物理化学学报

所属专题: 固体核磁共振

最新录用    

DFT计算结合固体NMR研究富铝SSZ-13的铝分布和Brønsted酸性

李诗涵, 赵侦超, 李世坤, 邢友东, 张维萍   

  1. 大连理工大学化工学院, 精细化工国家重点实验室, 辽宁 大连 116024
  • 收稿日期:2019-03-11 修回日期:2019-04-11 录用日期:2019-04-11 发布日期:2019-04-18
  • 通讯作者: 张维萍 E-mail:wpzhang@dlut.edu.cn
  • 基金资助:
    国家自然科学基金(21872017,21603022),中央高校基本科研业务费专项资金(DUT17TD04)和大连理工大学超算中心资助

Aluminum Distribution and Brønsted Acidity of Al-Rich SSZ-13 Zeolite: A Combined DFT Calculation and Solid-State NMR Study

LI Shihan, ZHAO Zhenchao, LI Shikun, XING Youdong, ZHANG Weiping   

  1. State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China
  • Received:2019-03-11 Revised:2019-04-11 Accepted:2019-04-11 Published:2019-04-18
  • Contact: ZHANG Weiping E-mail:wpzhang@dlut.edu.cn
  • Supported by:
    The project was supported by the National Natural Science Foundation of China (21872017, 21603022), the Fundamental Research Funds for the Central Universities in China (DUT17TD04) and the Supercomputing Center of Dalian University of Technology, China.

摘要: 具有菱沸石(CHA)结构的SSZ-13分子筛在甲醇制烯烃(MTO)及柴油机车尾气氨选择性催化还原(NH3-SCR)反应中具有重要的应用,采用富铝SSZ-13可以调节MTO反应的烯烃选择性和提升NH3-SCR的低温脱硝活性,因此SSZ-13中的铝含量和分布与对应的酸性决定了其催化性能。本文采用密度泛函理论结合固体核磁共振实验研究了富铝和富硅H-SSZ-13的Al位置与Brønsted酸强度的内在关系。通过计算取代能发现,对于孤立Al位,质子位于Al周围4个不同O位时能量差异较小,最稳定的B酸位点是O(1)-H。对于富铝SSZ-13,两个Al原子位于同一六元环的对位是Al-Si-Si-Al(NNNN)序列中最稳定的结构,而Al-Si-Al(NNN)序列中能量最优的Al分布是两个铝原子排布于六棱柱上下不同的六元环上。通过计算最稳定构型下的质子亲和势、NH3脱附能和吸附氘代乙腈后的1H NMR化学位移,发现富铝SSZ-13中含有Si(2Al)分布的NNN序列导致了其Brønsted酸强度弱于高硅的分子筛。分峰拟合29Si魔角旋转核磁共振(MAS NMR)谱图表明富铝SSZ-13中Si(2Al)的含量在43%以上,而吸附氘代乙腈后的1H MAS NMR实验显示富铝SSZ-13的桥羟基化学位移向低场移动,进一步证明富铝SSZ-13具有较弱的Brønsted酸强度。

关键词: 密度泛函理论, 固体核磁共振, SSZ-13分子筛, Al分布, Brønsted酸性

Abstract: SSZ-13 zeolite with a chabazite (CHA) topology structure has important applications for methanol to olefin (MTO) conversion and selective catalytic reduction of nitrogen oxides (NOx) by ammonia (NH3-SCR) to reduce diesel engine exhaust emissions. It has been reported that the Al-rich SSZ-13 zeolite can be used to tune the selectivity of olefins in the MTO reaction, and significantly enhance NO conversions at lower temperatures in NH3-SCR. Thus, the aluminum content and distribution as well as the corresponding acidity in SSZ-13 zeolite determine the catalytic performance of the zeolite for different catalytic reactions. Herein, quantum chemical computing using density functional theory (DFT) combined with multinuclear solid-state nuclear-magnetic-resonance (NMR) experiments were performed to investigate the correlation of Al location and Brønsted acidity of H-SSZ-13 zeolite with the Si/Al ratio varying from 5.8 to 25. The most favorable acid site in the 1Al model is O(1)-H in which a proton is bonded with the O(1) atom near the isolated Al atom of the zeolite framework. Nevertheless, energy differences were rather small when comparing the substitution energies of an Al atom replacing a Si atom in the zeolite framework with a proton located in different O sites. As the Si/Al ratio decreased, the Al-rich SSZ-13 zeolite contained more Al substitutions in its framework. This system exhibited the lowest substitution energy when two Al atoms were located at the diagonal of the same six-membered ring for the Al-Si-Si-Al (NNNN) sequence in the framework of the Al-rich SSZ-13 zeolite. However, for the Al-Si-Al (NNN) sequence, the most favorable distribution involved two Al atoms located in different six-membered rings of the double six-membered ring units (D6R). The proton affinities (PA), NH3 desorption energies, and 1H NMR chemical shifts after d3-acetonitrile adsorption were calculated in the most stable models to characterize the Brønsted acid strength of the SSZ-13 zeolite with different Si/Al ratios. All computing results suggested that the Al-rich SSZ-13 zeolite exhibited weaker Brønsted acid strength than that of the Si-rich counterpart due to the presence of Si(2Al) groupings with the NNN sequence in the framework. Quantitative 29Si magic-angle spinning (MAS) NMR measurements after deconvolution demonstrated that the content of Si(2Al) groupings in the Al-rich SSZ-13 was > 43%. The 1H MAS NMR experiments after d3-acetonitrile adsorption showed that the chemical shift of the bridging hydroxyls in the Al-rich SSZ-13 moved to the lower field, further confirming that it had a weaker Brønsted acid strength than the Si-rich counterpart.

Key words: DFT, Solid-state NMR, SSZ-13 zeolite, Al distribution, Brø nsted acidity

MSC2000: 

  • O641