物理化学学报 >> 2020, Vol. 36 >> Issue (1): 1904026.doi: 10.3866/PKU.WHXB201904026
所属专题: 庆祝唐有祺院士百岁华诞专刊
任熠1,2,3,4,刘清宇1,3,4,*(),赵艳霞1,3,4,杨祁1,3,4,何圣贵1,2,3,4,*(
)
收稿日期:
2019-04-08
录用日期:
2019-04-25
发布日期:
2019-04-29
通讯作者:
刘清宇,何圣贵
E-mail:liuqingyu12@iccas.ac.cn;shengguihe@iccas.ac.cn
基金资助:
Yi Ren1,2,3,4,Qing-Yu Liu1,3,4,*(),Yan-Xia Zhao1,3,4,Qi Yang1,3,4,Sheng-Gui He1,2,3,4,*(
)
Received:
2019-04-08
Accepted:
2019-04-25
Published:
2019-04-29
Contact:
Qing-Yu Liu,Sheng-Gui He
E-mail:liuqingyu12@iccas.ac.cn;shengguihe@iccas.ac.cn
Supported by:
摘要:
金属正离子与甲烷的反应活性有着广泛的研究,但已报道的离子分子反应通常在单次碰撞或低碰撞能条件下发生。本文介绍最近搭建的一个由迁移管与离子漏斗组成的离子分子反应装置,在多次碰撞与可变碰撞能条件下研究离子分子反应。离子源产生的Au+在迁移管内与甲烷反应,经漏斗与离子阱收集后由质谱检测。该反应装置的反应气压可达100 Pa,且离子与分子的碰撞能可通过迁移管与离子漏斗间的电势差调节。利用该装置,我们研究了闭壳层Au+离子与甲烷的反应,并观测到碳―碳偶联产物AuC2H4+生成。密度泛函理论计算表明经由Au―CH2与Au―CH3物种的两条反应通道均可发生碳―碳偶联反应(Au+ + 2CH4→ AuC2H4+ + 2H2)。离子轨迹模拟表明迁移管与漏斗间的电场可提供足够的碰撞能促进碳―碳偶联反应发生。
MSC2000:
任熠,刘清宇,赵艳霞,杨祁,何圣贵. 多次碰撞条件下金阳离子诱导的甲烷碳―碳偶联[J]. 物理化学学报, 2020, 36(1): 1904026.
Yi Ren,Qing-Yu Liu,Yan-Xia Zhao,Qi Yang,Sheng-Gui He. C―C Coupling of Methane Mediated by Atomic Gold Cations under Multiple-Collision Conditions[J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1904026.
Fig 1
A schematic diagram of the reflectron time-of-flight mass spectrometer coupled with a laser ablation ion source, a reactor composed of a drift tube and an ion funnel, and a linear ion trap. The parts labeled: 1, laser ablation ion source; 2, drift tube; 3, ion funnel; 4, stacked ring radio frequency ion guide; 5, skimmer (2 mm diameter); 6, 8, and 11, Einzel lens; 7, linear ion trap; 9, electrodes for accelerating ions; 10, deflectors; 12, reflector; 13, dual microchannel plate detector; 14, port for drift gas; 15, port for capacitance manometer; 16, electrical feedthrough; 17, stainless steel screw; 18, and 21, polyetheretherketone spacer; 19, polyetheretherketone tube; 20, polytetrafluoroethylene washer. Color online."
Fig 2
A schematic diagram of a linear ion trap (a) and the pulsed events (b–f) to run the trap. The parts labeled: 1 and 2, cap electrodes; 3, hexapole rods; 4, cell for confining cooling gas. The intensity of the pulsed cations arrived at the trap is shown in (b). The electric pulses shown as U1 (c), U2 (d), and U3 (e) (RF components superimposed) are applied to parts 1-3, respectively. The pressure of cooling gas (He) in Part 4 is shown as PHe (f). The operating frequency of the trap is 10 Hz (i.e. 100 ms). "
Fig 3
TOF mass spectra for the reactions of Au+ with (a) He, (b) 0.5% CH4 seeded in He, (c) 5.0% CH4 seeded in He, and (d) 2.0% CD4 seeded in He in the DT-IF reactor at the drift pressure about 100 Pa. TOF mass spectrum for the reaction of Au+ with CH4 in the ion trap reactor was shown in (e). The insets in panels (a–d) show the amplified (by a factor of 20) ion signals for Mass between 210 and 220 a.m.u. In panel (e), the signal for Mass between 197.5 and 250 a.m.u. was amplified by a factor of 20."
