物理化学学报 >> 2020, Vol. 36 >> Issue (1): 1907012.doi: 10.3866/PKU.WHXB201907012
所属专题: 庆祝唐有祺院士百岁华诞专刊
收稿日期:
2019-07-01
录用日期:
2019-09-06
发布日期:
2019-09-20
通讯作者:
王哲明,高松
E-mail:zmw@pku.edu.cn;gaosong@pku.edu.cn
基金资助:
Sa Chen,Ran Shang,Bingwu Wang,Zheming Wang*(),Song Gao*(
)
Received:
2019-07-01
Accepted:
2019-09-06
Published:
2019-09-20
Contact:
Zheming Wang,Song Gao
E-mail:zmw@pku.edu.cn;gaosong@pku.edu.cn
Supported by:
摘要:
作为与传统纯无机钙钛矿材料互补的体系,有机-无机或杂化钙钛矿材料结合了有机和无机成分各自的特性,在相变、临界现象和相关功能性质的研究中展现了众多新的可能性和机会。其中,金属甲酸铵钙钛矿表现优越,且其功能和性质十分依赖于金属离子和铵的特性。本工作借助固体化学中的固溶体策略,研究各向异性磁稀释杂化钙钛矿[CH3NH3][CoxZn1-x(HCOO)3]系列的制备、结构和磁性。该系列的全程固溶体(x = 0–1或摩尔百分比Co% = 0–100%)都可以用溶液化学方法制备获得,并由单晶和粉末X射线衍射确定了固溶体全程同构。它们都属于正交晶系,空间群Pnma,晶胞参数范围为a = 8.3015(2)–8.3207(3) Å,b = 11.6574(4)–11.6811(5) Å,c = 8.1315(3)–8.1427(4) Å,V = 787.89(5)–790.98(7) Å3 (1 Å = 0.1 nm)。钙钛矿结构由金属-甲酸的简单立方阴离子骨架和骨架孔穴中的CH3NH3+阳离子构成,CH3NH3+阳离子和骨架之间形成N―H···O氢键。在这个系列中,固溶体晶体结构的点阵和结构参数几乎没有变化。因此,该系列提供了一个很好的在结构和分子几何参数不变的条件下研究磁稀释效应的分子磁性体系。在逐步稀释的过程中,Co2+离子的磁各向异性和逐渐消失的较大自旋倾斜的贡献,抑制或减少了在低温和低场下的磁化强度,这与各向同性[CH3NH3][MnxZn1-x(HCOO)3]体系在磁稀释时磁化强度增大的行为相反。实验获得的逾渗阈值为(Co%)P = 27(1)% (或xP = 0.27(1)),低于按逾渗理论得到的简单立方格子上的逾渗阈值31%,这也是由于[CH3NH3][CoxZn1-x(HCOO)3]体系磁各向异性的缘故。此外,观察到纯金属Co和Zn成员在约120 K左右发生少见的非公度相变。低温下的非公度性对于磁性质也产生一定的影响。
MSC2000:
陈洒,商冉,王炳武,王哲明,高松. 一个各向异性磁稀释杂化钙钛矿系列[CH3NH3][CoxZn1-x(HCOO)3][J]. 物理化学学报, 2020, 36(1): 1907012.
Sa Chen,Ran Shang,Bingwu Wang,Zheming Wang,Song Gao. An Anisotropic Diluted Magnetic Hybrid Perovskite Series of [CH3NH3][CoxZn1-x(HCOO)3][J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1907012.
Table 1
The brief crystallographic data for Co0, Co10, …, Co88, and Co100, all at 180 K, and in orthorhombic space group Pnma. In the last column the ranges for respective cell parameters are given."
