物理化学学报 >> 2020, Vol. 36 >> Issue (1): 1904026.doi: 10.3866/PKU.WHXB201904026
所属专题: 庆祝唐有祺院士百岁华诞专刊
任熠1,2,3,4,刘清宇1,3,4,*(),赵艳霞1,3,4,杨祁1,3,4,何圣贵1,2,3,4,*(
)
收稿日期:
2019-04-08
录用日期:
2019-04-25
发布日期:
2019-04-29
通讯作者:
刘清宇,何圣贵
E-mail:liuqingyu12@iccas.ac.cn;shengguihe@iccas.ac.cn
基金资助:
Yi Ren1,2,3,4,Qing-Yu Liu1,3,4,*(),Yan-Xia Zhao1,3,4,Qi Yang1,3,4,Sheng-Gui He1,2,3,4,*(
)
Received:
2019-04-08
Accepted:
2019-04-25
Published:
2019-04-29
Contact:
Qing-Yu Liu,Sheng-Gui He
E-mail:liuqingyu12@iccas.ac.cn;shengguihe@iccas.ac.cn
Supported by:
摘要:
金属正离子与甲烷的反应活性有着广泛的研究,但已报道的离子分子反应通常在单次碰撞或低碰撞能条件下发生。本文介绍最近搭建的一个由迁移管与离子漏斗组成的离子分子反应装置,在多次碰撞与可变碰撞能条件下研究离子分子反应。离子源产生的Au+在迁移管内与甲烷反应,经漏斗与离子阱收集后由质谱检测。该反应装置的反应气压可达100 Pa,且离子与分子的碰撞能可通过迁移管与离子漏斗间的电势差调节。利用该装置,我们研究了闭壳层Au+离子与甲烷的反应,并观测到碳―碳偶联产物AuC2H4+生成。密度泛函理论计算表明经由Au―CH2与Au―CH3物种的两条反应通道均可发生碳―碳偶联反应(Au+ + 2CH4→ AuC2H4+ + 2H2)。离子轨迹模拟表明迁移管与漏斗间的电场可提供足够的碰撞能促进碳―碳偶联反应发生。
MSC2000:
任熠,刘清宇,赵艳霞,杨祁,何圣贵. 多次碰撞条件下金阳离子诱导的甲烷碳―碳偶联[J]. 物理化学学报, 2020, 36(1): 1904026.
Yi Ren,Qing-Yu Liu,Yan-Xia Zhao,Qi Yang,Sheng-Gui He. C―C Coupling of Methane Mediated by Atomic Gold Cations under Multiple-Collision Conditions[J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1904026.
Fig 1
A schematic diagram of the reflectron time-of-flight mass spectrometer coupled with a laser ablation ion source, a reactor composed of a drift tube and an ion funnel, and a linear ion trap. The parts labeled: 1, laser ablation ion source; 2, drift tube; 3, ion funnel; 4, stacked ring radio frequency ion guide; 5, skimmer (2 mm diameter); 6, 8, and 11, Einzel lens; 7, linear ion trap; 9, electrodes for accelerating ions; 10, deflectors; 12, reflector; 13, dual microchannel plate detector; 14, port for drift gas; 15, port for capacitance manometer; 16, electrical feedthrough; 17, stainless steel screw; 18, and 21, polyetheretherketone spacer; 19, polyetheretherketone tube; 20, polytetrafluoroethylene washer. Color online."
Fig 2
A schematic diagram of a linear ion trap (a) and the pulsed events (b–f) to run the trap. The parts labeled: 1 and 2, cap electrodes; 3, hexapole rods; 4, cell for confining cooling gas. The intensity of the pulsed cations arrived at the trap is shown in (b). The electric pulses shown as U1 (c), U2 (d), and U3 (e) (RF components superimposed) are applied to parts 1-3, respectively. The pressure of cooling gas (He) in Part 4 is shown as PHe (f). The operating frequency of the trap is 10 Hz (i.e. 100 ms). "
Fig 3
TOF mass spectra for the reactions of Au+ with (a) He, (b) 0.5% CH4 seeded in He, (c) 5.0% CH4 seeded in He, and (d) 2.0% CD4 seeded in He in the DT-IF reactor at the drift pressure about 100 Pa. TOF mass spectrum for the reaction of Au+ with CH4 in the ion trap reactor was shown in (e). The insets in panels (a–d) show the amplified (by a factor of 20) ion signals for Mass between 210 and 220 a.m.u. In panel (e), the signal for Mass between 197.5 and 250 a.m.u. was amplified by a factor of 20."