Fig 4
TOF mass spectra for the reactions of Au+ with 5.0% CH4 seeded in 100 Pa He under UDT-IF values of 0 V (a), 30 V (b), 60 V (c), and 90 V (d). The GradDT, GradIF, and AmplIF were kept at 3.6 V·cm-1, 1.0 V·cm-1, and 66 Vp–p, respectively. The peaks labeled: 1, AuCH3+; 2, AuHCH4+; 3, AuH2O+; 4, AuH3O+; 5, AuC2H2+; 6, AuC2H5+; 7, Au(CH4)(H2O)+; 8, Au(H2O)2+; 9, AuC3H5+; 10, Au(C2H4)(CH4)+; and 11, Au(C2H4)(H2O)+. "
Fig 5
Distribution of center-of-mass collisional energies (Ec) between Au+ and CH4 with respect to the relative positions of the ions along the axis of the DF-IF reactor at the UDT-IF values of 0 V (a), 30 V (b), 60 V (c), and 90 V (d). In the ion trajectory simulations to determine the Ec values, the GradDT, GradIF, and AmplIF were kept at 3.6 V·cm-1, 1.0 V·cm-1, and 66 Vp-p, respectively. Color scale represents the number of collisions within 1 mm interval along the axis of the reactor. The dashed lines denote the region between the rear electrode of DT and the head electrode of IF."
Fig 7
TPSS calculated potential energy profiles for the reaction of Au+ with two CH4 to generate AuC2H4+ and two H2 molecules involving Au-CH2 (a) and Au-CH3 (b) as the intermediates. The relative energies of AuCH2+ + H2 + CH4 (1'), AuCH3+ + H + CH4 (2'), and AuH+ + CH3 + CH4 (3') are also shown for comparison. The zero-point energy corrected energies of IMs, TSs, and products with respect to the separated reactants are given in eV. Some bond lengths are given in pm. For comparison, the B3LYP/6-311+G(d)/SDD calculated energies for species in 1-4, 3/4 and 1'–3' are shown in the parentheses."
1 |
Lunsford J. H. Catal. Today 2000, 63, 165.
doi: 10.1016/s0920-5861(00)00456-9 |
2 |
Caballero A. ; Pérez P. J. Chem. Soc. Rev. 2013, 42, 8809.
doi: 10.1039/c3cs60120j |
3 |
Saha D. ; Grappe H. A. ; Chakraborty A. ; Orkoulas G. Chem. Rev. 2016, 116, 11436.
doi: 10.1021/acs.chemrev.5b00745 |
4 |
Ismagilov Z. R. ; Matus E. V. ; Tsikoza L. T. Energy Environ. Sci. 2008, 1, 526.
doi: 10.1039/b810981h |
5 |
Spivey J. J. ; Hutchings G. Chem. Soc. Rev. 2014, 43, 792.
doi: 10.1039/c3cs60259a |
6 |
Schwach P. ; Pan X. ; Bao X. Chem. Rev. 2017, 117, 8497.
doi: 10.1021/acs.chemrev.6b00715 |
7 |
Schwarz H. ; González-Navarrete P. ; Li J. ; Schlangen M. ; Sun X. ; Weiske T. ; Zhou S. Organometallics 2017, 36, 8.
doi: 10.1021/acs.organomet.6b00372 |
8 |
Ding X.-L. ; Wu X.-N. ; Zhao Y.-X. ; He S.-G. Acc. Chem. Res. 2012, 45, 382.
doi: 10.1021/ar2001364 |
9 |
Feyel S. ; Döbler J. ; Schröder D. ; Sauer J. ; Schwarz H. Angew. Chem. Int. Ed. 2006, 45, 4681.
