物理化学学报 >> 2020, Vol. 36 >> Issue (7): 1907011.doi: 10.3866/PKU.WHXB201907011
所属专题: 纳米复合材料
刘冬梅,陈秀梅,袁泽,闾敏,殷丽莎*(),谢小吉*(
),黄岭
收稿日期:
2019-07-01
录用日期:
2019-07-26
发布日期:
2020-03-21
通讯作者:
殷丽莎,谢小吉
E-mail:iamlsyin@njtech.edu.cn;iamxjxie@njtech.edu.cn
基金资助:
Dongmei Liu,Xiumei Chen,Ze Yuan,Min Lu,Lisha Yin*(),Xiaoji Xie*(
),Ling Huang
Received:
2019-07-01
Accepted:
2019-07-26
Published:
2020-03-21
Contact:
Lisha Yin,Xiaoji Xie
E-mail:iamlsyin@njtech.edu.cn;iamxjxie@njtech.edu.cn
Supported by:
摘要:
制备如异质核-壳结构等不同结构的镧系离子掺杂的上转换纳米材料对上转换纳米材料的基本性质研究及应用至关重要。在本工作中,我们采用简单的共沉淀方法在NaGdF4:Yb/Tm上转换纳米粒子表面包覆了无定形的Y(OH)CO3壳层。通过透射电子显微镜,X射线衍射,能量色散X射线荧光光谱等物理表征手段研究了所得纳米粒子的结构和形貌,结果表明Y(OH)CO3壳层可以在300 ℃附近转化形成YOF,形成异质核-壳结构。同时,初步研究结果显示该方法也可拓展用于其他无定形壳层的包覆及蛋黄-蛋壳结构纳米粒子的制备。这些结果表明这种方法在制备不同结构的上转换纳米材料方面有良好的应用前景。
MSC2000:
刘冬梅,陈秀梅,袁泽,闾敏,殷丽莎,谢小吉,黄岭. 上转换纳米粒子的Y(OH)CO3壳层包覆及壳层转化[J]. 物理化学学报, 2020, 36(7): 1907011.
Dongmei Liu,Xiumei Chen,Ze Yuan,Min Lu,Lisha Yin,Xiaoji Xie,Ling Huang. Coating and Transforming the Y(OH)CO3 Shell on Upconversion Nanoparticles[J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1907011.
Fig 1
(a) TEM image of the as-synthesized NaGdF4:Yb/Tm (49/1 mol%) upconversion nanoparticles with oleic acid ligands. (b) High resolution TEM image of a NaGdF4:Yb/Tm nanoparticle shown in (a) (upper panel) and corresponding Fourier transform diffraction pattern (lower panel). (c, d) TEM and dark-field STEM images of the NaGdF4:Yb/Tm@Y(OH)CO3 core-shell nanoparticles, respectively. (e–i) Corresponding elemental mapping of the core-shell nanoparticles shown in (d). Scale bars are 50 nm for panels (d–i). Note that the element maps of (e, h) are overlapped with the STEM image for comparison. (j) XRD patterns of the oleic acid capped NaGdF4:Yb/Tm nanoparticles, Y(OH)CO3, and NaGdF4:Yb/Tm@Y(OH)CO3 core-shell nanoparticles. Note that the diffraction pattern at the bottom of (j) is the literature reference for hexagonal NaGdF4 crystals (JCPDS 27-0699)."
Fig 2
Upconversion luminescence spectrum of the powder of NaGdF4:Yb/Tm@Y(OH)CO3 core-shell nanoparticles under a 980 nm laser excitation. Note that the peak marked by asterisk at ~490 nm should be due to the scattering of excitation laser. The insets in the figure are photos of the core-shell nanoparticle powder under daylight (left) and the excitation of a 980 nm laser (right)."
Fig 3
(a) Thermogravimetric analysis curves of Y(OH)CO3, ligand-free NaGdF4:Yb/Tm and NaGdF4:Yb/Tm@Y(OH)CO3 core-shell nanoparticles. (b–d) Dark-field STEM images of the NaGdF4:Yb/Tm@Y(OH)CO3 core-shell nanoparticles after heated at (b, d) 300 and (c) 350 ℃, respectively. (e–i) Corresponding elemental mapping of the nanoparticles shown in (d). Scale bars are 50 nm for panels (d–i). Note that the element maps of (e, h) are overlapped with the STEM image for comparison."
Fig 4
XRD patterns of the NaGdF4:Yb/Tm@Y(OH)CO3 core-shell nanoparticles after heated at 300 and 350 ℃ for 3 h. Note that the diffraction patterns at the top and bottom are the literature references for hexagonal NaGdF4 (JCPDS 27-0699) and YOF (JCPDS 25-1012) crystals, respectively. (b, c) High resolution TEM images (left panel) and corresponding Fourier transform diffraction patterns (right panel) of the shell layer of the core-shell nanoparticles after treated at (b) 300 ℃ and (c) 350 ℃ for 3 h, respectively."