Fig 4
TOF mass spectra for the reactions of Au+ with 5.0% CH4 seeded in 100 Pa He under UDT-IF values of 0 V (a), 30 V (b), 60 V (c), and 90 V (d). The GradDT, GradIF, and AmplIF were kept at 3.6 V·cm-1, 1.0 V·cm-1, and 66 Vp–p, respectively. The peaks labeled: 1, AuCH3+; 2, AuHCH4+; 3, AuH2O+; 4, AuH3O+; 5, AuC2H2+; 6, AuC2H5+; 7, Au(CH4)(H2O)+; 8, Au(H2O)2+; 9, AuC3H5+; 10, Au(C2H4)(CH4)+; and 11, Au(C2H4)(H2O)+. "
Fig 5
Distribution of center-of-mass collisional energies (Ec) between Au+ and CH4 with respect to the relative positions of the ions along the axis of the DF-IF reactor at the UDT-IF values of 0 V (a), 30 V (b), 60 V (c), and 90 V (d). In the ion trajectory simulations to determine the Ec values, the GradDT, GradIF, and AmplIF were kept at 3.6 V·cm-1, 1.0 V·cm-1, and 66 Vp-p, respectively. Color scale represents the number of collisions within 1 mm interval along the axis of the reactor. The dashed lines denote the region between the rear electrode of DT and the head electrode of IF."
Fig 7
TPSS calculated potential energy profiles for the reaction of Au+ with two CH4 to generate AuC2H4+ and two H2 molecules involving Au-CH2 (a) and Au-CH3 (b) as the intermediates. The relative energies of AuCH2+ + H2 + CH4 (1'), AuCH3+ + H + CH4 (2'), and AuH+ + CH3 + CH4 (3') are also shown for comparison. The zero-point energy corrected energies of IMs, TSs, and products with respect to the separated reactants are given in eV. Some bond lengths are given in pm. For comparison, the B3LYP/6-311+G(d)/SDD calculated energies for species in 1-4, 3/4 and 1'–3' are shown in the parentheses."
1 |
Lunsford J. H. Catal. Today 2000, 63, 165.
doi: 10.1016/s0920-5861(00)00456-9 |
2 |
Caballero A. ; Pérez P. J. Chem. Soc. Rev. 2013, 42, 8809.
doi: 10.1039/c3cs60120j |
3 |
Saha D. ; Grappe H. A. ; Chakraborty A. ; Orkoulas G. Chem. Rev. 2016, 116, 11436.
doi: 10.1021/acs.chemrev.5b00745 |
4 |
Ismagilov Z. R. ; Matus E. V. ; Tsikoza L. T. Energy Environ. Sci. 2008, 1, 526.
doi: 10.1039/b810981h |
5 |
Spivey J. J. ; Hutchings G. Chem. Soc. Rev. 2014, 43, 792.
doi: 10.1039/c3cs60259a |
6 |
Schwach P. ; Pan X. ; Bao X. Chem. Rev. 2017, 117, 8497.
doi: 10.1021/acs.chemrev.6b00715 |
7 |
Schwarz H. ; González-Navarrete P. ; Li J. ; Schlangen M. ; Sun X. ; Weiske T. ; Zhou S. Organometallics 2017, 36, 8.
doi: 10.1021/acs.organomet.6b00372 |
8 |
Ding X.-L. ; Wu X.-N. ; Zhao Y.-X. ; He S.-G. Acc. Chem. Res. 2012, 45, 382.
doi: 10.1021/ar2001364 |
9 |
Feyel S. ; Döbler J. ; Schröder D. ; Sauer J. ; Schwarz H. Angew. Chem. Int. Ed. 2006, 45, 4681.
doi: 10.1002/anie.200600188 |
10 |
Harding D. J. ; Kerpal C. ; Meijer G. ; Fielicke A. Angew. Chem. Int. Ed. 2012, 51, 817.
