物理化学学报 >> 2019, Vol. 35 >> Issue (10): 1128-1133.doi: 10.3866/PKU.WHXB201812037

所属专题: 二维材料及器件

论文 上一篇    下一篇

二维铁电材料ABP2X6内在极高的负泊松比

张春梅,聂亦涵,杜爱军*()   

  • 收稿日期:2018-12-21 录用日期:2019-01-24 发布日期:2019-01-28
  • 通讯作者: 杜爱军 E-mail:aijun.du@qut.edu.au
  • 基金资助:
    D. A. acknowledges the financial support by Australian Research Council under Discovery Project(DP170103598)

Intrinsic Ultrahigh Negative Poisson's Ratio in Two-Dimensional Ferroelectric ABP2X6 Materials

Chunmei ZHANG,Yihan NIE,Aijun DU*()   

  • Received:2018-12-21 Accepted:2019-01-24 Published:2019-01-28
  • Contact: Aijun DU E-mail:aijun.du@qut.edu.au
  • Supported by:
    D.A. acknowledges the financial support by Australian Research Council under Discovery Project(DP170103598)

摘要:

引发科研人员极大兴趣的二维铁电材料由于极好的电子读写性能,是下一代电路设计的重要组成。但是,二维铁电材料非常罕见。最近具有ABP2X6 (A = Ag, Cu; B = Bi, In; X = S, Se)形式的二维铁电材料,由于可制备超薄铁电材料,掀起了广泛的研究热潮。在ABP2X6单层内,P―P键形成支撑顶部和底部X平面的结构,同时位于X层之间的偏心A-B原子引起自发的铁电极化。如果两个偏心的A-B位置均匀对齐,则会导致顺电状态的出现。这种有趣的结构具有潜在的新颖的机械性能。截至目前,单层ABP2X6尚无力学性能报告。基于第一性原理计算,我们研究了单层ABP2X6 (A = Ag, Cu; B = Bi, In; X = S, Se)的结构、电子、力学以及电力耦合性质。通过杂化密度泛函方法计算,发现它们都是有很宽带隙的半导体。CuInP2Se6,CuBiP2Se6,AgBiP2S6和AgBiP2Se6的能带带隙分别是2.73,2.17,3.00和2.31 eV。价带顶主要是由X和B原子的p轨道构成,而导带底主要来源于X原子的p轨道和A原子的d轨道杂化。另外,A-B偏心位移有三个短A/B―X键,再加上d-p轨道杂化,我们推测ABP2X6单层中铁电结构扭曲的主要原因是Jahn-Teller影响。更有趣的是,ABP2X6单层是具有垂直于平面负泊松比的新类型的拉胀材料,负泊松比的数值有如下关系:AgBiP2S6 (−0.805) < AgBiP2Se6 (−0.778) < CuBiP2Se6 (−0.670) < CuInP2S6 (−0.060)。这主要是由于在x/y方向上施加的拉伸应变增大了P―P键和顶层X原子之间的角度,因此增加了单层ABP2X6的垂直平面方向的褶皱高度。此外,外部应变对A-B偏心位移具有显著影响,从而产生垂直于平面的压电极化。CuInP2S6,CuBiP2Se6,AgBiP2S6,AgBiP2Se6单层的e13值计算为−3.95 × 10−12, −5.68 × 10−12, −3.94 × 10−12, −2.71 × 10−12 C∙m−1,与实验证实的二维平面外压电Janus系统相当(压电系数为−3.8 × 10−12 C∙m−1)。这种不寻常的拉胀行为、铁电极化以及单层ABP2X6中的电力耦合可能会在纳米电子学、纳米力学和压电学中产生巨大的技术重要应用。

关键词: 负泊松比, 铁电, 半导体, ABP2X6, 力学, 压电

Abstract:

Recently, ferroelectric materials have attracted considerable research attention. In particular, two dimensional (2D) ferroelectric materials have been considered as most crucial for next-generation circuit designs because of their application as novel electric memory devices. However, a 2D ferroelectric material is very rare. The ferroelectric materials with the form ABP2X6 (A = Ag, Cu; B = Bi, In; X = S, Se) are of interest because of their ferroelectric property maintained in their ultrathin structures. Within the ABP2X6 monolayer, the P―P bonds form the pillars that hold the top and bottom X planes, while the off-center A―B atoms between the X layers induce a spontaneous ferroelectric polarization. If the two off-center A―B sites are equally aligned, this would lead to the appearance of the paraelectric state. Such intriguing structures must impart novel mechanical properties to the materials. Until now, there has been no report on the mechanical properties of monolayer ABP2X6. Based on first-principles calculations, we studied the structural, electronic, mechanical as well as the electromechanical coupling properties of monolayer ABP2X6 (A = Ag, Cu; B = Bi, In; X = S, Se). We found that they are all semiconductors with wide bandgaps of 2.73, 2.17, 3.00, and 2.31 eV for CuInP2Se6, CuBiP2Se6, AgBiP2S6, and AgBiP2Se6, respectively, which are calculated based on the Heyd-Scuseria-Ernzerhof (HSE) exchange correlation functional model. The conduction band minimum is mainly from p orbitals of X and B atoms, whereas the valence band maximum is due to the hybridization of the p orbital of X atoms and the d orbital of A atoms. Moreover, there are three short and three long A/B―X bonds due to the A―B off-center displacement. Together with the d-p orbital hybridization, the main reason for the distorted ferroelectric structure in ABP2X6 monolayers is the Jahn-Teller effect. ABP2X6 monolayers are predicted to be a new class of auxetic materials with an out-of-plane negative Poisson's ratio, i.e., the values of the negative Poisson's ratio are in the order AgBiP2S6 (−0.805) < AgBiP2Se6 (−0.778) < CuBiP2Se6 (−0.670) < CuInP2S6 (−0.060). This is mainly due to the tensile strain applied in the x/y direction enlarging the angle between P―P bonds and top layer X atoms, thereby enhancing the bucking height of monolayer ABP2X6. Moreover, external strain has a significant impact on the A―B off-center displacement, rendering an out-of-plane piezoelectric polarization. The values of e13 for CuInP2S6, CuBiP2Se6, AgBiP2S6, AgBiP2Se6 monolayers are calculated to be −3.95 × 10−12, −5.68 × 10−12, −3.94 × 10−12, −2.71 × 10−12 C∙m−1, respectively, which are comparable to the only experimentally confirmed 2D out-of-plane piezoelectric Janus system (piezoelectric coefficient = −3.8 × 10−12 C∙m−1). This unusual auxetic behavior, ferroelectric polarization, and the electromechanical coupling in monolayer ABP2X6 could potentially lead to enormous technologically important applications in nanoelectronics, nanomechanics, and piezoelectrics.

Key words: Negative poisson's ratio, Ferroelectric, Semiconductor, ABP2X6, Mechanical, Piezoelectric

MSC2000: 

  • O649