1 |
Dong H. ; Du S. R. ; Zheng X. Y. ; Lyu G. M. ; Sun L. D. ; Li L. D. ; Zhang P. Z. ; Zhang C. ; Yan C. H Chem. Rev. 2015, 115, 10725.
doi: 10.1021/acs.chemrev.5b00091 |
2 |
Chen S. ; Weitemier A. Z. ; Zeng X. ; He L. ; Wang X. ; Tao Y. ; Huang A. J. Y. ; Hashimotodani Y. ; Kano M. ; Iwasaki H. ; et al Science 2018, 359, 679.
doi: 10.1126/science.aaq1144 |
3 |
Feng Y. ; Yang C. ; Fang W. ; Huang B. ; Shao Q. ; Huang X Nano Energy 2019, 58, 234.
doi: 10.1016/j.nanoen.2019.01.036 |
4 |
Bu L. ; Zhang N. ; Guo S. ; Zhang X. ; Li J. ; Yao J. ; Wu T. ; Lu G. ; Ma J. Y. ; Su D. ; et al Science 2016, 354, 1410.
doi: 10.1126/science.aah6133 |
5 |
Yuan Z. ; Zhang L. ; Li S. ; Zhang W. ; Lu M. ; Pan Y. ; Xie X. ; Huang L. ; Huang W J. Am. Chem. Soc. 2018, 140, 15507.
doi: 10.1021/jacs.8b10122 |
6 |
Fan Y. ; Liu L. ; Zhang F Nano Today 2019, 25, 68.
doi: 10.1016/j.nantod.2019.02.009 |
7 |
Chaudhuri G. R. ; Paria S Chem. Rev. 2012, 112, 2373.
doi: 10.1021/cr100449n |
8 |
Hudry D. ; Howard I. A. ; Popescu R. ; Gerthsen D. ; Richards B. S Adv. Mater. 2019, 31, 1900623.
doi: 10.1002/adma.201900623 |
9 |
Chen G. ; Ågren H. ; Ohulchanskyy T. Y. ; Prasad P. N Chem. Soc. Rev. 2015, 44, 1680.
doi: 10.1039/C4CS00170B |
10 |
Chen X. ; Peng D. ; Ju Q. ; Wang F Chem. Soc. Rev. 2015, 44, 1318.
doi: 10.1039/C4CS00151F |
11 |
Yu S. ; Tu D. ; Lian W. ; Xu J. ; Chen X Sci. China Mater. 2019, 62, 1071.
doi: 10.1007/s40843-019-9414-4 |
12 |
Zhou B. ; Shi B. ; Jin D. ; Liu X Nat. Nanotechnol. 2015, 10, 924.
doi: 10.1038/nnano.2015.251 |
13 |
Yang D. ; Ma P. ; Hou Z. ; Cheng Z. ; Li C. ; Lin J Chem. Soc. Rev. 2015, 44, 1416.
doi: 10.1039/C4CS00155A |
14 |
Lyu L. ; Cheong H. ; Ai X. ; Zhang W. ; Li J. ; Yang H. H. ; Lin J. ; Xing B NPG Asia Mater. 2018, 10, 685.
doi: 10.1038/s41427-018-0065-y |
15 |
Zhang Z. ; Shikha S. ; Liu J. ; Zhang J. ; Mei Q. ; Zhang Y Anal. Chem. 2019, 91, 548.
doi: 10.1021/acs.analchem.8b04049 |
16 |
Hirsh D. A. ; Johnson N. J. J. ; van Veggel F. C. J. M. ; Schurko R. W Chem. Mater. 2015, 27, 6495.
doi: 10.1021/acs.chemmater.5b01986 |
17 |
Bai H. R. ; Fan H. H. ; Zhang X. B. ; Chen Z. ; Tan W. H Acta Phys. -Chim. Sin. 2018, 34, 348.
doi: 10.3866/PKU.WHXB201708311 |
白华荣; 范换换; 张晓兵; 陈卓; 谭蔚泓. 物理化学学报, 2018, 34, 348.
doi: 10.3866/PKU.WHXB201708311 |
|
18 |
Arboleda C. ; He S. ; Stubelius A. ; Johnson N. J. J. ; Almutairi A Chem. Mater. 2019, 31, 3103.
doi: 10.1021/acs.chemmater.8b04057 |
19 |
Zhao H. ; Xia J. ; Yin D. ; Luo M. ; Yan C. ; Du Y Coord. Chem. Rev. 2019, 390, 32.
doi: 10.1016/j.ccr.2019.03.011 |
20 |
Cui C. ; Tou M. ; Li M. ; Luo Z. ; Xiao L. ; Bai S. ; Li Z Inorg. Chem. 2017, 56, 2328.
