 2012, 116, 4560.
doi: 10.1021/jp210924a |
33 |
Schlangen M. ; Schroder D. ; Schwarz H. Chem. Eur. J. 2007, 13, 6810.
doi: 10.1002/chem.200700506 |
34 |
Armélin M. ; Schlangen M. ; Schwarz H. Chem. Eur. J. 2008, 14, 5229.
doi: 10.1002/chem.200800029 |
35 |
Schlangen M. ; Schwarz H. Helv. Chim. Acta 2008, 91, 2203.
doi: 10.1002/hlca.200890238 |
36 |
Fiedler A. ; Kretzschmar I. ; Schröder D. ; Schwarz H. J. Am. Chem. Soc. 1996, 118, 9941.
doi: 10.1021/ja960157k |
37 |
Schlangen M. ; Schroder D. ; Schwarz H. Angew. Chem. Int. Ed. 2007, 46, 1641.
doi: 10.1002/anie.200603266 |
38 |
Dede Y. ; Zhang X. ; Schlangen M. ; Schwarz H. ; Baik M. H. J. Am. Chem. Soc. 2009, 131, 12634.
doi: 10.1021/ja902093f |
39 |
Lakuntza O. ; Matxain J. M. ; Ruiperez F. ; Besora M. ; Maseras F. ; Ugalde J. M. ; Schlangen M. ; Schwarz H. Phys. Chem. Chem. Phys. 2012, 14, 9306.
doi: 10.1039/C2CP23502A |
40 |
Schröder D. ; Schwarz H. Angew. Chem. Int. Ed. Engl. 1991, 30, 991.
doi: 10.1002/anie.199109911 |
41 |
Kretschmer R. ; Schlangen M. ; Schwarz H. Angew. Chem. Int. Ed. 2013, 52, 6097.
doi: 10.1002/anie.201300900 |
42 |
Chen Q. ; Zhao Y.-X. ; Jiang L.-X. ; Li H.-F. ; Chen J.-J. ; Zhang T. ; Liu Q.-Y. ; He S.-G. Phys. Chem. Chem. Phys. 2018, 20, 4641.
doi: 10.1039/C8CP00071A |
43 |
Chen Q. ; Zhao Y.-X. ; Jiang L. -X. ; Chen J. -J. ; He S. -G. Angew. Chem. Int. Ed. 2018, 57, 14134.
doi: 10.1002/anie.201808780 |
44 |
Shaik S. ; Danovich D. ; Fiedler A. ; Schröder D. ; Schwarz H. Helv. Chim. Acta 1995, 78, 1393.
doi: 10.1002/hlca.19950780602 |
45 |
Wu X.-N. ; Xu B. ; Meng J.-H. ; He S.-G. Int. J. Mass Spectrom. 2012, 310, 57.
doi: 10.1016/j.ijms.2011.11.011 |
46 |
Yuan Z. ; Zhao Y.-X. ; Li X.-N. ; He S.-G. Int. J. Mass Spectrom. 2013, 354-355, 105.
doi: 10.1016/j.ijms.2013.06.004 |
47 |
Yuan Z. ; Liu Q.-Y. ; Li X. -N. ; He S. -G. Int. J. Mass Spectrom. 2016, 407, 62.
doi: 10.1016/j.ijms.2016.07.004 |
48 |
Gioumousis G. ; Stevenson D. P. J. Chem. Phys. 1958, 29, 294.
doi: 10.1063/1.1744477 |
49 |
Kummerlowe G. ; Beyer M. K. Int. J. Mass Spectrom. 2005, 244, 84.
doi: 10.1016/j.ijms.2005.03.012 |
50 | Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford CT, USA, 2009. |
51 |
Zhao Y. ; Truhlar D. G. J. Chem. Phys. 2006, 125, 194101.
doi: 10.1063/1.2370993 |
52 |
Schäfer A. ; Huber C. ; Ahlrichs R. J. Chem. Phys. 1994, 100, 5829.