doi: 10.1002/anie.201107042 |
11 |
Lang S. M. ; Frank A. ; Bernhardt T. M. J. Phys. Chem. C 2013, 117, 9791.
doi: 10.1021/jp312852r |
12 |
Canale V. ; Zavras A. ; Khairallah G. N. ; d'Alessandro N. ; O'Hair R. A. J. Eur. J. Mass Spectrom. 2015, 21, 557.
doi: 10.1255/ejms.1332 |
13 |
Lang S. M. ; Bernhardt T. M. ; Chernyy V. ; Bakker J. M. ; Barnett R. N. ; Landman U. Angew. Chem. Int. Ed. 2017, 56, 13406.
doi: 10.1002/anie.201706009 |
14 |
Caballero A. ; Despagnet-Ayoub E. ; Díaz-Requejo M. M. ; Díaz-Rodríguez A. ; González-Núñez M. E. ; Mello R. ; Muñoz B. K. ; Ojo W. S. ; Asensio G. ; Etienne M. ; et al Science 2011, 332, 835.
doi: 10.1126/science.1204131 |
15 |
Guo X. ; Fang G. ; Li G. ; Ma H. ; Fan H. ; Yu L. ; Ma C. ; Wu X. ; Deng D. ; Wei M. ; et al Science 2014, 344, 616.
doi: 10.1126/science.1253150 |
16 |
Sushkevich V. L. ; Palagin D. ; Ranocchiari M. ; van Bokhoven J. A. Science 2017, 356, 523.
doi: 10.1126/science.aam9035 |
17 |
Tonkyn R. ; Ronan M. ; Weisshaar J. C. J. Phys. Chem. 1988, 92, 92.
doi: 10.1021/j100312a022 |
18 |
Irikura K. K. ; Beauchamp J. L. J. Phys. Chem. 1991, 95, 8344.
doi: 10.1021/j100174a057 |
19 |
Irikura K. K. ; Beauchamp J. L. J. Am. Chem. Soc. 1991, 113, 2769.
doi: 10.1021/ja00007a070 |
20 |
Cornehl H. H. ; Heinemann C. ; Schröder D. ; Schwarz H. Organometallics 1995, 14, 992.
doi: 10.1021/om00002a053 |
21 |
Schwarz H. ; Schröder D. Pure Appl. Chem. 2000, 72, 2319.
doi: 10.1351/pac200072122319 |
22 |
Shayesteh A. ; Lavrov V. V. ; Koyanagi G. K. ; Bohme D. K. J. Phys. Chem. A 2009, 113, 5602.
doi: 10.1021/jp900671c |
23 |
van Koppen P. A. M. ; Kemper P. R. ; Bushnell J. E. ; Bowers M. T. J. Am. Chem. Soc. 1995, 117, 2098.
doi: 10.1021/ja00112a026 |
24 |
Sunderlin L. S. ; Armentrout P. B. J. Am. Chem. Soc. 1989, 111, 3845.
doi: 10.1021/ja00193a015 |
25 |
Haynes C. L. ; Chen Y.-M. ; Armentrout P. B. J. Phys. Chem. 1995, 99, 9110.
doi: 10.1021/j100022a024 |
26 |
Armentrout P. B. ; Chen Y.-M. Int. J. Mass Spectrom. 2017, 413, 135.
doi: 10.1016/j.ijms.2016.05.003 |
27 |
Li F.-X. ; Armentrout P. B. J. Chem. Phys. 2006, 125, 133114.
doi: 10.1063/1.2220038 |
28 |
Zhou S. ; Li J. ; Wu X.-N. ; Schlangen M. ; Schwarz H. Angew. Chem. Int. Ed. 2016, 55, 441.
doi: 10.1002/anie.201509320 |
29 |
Karakaya C. ; Kee R. J. Prog. Energy Combust. Sci. 2016, 55, 60.
doi: 10.1016/j.pecs.2016.04.003 |
30 |
Tomkins P. ; Ranocchiari M. ; van Bokhoven J. A. Acc. Chem. Res. 2017, 50, 418.