doi: 10.1021/acs.inorgchem.6b03079 |
21 |
Tang Y. ; Di W. ; Zhai X. ; Yang R. ; Qin W ACS Catal. 2013, 3, 405.
doi: 10.1021/cs300808r |
22 |
Li Y. ; Di Z. ; Gao J. ; Cheng P. ; Di C. ; Zhang G. ; Liu B. ; Shi X. ; Sun L. D. ; Li L. ; et al J. Am. Chem. Soc. 2017, 139, 13804.
doi: 10.1021/jacs.7b07302 |
23 |
Xu J. ; Xu L. ; Wang C. ; Yang R. ; Zhuang Q. ; Han X. ; Dong Z. ; Zhu W. ; Peng R. ; Liu Z ACS Nano 2017, 11, 4463.
doi: 10.1021/acsnano.7b00715 |
24 |
Feng L. ; He F. ; Dai Y. ; Gai S. ; Zhong C. ; Li C. ; Yang P Biomater. Sci. 2017, 5, 2456.
doi: 10.1039/C7BM00798A |
25 |
Chen J. ; Zhang D. ; Zou Y. ; Wang Z. ; Hao M. ; Zheng M. ; Xue X. ; Pan X. ; Lu Y. ; Wang J. ; et al J. Mater. Chem. B 2018, 6, 7862.
doi: 10.1039/C8TB02213E |
26 |
Dong H. ; Sun L. D. ; Li L. D. ; Si R. ; Liu R. ; Yan C. H J. Am. Chem. Soc. 2017, 139, 18492.
doi: 10.1021/jacs.7b11836 |
27 |
Su Q. ; Feng W. ; Yang D. ; Li F Acc. Chem. Res. 2017, 50, 32.
doi: 10.1021/acs.accounts.6b00382 |
28 |
Zuo J. ; Sun D. ; Tu L. ; Wu Y. ; Cao Y. ; Xue B. ; Zhang Y. ; Chang Y. ; Liu X. ; Kong X. ; et al Angew. Chem. Int. Ed. 2018, 57, 3054.
doi: 10.1002/anie.201711606 |
29 |
Lay A. ; Siefe C. ; Fischer S. ; Mehlenbacher R. D. ; Ke F. ; Mao W. L. ; Alivisatos A. P. ; Goodman M. B. ; Dionne J. A Nano Lett. 2018, 18, 4454.
doi: 10.1021/acs.nanolett.8b01535 |
30 |
Yang G. ; Yang D. ; Yang P. ; Lv R. ; Li C. ; Zhong C. ; He F. ; Gai S. ; Lin J Chem. Mater. 2015, 27, 7957.
doi: 10.1021/acs.chemmater.5b03136 |
31 |
Tou M. ; Luo Z. ; Bai S. ; Liu F. ; Chai Q. ; Li S. ; Li Z Mater. Sci. Eng. C 2017, 70, 1141.
doi: 10.1016/j.msec.2016.03.038 |
32 |
Zhang F. ; Braun G. B. ; Pallaoro A. ; Zhang Y. ; Shi Y. ; Cui D. ; Moskovits M. ; Zhao D. ; Stucky G. D Nano Lett. 2012, 12, 61.
doi: 10.1021/nl202949y |
33 |
Wang W. ; Zhao M. ; Zhang C. ; Qian H Chem. Rec. 2019, 19
doi: 10.1002/tcr.201900006 |
34 |
Chen G. ; Qiu H. ; Prasad P. N. ; Chen X Chem. Rev. 2014, 114, 5161.
doi: 10.1021/cr400425h |
35 |
Liu K. C. ; Zhang Z. Y. ; Shan C. X. ; Feng Z. Q. ; Li J. S. ; Song C. L. ; Bao Y. N. ; Qi X. H. ; Dong B Light Sci. Appl. 2016, 5, e16136.
doi: 10.1038/lsa.2016.136 |
36 |
Wang Y. ; Yang G. ; Wang Y. ; Zhao Y. ; Jiang H. ; Han Y. ; Yang P Nanoscale 2017, 9, 4759.
doi: 10.1039/C6NR09030C |
37 |
Wang F. ; Liu X Acc. Chem. Res. 2014, 47, 1378.
doi: 10.1021/ar5000067 |
38 |
Cheng X. ; Pan Y. ; Yuan Z. ; Wang X. ; Su W. ; Yin L. ; Xie X. ; Huang L Adv. Funct. Mater. 2018, 28, 1800208.
doi: 10.1002/adfm.201800208 |
39 |
Yan C. ; Dadvand A. ; Rosei F. ; Perepichka D. F J. Am. Chem. Soc. 2010, 132, 8868.