doi: 10.1002/anie.200600188 |
10 |
Harding D. J. ; Kerpal C. ; Meijer G. ; Fielicke A. Angew. Chem. Int. Ed. 2012, 51, 817.
doi: 10.1002/anie.201107042 |
11 |
Lang S. M. ; Frank A. ; Bernhardt T. M. J. Phys. Chem. C 2013, 117, 9791.
doi: 10.1021/jp312852r |
12 |
Canale V. ; Zavras A. ; Khairallah G. N. ; d'Alessandro N. ; O'Hair R. A. J. Eur. J. Mass Spectrom. 2015, 21, 557.
doi: 10.1255/ejms.1332 |
13 |
Lang S. M. ; Bernhardt T. M. ; Chernyy V. ; Bakker J. M. ; Barnett R. N. ; Landman U. Angew. Chem. Int. Ed. 2017, 56, 13406.
doi: 10.1002/anie.201706009 |
14 |
Caballero A. ; Despagnet-Ayoub E. ; Díaz-Requejo M. M. ; Díaz-Rodríguez A. ; González-Núñez M. E. ; Mello R. ; Muñoz B. K. ; Ojo W. S. ; Asensio G. ; Etienne M. ; et al Science 2011, 332, 835.
doi: 10.1126/science.1204131 |
15 |
Guo X. ; Fang G. ; Li G. ; Ma H. ; Fan H. ; Yu L. ; Ma C. ; Wu X. ; Deng D. ; Wei M. ; et al Science 2014, 344, 616.
doi: 10.1126/science.1253150 |
16 |
Sushkevich V. L. ; Palagin D. ; Ranocchiari M. ; van Bokhoven J. A. Science 2017, 356, 523.
doi: 10.1126/science.aam9035 |
17 |
Tonkyn R. ; Ronan M. ; Weisshaar J. C. J. Phys. Chem. 1988, 92, 92.
doi: 10.1021/j100312a022 |
18 |
Irikura K. K. ; Beauchamp J. L. J. Phys. Chem. 1991, 95, 8344.
doi: 10.1021/j100174a057 |
19 |
Irikura K. K. ; Beauchamp J. L. J. Am. Chem. Soc. 1991, 113, 2769.
doi: 10.1021/ja00007a070 |
20 |
Cornehl H. H. ; Heinemann C. ; Schröder D. ; Schwarz H. Organometallics 1995, 14, 992.
doi: 10.1021/om00002a053 |
21 |
Schwarz H. ; Schröder D. Pure Appl. Chem. 2000, 72, 2319.
doi: 10.1351/pac200072122319 |
22 |
Shayesteh A. ; Lavrov V. V. ; Koyanagi G. K. ; Bohme D. K. J. Phys. Chem. A 2009, 113, 5602.
doi: 10.1021/jp900671c |
23 |
van Koppen P. A. M. ; Kemper P. R. ; Bushnell J. E. ; Bowers M. T. J. Am. Chem. Soc. 1995, 117, 2098.
doi: 10.1021/ja00112a026 |
24 |
Sunderlin L. S. ; Armentrout P. B. J. Am. Chem. Soc. 1989, 111, 3845.
doi: 10.1021/ja00193a015 |
25 |
Haynes C. L. ; Chen Y.-M. ; Armentrout P. B. J. Phys. Chem. 1995, 99, 9110.
doi: 10.1021/j100022a024 |
26 |
Armentrout P. B. ; Chen Y.-M. Int. J. Mass Spectrom. 2017, 413, 135.
doi: 10.1016/j.ijms.2016.05.003 |
27 |
Li F.-X. ; Armentrout P. B. J. Chem. Phys. 2006, 125, 133114.
doi: 10.1063/1.2220038 |
28 |
Zhou S. ; Li J. ; Wu X.-N. ; Schlangen M. ; Schwarz H. Angew. Chem. Int. Ed. 2016, 55, 441.
doi: 10.1002/anie.201509320 |
29 |
Karakaya C. ; Kee R. J. Prog. Energy Combust. Sci. 2016, 55, 60.