doi: 10.1021/acs.accounts.6b00534 |
31 |
Sun K. ; Ginosar D. M. ; He T. ; Zhang Y. ; Fan M. ; Chen R. Ind. Eng. Chem. Res. 2018, 57, 1768.
doi: 10.1021/acs.iecr.7b04707 |
32 |
Geusic M. E. ; Morse M. D. ; O'Brien S. C. ; Smalley R. E. Rev. Sci. Instrum. 1985, 56, 2123.
doi: 10.1063/1.1138381 |
33 |
Smith D. ; Španěl P. Mass Spectrom. Rev. 2005, 24, 661.
doi: 10.1002/mas.20033 |
34 |
Melko J. J. ; Ard S. G. ; Shuman N. S. ; Pedder R. E. ; Taormina C. R. ; Viggiano A. A. Rev. Sci. Instrum. 2015, 86, 084101.
doi: 10.1063/1.4927716 |
35 |
McDonald D. C. ; Sweeny B. C. ; Ard S. G. ; Melko J. J. ; Ruliffson J. E. ; White M. C. ; Viggiano A. A. ; Shuman N. S. J. Phys. Chem. A 2018, 122, 6655.
doi: 10.1021/acs.jpca.8b02513 |
36 |
Gronert S. Mass Spectrom. Rev. 2005, 24, 100.
doi: 10.1002/mas.20008 |
37 |
Douglas D. J. ; Frank A. J. ; Mao D. Mass Spectrom. Rev. 2005, 24, 1.
doi: 10.1002/mas.20004 |
38 |
Nibbering N. M. M. Acc. Chem. Res. 1990, 23, 279.
doi: 10.1021/ar00177a003 |
39 |
Teloy E. ; Gerlich D. Chem. Phys. 1974, 4, 417.
doi: 10.1016/0301-0104(74)85008-1 |
40 |
Armentrout P. B. ; Beauchamp J. L. Acc. Chem. Res. 1989, 22, 315.
doi: 10.1021/ar00165a004 |
41 |
May J. C. ; McLean J. A. Anal. Chem. 2015, 87, 1422.
doi: 10.1021/ac504720m |
42 |
Lanucara F. ; Holman S. W. ; Gray C. J. ; Eyers C. E. Nat. Chem. 2014, 6, 281.
doi: 10.1038/nchem.1889 |
43 |
Zhan X. ; Duan J. ; Duan Y. Mass Spectrom. Rev. 2013, 32, 143.
doi: 10.1002/mas.21357 |
44 |
Yuan B. ; Koss A. R. ; Warneke C. ; Coggon M. ; Sekimoto K. ; de Gouw J. A. Chem. Rev. 2017, 117, 13187.
doi: 10.1021/acs.chemrev.7b00325 |
45 |
Kučera M. ; Stano M. ; Wnorowska J. ; Barszczewska W. ; Loffhagen D. ; Matejčík Š. Eur. Phys. J. D 2013, 37, 234.
doi: 10.1140/epjd/e2013-40401-2 |
46 |
Gao H. ; Niu W. ; Huang C. ; Hong Y. ; Shen C. ; Wang H. ; Lu Y. ; Chen X. ; Xia L. ; Jiang H. ; Chu Y. Int. J. Mass spectrom. 2015, 376, 1.
doi: 10.1016/j.ijms.2014.11.001 |
47 |
Kemper P. R. ; Bowers M. T. J. Am. Soc. Mass. Spectrom. 1990, 1, 197.
doi: 10.1016/1044-0305(90)85036-l |
48 |
Backe H. ; Dretzke A. ; Horn R. ; Kolb T. ; Lauth W. ; Repnow R. ; Sewtz M. ; Trautmann N. Hyperfine Interact. 2006, 162, 77.
doi: 10.1007/s10751-005-9210-4 |
49 |
Wyttenbach T. ; Kemper P. R. ; Bowers M. T. Int. J. Mass Spectrom. 2001, 212, 13.
doi: 10.1016/s1387-3806(01)00517-6 |
50 |
Tang K. ; Shvartsburg A. A. ; Lee H. N. ; Prior D. C. ; Buschbach M. A. ; Li F. ; Tolmachev A. V. ; Anderson G. A. ; Smith R. D. Anal. Chem. 2005, 77, 3330.