doi: 10.1021/ja103743t |
40 |
Zhang F. ; Wang W. ; Cong H. ; Luo L. ; Zha Z. ; Qian H Part. Part. Syst. Charact. 2017, 34, 1600222.
doi: 10.1002/ppsc.201600222 |
41 |
Ling X. ; Shi R. ; Zhang J. ; Liu D. ; Weng M. ; Zhang C. ; Lu M. ; Xie X. ; Huang L. ; Huang W ACS Sens. 2018, 3, 1683.
doi: 10.1021/acssensors.8b00368 |
42 |
Xu Z. ; Ma P. ; Li C. ; Hou Z. ; Zhai X. ; Huang S. ; Lin J Biomaterials 2011, 32, 4161.
doi: 10.1016/j.biomaterials.2011.02.026 |
43 |
Lv C. ; Di W. ; Liu Z. ; Zheng K. ; Qin W Dalton Trans. 2014, 43, 3681.
doi: 10.1039/c3dt53213e |
[1] | 郑超, 刘阿强, 毕成浩, 田建军. SCN掺杂提高CsPbI3胶体量子点的稳定性和光探测性能[J]. 物理化学学报, 2021, 37(4): 2007084 -0 . |
[2] | 纪军, 刘新, 黄浩, 蒋皓然, 段明君, 刘本玉, 崔鹏, 李英峰, 李美成. 钙钛矿同质结太阳电池研究进展[J]. 物理化学学报, 2021, 37(4): 2008095 -0 . |
[3] | 邹广锐兴, 陈梓铭, 黎振超, 叶轩立. 蓝光钙钛矿发光二极管:机遇与挑战[J]. 物理化学学报, 2021, 37(4): 2009002 -0 . |
[4] | 吕培梁, 高彩芸, 孙秀红, 孙明亮, 邵志鹏, 逄淑平. 基于易升华添加剂辅助合成纯相富铯CH(NH2)2)xCs1−xPbI3钙钛矿[J]. 物理化学学报, 2021, 37(4): 2009036 -0 . |
[5] | 苏岳锋, 张其雨, 陈来, 包丽颖, 卢赟, 陈实, 吴锋. ZrO2包覆高镍LiNi0.8Co0.1Mn0.1O2正极材料提高其循环稳定性的作用机理[J]. 物理化学学报, 2021, 37(3): 2005062 -0 . |
[6] | 周远, 韩娜, 李彦光. 钯基纳米材料电化学还原二氧化碳研究进展[J]. 物理化学学报, 2020, 36(9): 2001041 -0 . |
[7] | 李蒙刚, 夏仲泓, 黄雅荣, 陶璐, 晁玉广, 尹坤, 杨文秀, 杨微微, 于永生, 郭少军. 具有优异甲醇耐受性的Rh掺杂PdCu有序金属间化合物纳米粒子增强氧还原电催化[J]. 物理化学学报, 2020, 36(9): 1912049 -0 . |
[8] | 张建, 王亮, 伍芷毅, 王成涛, 苏泽瑞, 肖丰收. 理性设计核-壳Rh@沸石催化材料用于二烯烃选择加氢反应[J]. 物理化学学报, 2020, 36(9): 1912001 -0 . |
[9] | 张超, 李思汉, 吴辰亮, 李小青, 严新焕. Pt@Au/Al2O3核壳纳米粒子的制备和表征及其在催化氧化甲苯中的应用[J]. 物理化学学报, 2020, 36(8): 1907057 -0 . |
[10] | 方波,冯立纲. 纳米颗粒结合ZIF-67衍生的PtCo-NC催化剂用于醇类燃料电氧化[J]. 物理化学学报, 2020, 36(7): 1905023 -0 . |
[11] | 苗静,郭睿凤,刘志宏. BaO∙4B2O3∙5H2O纳米材料的制备及其对聚丙烯阻燃性能的热分解动力学方法评价[J]. 物理化学学报, 2020, 36(6): 1905052 -0 . |
[12] | 张若兰,王超,陈浩,赵恒,刘婧,李昱,苏宝连. 硫化镉反蛋白石光子晶体制备及光解水制氢[J]. 物理化学学报, 2020, 36(3): 1803014 -0 . |
[13] | 王亦清,沈少华. 非金属掺杂石墨相氮化碳光催化的研究进展与展望[J]. 物理化学学报, 2020, 36(3): 1905080 -0 . |
[14] | 王易,霍旺晨,袁小亚,张育新. 二氧化锰与二维材料复合应用于超级电容器[J]. 物理化学学报, 2020, 36(2): 1904007 -0 . |
[15] | 李亚民, 王阳, 陈弘达, 王毅军, 刘媛媛, 裴为华. 植入式光电极器件发展[J]. 物理化学学报, 2020, 36(12): 1912054 -0 . |
|