doi: 10.1016/j.pecs.2016.04.003 |
30 |
Tomkins P. ; Ranocchiari M. ; van Bokhoven J. A. Acc. Chem. Res. 2017, 50, 418.
doi: 10.1021/acs.accounts.6b00534 |
31 |
Sun K. ; Ginosar D. M. ; He T. ; Zhang Y. ; Fan M. ; Chen R. Ind. Eng. Chem. Res. 2018, 57, 1768.
doi: 10.1021/acs.iecr.7b04707 |
32 |
Geusic M. E. ; Morse M. D. ; O'Brien S. C. ; Smalley R. E. Rev. Sci. Instrum. 1985, 56, 2123.
doi: 10.1063/1.1138381 |
33 |
Smith D. ; Španěl P. Mass Spectrom. Rev. 2005, 24, 661.
doi: 10.1002/mas.20033 |
34 |
Melko J. J. ; Ard S. G. ; Shuman N. S. ; Pedder R. E. ; Taormina C. R. ; Viggiano A. A. Rev. Sci. Instrum. 2015, 86, 084101.
doi: 10.1063/1.4927716 |
35 |
McDonald D. C. ; Sweeny B. C. ; Ard S. G. ; Melko J. J. ; Ruliffson J. E. ; White M. C. ; Viggiano A. A. ; Shuman N. S. J. Phys. Chem. A 2018, 122, 6655.
doi: 10.1021/acs.jpca.8b02513 |
36 |
Gronert S. Mass Spectrom. Rev. 2005, 24, 100.
doi: 10.1002/mas.20008 |
37 |
Douglas D. J. ; Frank A. J. ; Mao D. Mass Spectrom. Rev. 2005, 24, 1.
doi: 10.1002/mas.20004 |
38 |
Nibbering N. M. M. Acc. Chem. Res. 1990, 23, 279.
doi: 10.1021/ar00177a003 |
39 |
Teloy E. ; Gerlich D. Chem. Phys. 1974, 4, 417.
doi: 10.1016/0301-0104(74)85008-1 |
40 |
Armentrout P. B. ; Beauchamp J. L. Acc. Chem. Res. 1989, 22, 315.
doi: 10.1021/ar00165a004 |
41 |
May J. C. ; McLean J. A. Anal. Chem. 2015, 87, 1422.
doi: 10.1021/ac504720m |
42 |
Lanucara F. ; Holman S. W. ; Gray C. J. ; Eyers C. E. Nat. Chem. 2014, 6, 281.
doi: 10.1038/nchem.1889 |
43 |
Zhan X. ; Duan J. ; Duan Y. Mass Spectrom. Rev. 2013, 32, 143.
doi: 10.1002/mas.21357 |
44 |
Yuan B. ; Koss A. R. ; Warneke C. ; Coggon M. ; Sekimoto K. ; de Gouw J. A. Chem. Rev. 2017, 117, 13187.
doi: 10.1021/acs.chemrev.7b00325 |
45 |
Kučera M. ; Stano M. ; Wnorowska J. ; Barszczewska W. ; Loffhagen D. ; Matejčík Š. Eur. Phys. J. D 2013, 37, 234.
doi: 10.1140/epjd/e2013-40401-2 |
46 |
Gao H. ; Niu W. ; Huang C. ; Hong Y. ; Shen C. ; Wang H. ; Lu Y. ; Chen X. ; Xia L. ; Jiang H. ; Chu Y. Int. J. Mass spectrom. 2015, 376, 1.
doi: 10.1016/j.ijms.2014.11.001 |
47 |
Kemper P. R. ; Bowers M. T. J. Am. Soc. Mass. Spectrom. 1990, 1, 197.
doi: 10.1016/1044-0305(90)85036-l |
48 |
Backe H. ; Dretzke A. ; Horn R. ; Kolb T. ; Lauth W. ; Repnow R. ; Sewtz M. ; Trautmann N. Hyperfine Interact. 2006, 162, 77.