doi: 10.1021/ac048315a |
51 |
Koeniger S. L. ; Merenbloom S. I. ; Valentine S. J. ; Jarrold M. F. ; Udseth H. R. ; Smith R. D. ; Clemmer D. E. Anal. Chem. 2006, 78, 4161.
doi: 10.1021/ac051060w |
52 |
Kelly R. T. ; Tolmachev A. V. ; Page J. S. ; Tang K. ; Smith R. D. Mass Spectrom. Rev. 2010, 29, 294.
doi: 10.1002/mas.20232 |
53 |
Shi L. ; Holliday A. E. ; Bohrer B. C. ; Kim D. ; Servage K. A. ; Russell D. H. ; Clemmer D. E. J. Am. Soc. Mass. Spectrom. 2016, 27, 1037.
doi: 10.1007/s13361-016-1372-6 |
54 |
Wagner N. D. ; Clemmer D. E. ; Russell D. H. Anal. Chem. 2017, 89, 10094.
doi: 10.1021/acs.analchem.7b02932 |
55 |
Yuan Z. ; Liu Q.-Y. ; Li X.-N. ; He S.-G. Int. J. Mass Spectrom. 2016, 407, 62.
doi: 10.1016/j.ijms.2016.07.004 |
56 |
Li F.-X. ; Gorham K. ; Armentrout P. B. J. Phys. Chem. A 2010, 114, 11043.
doi: 10.1021/jp100566t |
57 |
Zhao Y. X. ; Li Z. Y. ; Yuan Z. ; Li X. N. ; He S. G. Angew. Chem. Int. Ed. 2014, 53, 9482.
doi: 10.1002/anie.201403953 |
58 |
Yuan Z. ; Li Z.-Y. ; Zhou Z.-X. ; Liu Q.-Y. ; Zhao Y.-X. ; He S.-G. J. Phys. Chem. C 2014, 118, 14967.
doi: 10.1021/jp5040344 |
59 | SIMION® Version 8.1. Scientific Instrument Services, Inc.TM 2011. |
60 | Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, Revision A.01; Gaussian Inc.: Wallingford, CT, USA, 2009. |
61 |
Tao J. ; Perdew J. P. ; Staroverov V. N. ; Scuseria G. E. Phys. Rev. Lett. 2003, 91, 146401.
doi: 10.1103/PhysRevLett.91.146401 |
62 |
Li Z.-Y. ; Li H.-F. ; Zhao Y.-X. ; He S.-G. J. Am. Chem. Soc. 2016, 138, 9437.
doi: 10.1021/jacs.6b03940 |
63 |
Meng J.-H. ; He S.-G. J. Phys. Chem. Lett. 2014, 5, 3890.
doi: 10.1021/jz502057n |
64 |
Kanai Y. ; Wang X. ; Selloni A. ; Car R. J. Chem. Phys. 2006, 125, 234104.
doi: 10.1063/1.2403861 |
65 |
Krishnan R. ; Binkley J. S. ; Seeger R. ; Pople J. A. J. Chem. Phys. 1980, 72, 650.
doi: 10.1063/1.438955 |
66 |
Andrae D. ; Häuϐermann U. ; Dolg M. ; Stoll H. ; Preuϐ H. Theor. Chim. Acta 1990, 77, 123.
doi: 10.1007/bf01114537 |
67 |
Schlegel H. B. J. Comput. Chem. 1982, 3, 214.
doi: 10.1002/jcc.540030212 |
68 |
Berente I. ; Náray-Szabó G. J. Phys. Chem. A 2006, 110, 772.
doi: 10.1021/jp054116z |
69 |
Gonzalez C. ; Schlegel H. B. J. Chem. Phys. 1989, 90, 2154.
doi: 10.1063/1.456010 |
70 |
Gonzalez C. ; Schlegel H. B. J. Phys. Chem. 1990, 94, 5523.
doi: 10.1021/j100377a021 |
71 |
Zhang T. ; Li Z.-Y. ; Zhang M.-Q. ; He S.-G. J. Phys. Chem. A 2016, 120, 4285.