doi: 10.1063/1.467146 |
53 |
Schlegel H. B. J. Comput. Chem. 1982, 3, 214.
doi: 10.1002/jcc.540030212 |
54 |
Gonzalez C. ; Schlegel H. B. J. Chem. Phys. 1989, 90, 2154.
doi: 10.1063/1.456010 |
55 | Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. NBO 3.1; Theoretical Chemistry Institute, University of Wisconsin: Madison, WI, USA, 1996. |
56 | Lide, D. R. Handbook of Chemistry and Physics, 84th Ed.; CRC Press: Boca Raton, USA, 2003; Sect. 9, p. 52. |
[1] | 王丹,丁迅雷,廖珩璐,戴佳钰. 单个金或银原子掺杂的氧化钒团簇上的甲烷活化反应[J]. 物理化学学报, 2019, 35(9): 1005 -1013 . |
[2] | 韩萌茹,周亚男,周旋,储伟. 通过g-C3N4担载MNi12 (Fe, Co, Cu, Zn)纳米团簇调节甲烷化[J]. 物理化学学报, 2019, 35(8): 850 -857 . |
[3] | 王琴,薛珉敏,张助华. 硼烯化学合成进展与展望[J]. 物理化学学报, 2019, 35(6): 565 -571 . |
[4] | 赵越,崔佳桐,胡继闯,马嘉璧. VO1-4+阳离子与n-CmH2m+2 (m = 3, 5, 7)烷烃的反应性研究:氧含量和碳链长度的影响[J]. 物理化学学报, 2019, 35(5): 531 -538 . |
[5] | 刘方彬,刘俊,王利祥. 带有噻吩侧基的有机硼小分子电子受体光伏材料[J]. 物理化学学报, 2019, 35(3): 251 -256 . |
[6] | 贺熙,吕逍雨,樊喜,林文俊,李浩然,王从敏. 阴离子功能化大孔树脂用于二氧化硫的多位点高效捕集[J]. 物理化学学报, 2018, 34(8): 896 -903 . |
[7] | 许文武,高嶷. 巯基保护的中空金纳米球[J]. 物理化学学报, 2018, 34(7): 770 -775 . |
[8] | 卢天,陈沁雪. 通过价层电子密度分析展现分子电子结构[J]. 物理化学学报, 2018, 34(5): 503 -513 . |
[9] | 尹玥琪,蒋梦绪,刘春光. Keggin型多酸负载的单原子催化剂(M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-)活化氮气分子的密度泛函理论计算研究[J]. 物理化学学报, 2018, 34(3): 270 -277 . |
[10] | 尹凡华,谭凯. 符合独立五元环规则的C100(417)Cl28形成机理的密度泛函理论研究[J]. 物理化学学报, 2018, 34(3): 256 -262 . |
[11] | 钟爱国,李嵘嵘,洪琴,张杰,陈丹. 从能量和信息理论视角理解单取代烷烃的异构化[J]. 物理化学学报, 2018, 34(3): 303 -313 . |
[12] | 丁晓琴,丁俊杰,李大禹,潘里,裴承新. 基于概念密度泛函理论磷酸酯类反应性物质毒性预测[J]. 物理化学学报, 2018, 34(3): 314 -322 . |
[13] | 王心怡,谢磊,丁元琪,姚心仪,张弛,孔惠慧,王利坤,许维. 超高真空条件下碱基与金属在Au(111)表面的相互作用[J]. 物理化学学报, 2018, 34(12): 1321 -1333 . |
[14] | 刘甜,黎军,刘维佳,朱育丹,陆小华. 简单的配体改变调控钌配合物催化还原CO2的活性:硼基配体的对位效应和Ru―H键的性质[J]. 物理化学学报, 2018, 34(10): 1097 -1105 . |
[15] | 陈驰,张雪,周志有,张新胜,孙世刚. S掺杂促进Fe/N/C催化剂氧还原活性的实验与理论研究[J]. 物理化学学报, 2017, 33(9): 1875 -1883 . |
|