doi: 10.1007/s10751-005-9210-4 |
49 |
Wyttenbach T. ; Kemper P. R. ; Bowers M. T. Int. J. Mass Spectrom. 2001, 212, 13.
doi: 10.1016/s1387-3806(01)00517-6 |
50 |
Tang K. ; Shvartsburg A. A. ; Lee H. N. ; Prior D. C. ; Buschbach M. A. ; Li F. ; Tolmachev A. V. ; Anderson G. A. ; Smith R. D. Anal. Chem. 2005, 77, 3330.
doi: 10.1021/ac048315a |
51 |
Koeniger S. L. ; Merenbloom S. I. ; Valentine S. J. ; Jarrold M. F. ; Udseth H. R. ; Smith R. D. ; Clemmer D. E. Anal. Chem. 2006, 78, 4161.
doi: 10.1021/ac051060w |
52 |
Kelly R. T. ; Tolmachev A. V. ; Page J. S. ; Tang K. ; Smith R. D. Mass Spectrom. Rev. 2010, 29, 294.
doi: 10.1002/mas.20232 |
53 |
Shi L. ; Holliday A. E. ; Bohrer B. C. ; Kim D. ; Servage K. A. ; Russell D. H. ; Clemmer D. E. J. Am. Soc. Mass. Spectrom. 2016, 27, 1037.
doi: 10.1007/s13361-016-1372-6 |
54 |
Wagner N. D. ; Clemmer D. E. ; Russell D. H. Anal. Chem. 2017, 89, 10094.
doi: 10.1021/acs.analchem.7b02932 |
55 |
Yuan Z. ; Liu Q.-Y. ; Li X.-N. ; He S.-G. Int. J. Mass Spectrom. 2016, 407, 62.
doi: 10.1016/j.ijms.2016.07.004 |
56 |
Li F.-X. ; Gorham K. ; Armentrout P. B. J. Phys. Chem. A 2010, 114, 11043.
doi: 10.1021/jp100566t |
57 |
Zhao Y. X. ; Li Z. Y. ; Yuan Z. ; Li X. N. ; He S. G. Angew. Chem. Int. Ed. 2014, 53, 9482.
doi: 10.1002/anie.201403953 |
58 |
Yuan Z. ; Li Z.-Y. ; Zhou Z.-X. ; Liu Q.-Y. ; Zhao Y.-X. ; He S.-G. J. Phys. Chem. C 2014, 118, 14967.
doi: 10.1021/jp5040344 |
59 | SIMION® Version 8.1. Scientific Instrument Services, Inc.TM 2011. |
60 | Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, Revision A.01; Gaussian Inc.: Wallingford, CT, USA, 2009. |
61 |
Tao J. ; Perdew J. P. ; Staroverov V. N. ; Scuseria G. E. Phys. Rev. Lett. 2003, 91, 146401.
doi: 10.1103/PhysRevLett.91.146401 |
62 |
Li Z.-Y. ; Li H.-F. ; Zhao Y.-X. ; He S.-G. J. Am. Chem. Soc. 2016, 138, 9437.
doi: 10.1021/jacs.6b03940 |
63 |
Meng J.-H. ; He S.-G. J. Phys. Chem. Lett. 2014, 5, 3890.
doi: 10.1021/jz502057n |
64 |
Kanai Y. ; Wang X. ; Selloni A. ; Car R. J. Chem. Phys. 2006, 125, 234104.
doi: 10.1063/1.2403861 |
65 |
Krishnan R. ; Binkley J. S. ; Seeger R. ; Pople J. A. J. Chem. Phys. 1980, 72, 650.
doi: 10.1063/1.438955 |
66 |
Andrae D. ; Häuϐermann U. ; Dolg M. ; Stoll H. ; Preuϐ H. Theor. Chim. Acta 1990, 77, 123.
doi: 10.1007/bf01114537 |
67 |
Schlegel H. B. J. Comput. Chem. 1982, 3, 214.
doi: 10.1002/jcc.540030212 |
68 |
Berente I. ; Náray-Szabó G. J. Phys. Chem. A 2006, 110, 772.
doi: 10.1021/jp054116z |
69 |
Gonzalez C. ; Schlegel H. B. J. Chem. Phys. 1989, 90, 2154.