doi: 10.1021/acs.jpca.6b03836 |
72 |
Lang S. M. ; Bernhardt T. M. ; Barnett R. N. ; Landman U. Angew. Chem. Int. Ed. 2010, 49, 980.
doi: 10.1002/anie.200905643 |
[1] | 滕浩天, 王文涛, 韩晓峰, 郝翔, 杨瑞枝, 田景华. 柔性锌-空气电池进展与展望[J]. 物理化学学报, 2023, 39(1): 2107017 -0 . |
[2] | 吴明亮, 章烨晖, 付战照, 吕之阳, 李强, 王金兰. 原子尺度钴基氮碳催化剂对析氧反应的构效关系的研究[J]. 物理化学学报, 2023, 39(1): 2207007 -0 . |
[3] | 朱迎迎, 王勇, 徐淼, 吴勇民, 汤卫平, 朱地, 何雨石, 马紫峰, 李林森. 追踪锂金属负极的压力与形貌变化[J]. 物理化学学报, 2023, 39(1): 2110040 -0 . |
[4] | 张则尧, 姚艺希, 李彦. FeCo/MgO催化生长体相单壁碳纳米管的直径调控[J]. 物理化学学报, 2022, 38(8): 2101055 - . |
[5] | 沈荣晨, 郝磊, 陈晴, 郑巧清, 张鹏, 李鑫. 高分散Co0.2Ni1.6Fe0.2P助催化剂改性P掺杂g-C3N4纳米片高效光催化析氢的研究[J]. 物理化学学报, 2022, 38(7): 2110014 - . |
[6] | 熊壮, 侯乙东, 员汝胜, 丁正新, 王伟俊, 汪思波. 空心NiCo2S4纳米球助催化剂担载ZnIn2S4纳米片用于可见光催化制氢[J]. 物理化学学报, 2022, 38(7): 2111021 - . |
[7] | 朱思颖, 李辉阳, 胡忠利, 张桥保, 赵金保, 张力. 锂离子电池氧化亚硅负极结构优化和界面改性研究进展[J]. 物理化学学报, 2022, 38(6): 2103052 - . |
[8] | 张威, 梁海琛, 朱科润, 田泳, 刘瑶, 陈佳音, 李伟. 三维大孔/介孔碳-碳化钛复合材料用于无枝晶锂金属负极[J]. 物理化学学报, 2022, 38(6): 2105024 - . |
[9] | 刘弘禹, 孟钢, 邓赞红, 李蒙, 常鋆青, 代甜甜, 方晓东. VOCs分子的半导体型传感器识别检测研究进展[J]. 物理化学学报, 2022, 38(5): 2008018 - . |
[10] | 卢岳, 葛杨, 隋曼龄. 紫外光辐照下CH3NH3PbI3基钙钛矿太阳能电池失效机制[J]. 物理化学学报, 2022, 38(5): 2007088 - . |
[11] | 叶成玉, 郁晓菲, 李文翠, 贺雷, 郝广平, 陆安慧. 磷化镍@镍-氮-碳双功能催化剂电还原CO2-H2O制合成气[J]. 物理化学学报, 2022, 38(4): 2004054 - . |
[12] | 戴久翔, 龚忠苗, 徐诗彤, 崔义, 姚美意. 锆合金初始氧化行为的原位近常压XPS研究[J]. 物理化学学报, 2022, 38(3): 2003026 - . |
[13] | 程熠, 王坤, 亓月, 刘忠范. 石墨烯纤维材料的化学气相沉积生长方法[J]. 物理化学学报, 2022, 38(2): 2006046 - . |
[14] | 杨艳, 何博文, 马华隆, 杨森, 任州宏, 秦天, 卢发贵, 任力闻, 张熠霄, 王天富, 刘晰, 陈立桅. PtRuAgCoNi高熵合金纳米颗粒高效电催化氧化5-羟甲基糠醛[J]. 物理化学学报, 2022, 38(12): 2201050 - . |
[15] | 何子旭, 陈亚威, 黄凡洋, 揭育林, 李新鹏, 曹瑞国, 焦淑红. 氟代溶剂在锂金属电池中的应用[J]. 物理化学学报, 2022, 38(11): 2205005 - . |
|