doi: 10.1063/1.456010 |
70 |
Gonzalez C. ; Schlegel H. B. J. Phys. Chem. 1990, 94, 5523.
doi: 10.1021/j100377a021 |
71 |
Zhang T. ; Li Z.-Y. ; Zhang M.-Q. ; He S.-G. J. Phys. Chem. A 2016, 120, 4285.
doi: 10.1021/acs.jpca.6b03836 |
72 |
Lang S. M. ; Bernhardt T. M. ; Barnett R. N. ; Landman U. Angew. Chem. Int. Ed. 2010, 49, 980.
doi: 10.1002/anie.200905643 |
[1] | 华凯敏, 刘晓放, 魏百银, 张书南, 王慧, 孙予罕. 过渡金属催化CO2/H2参与的羰基化研究进展[J]. 物理化学学报, 2021, 37(5): 2009098 -0 . |
[2] | 李聪明, 陈阔, 王晓月, 薛楠, 杨恒权. 探究Cu/ZnO相互作用对CO2加氢制甲醇反应性能的影响[J]. 物理化学学报, 2021, 37(5): 2009101 -0 . |
[3] | 邹广锐兴, 陈梓铭, 黎振超, 叶轩立. 蓝光钙钛矿发光二极管:机遇与挑战[J]. 物理化学学报, 2021, 37(4): 2009002 -0 . |
[4] | 李琳, 沈水云, 魏光华, 章俊良. 基于血红素衍生的中空非贵金属催化剂氧还原反应电催化活性[J]. 物理化学学报, 2021, 37(3): 1911011 -0 . |
[5] | 关俊, 李念武, 于乐. 人工界面层在金属锂负极中的应用[J]. 物理化学学报, 2021, 37(2): 2009011 -0 . |
[6] | 钱华明, 李喜飞. 功能化固态电解质膜改性锂金属负极的研究进展[J]. 物理化学学报, 2021, 37(2): 2008092 -0 . |
[7] | 何一涛, 丁飞, 林立, 王志红, 吕喆, 张耀辉. 电极界面浓差极化对锂金属沉积的影响[J]. 物理化学学报, 2021, 37(2): 2009001 -0 . |
[8] | 岳昕阳, 马萃, 包戬, 杨思宇, 陈东, 吴晓京, 周永宁. 金属锂负极失效机制及其先进表征技术[J]. 物理化学学报, 2021, 37(2): 2005012 -0 . |
[9] | 张自博, 邓伟, 周旭峰, 刘兆平. 稳定锂电化学沉积和溶解行为的LiC6异质微结构界面层[J]. 物理化学学报, 2021, 37(2): 2008092 -0 . |
[10] | 王志达, 冯元宬, 卢松涛, 王锐, 秦伟, 吴晓宏. 利用原位氟化保护层改善三维锡锂合金/碳纸负极贫电解液下性能[J]. 物理化学学报, 2021, 37(2): 2008082 -0 . |
[11] | 华广斌, 樊晏辰, 张千帆. 计算模拟在锂金属负极研究中的应用[J]. 物理化学学报, 2021, 37(2): 2008089 -0 . |
[12] | 赵雨萌, 任凌霄, 王澳轩, 罗加严. 锂金属电池中的复合负极[J]. 物理化学学报, 2021, 37(2): 2008090 -0 . |
[13] | 刘冬冬, 陈超, 熊训辉. 锂金属负极人造保护膜的研究进展[J]. 物理化学学报, 2021, 37(2): 2008078 -0 . |
[14] | 张云博, 林乔伟, 韩俊伟, 韩志远, 李曈, 康飞宇, 杨全红, 吕伟. 细菌纤维素衍生的三维碳集流体用于无枝晶的锂金属负极[J]. 物理化学学报, 2021, 37(2): 2008088 -0 . |
[15] | 康丹苗, NoamHart, 肖沐野, JohnP. Lemmon. 锂金属电池研究中对称电池的短路现象[J]. 物理化学学报, 2021, 37(2): 2008013 -0 . |
|