Compound | Co0 | Co10 | Co19 | Co29 | Co40 | Co48 | Co59 | Co69 | Co78 | Co88 | Co100 | Cell para. range |
formula | C4H9NO6Zn | C4H9NO6Co0.10Zn0.90 | C4H9NO6Co0.19Zn0.81 | C4H9NO6Co0.29Zn0.71 | C4H9NO6Co0.40Zn0.60 | C4H9NO6Co0.48Zn0.52 | C4H9NO6Co0.59Zn0.41 | C4H9NO6Co0.69Zn0.31 | C4H9NO6Co0.78Zn0.22 | C4H9NO6Co0.88Zn0.12 | C4H9NO6Co | |
Mw | 232.49 | 231.85 | 231.24 | 230.60 | 229.93 | 229.38 | 228.68 | 228.04 | 227.48 | 226.81 | 226.05 | |
a/Å | 8.3194(4) | 8.3207(3) | 8.3141(3) | 8.3194(2) | 8.3119(3) | 8.3075(3) | 8.3191(4) | 8.3015(2) | 8.3031(3) | 8.3110(3) | 8.3039(4) | 8.3015–8.3207 |
b/Å | 11.6703(5) | 11.6774(4) | 11.6712(5) | 11.6753(3) | 11.6607(4) | 11.6574(4) | 11.6771(6) | 11.6721(2) | 11.6679(3) | 11.6811(5) | 11.6806(6) | 11.6574–11.6811 |
c/Å | 8.1368(4) | 8.1366(3) | 8.1315(3) | 8.1354(2) | 8.1331(3) | 8.1357(3) | 8.1424(4) | 8.1369(2) | 8.1353(3) | 8.1371(3) | 8.1427(4) | 8.1315–8.1427 |
α, β, γ /° | 90, 90, 90 | 90, 90, 90 | 90, 90, 90 | 90, 90, 90 | 90, 90, 90 | 90, 90, 90 | 90, 90, 90 | 90, 90, 90 | 90, 90, 90 | 90, 90, 90 | 90, 90, 90 | 90, 90, 90 |
V/Å3 | 790.00(6) | 790.59(5) | 789.04(5) | 790.20(3) | 788.28(5) | 787.89(5) | 790.98(7) | 788.43(3) | 788.15(5) | 789.96(5) | 789.80(7) | 787.89–790.98 |
no. total/uniq/obs. reflns. | 12168/1067/922 | 12298/1066/909 | 12079/1064/859 | 37029/1067/977 | 13719/1063/944 | 16363/1061/923 | 6392/1038/787 | 43147/1064/958 | 18977/1064/956 | 15198/1065/949 | 12454/1063/912 | |
R1, wR2 [I ≥ 2σ(I)] | 0.0179, 0.0475 | 0.0184, 0.0456 | 0.0216, 0.0514 | 0.0155, 0.0431 | 0.0172, 0.0462 | 0.0202, 0.0573 | 0.0261, 0.0569 | 0.0193, 0.0545 | 0.0189, 0.0531 | 0.0181, 0.0491 | 0.0192, 0.0480 | |
GOF | 1.002 | 1.003 | 0.998 | 0.998 | 1.001 | 1.001 | 0.999 | 0.998 | 1.002 | 0.999 | 1.003 |
Table 2
Selected molecular geometries, bond distances (Å) and bond angles (°), N―H…O hydrogen bonds (N…O distances, Å, and N―H…O angles, °) between the CH3NH3+ cation and the anionic framework, shortest C…O contacts (Å), and the M…M distances (Å) in the structures of Co0, Co10, …, Co88, and Co100. The variation ranges for all respective molecular geometries are summarized in the last column."
Compound | Co0 | Co10 | Co19 | Co29 | Co40 | Co48 | Co59 | Co69 | Co78 | Co88 | Co100 | Data variation range |
M―O | 2.0929(8)×2 2.1010(9)×2 2.1173(8)×2 | 2.0916(9)×2 2.101(1)×2 2.1167(9)×2 | 2.090(1)×2 2.100(1)×2 2.114(1)×2 | 2.0908(7)×2 2.1000(7)×2 2.1158(7)×2 | 2.0889(8)×2 2.0975(8)×2 2.1137(7)×2 | 2.0880(9)×2 2.0960(9)×2 2.1126(8)×2 | 2.090(1)×2 2.103(1)×2 2.117(1)×2 | 2.0881(8)×2 2.0980(8)×2 2.1114(8)×2 | 2.0871(8)×2 2.0979(8)×2 2.1122(7)×2 | 2.0879(7)×2 2.0997(8)×2 2.1145(7)×2 | 2.0896(8)×2 2.0997(9)×2 2.1126(8)×2 | 2.0871–2.0929 2.0960–2.103 2.1114–2.1173 |
C―O | 1.241(1)–1.261(2) | 1.244(2)–1.261(2) | 1.241(2)–1.262(2) | 1.245(1)–1.261(1) | 1.244(1)–1.260(1) | 1.243(2)–1.262(2) | 1.240(2)–1.260(2) | 1.243(1)–1.263(1) | 1.245(1)–1.261(1) | 1.245(1)–1.262(1) | 1.244(1)–1.263(1) | 1.240–1.263 |
C―N | 1.476(3) | 1.475(3) | 1.476(4) | 1.477(3) | 1.476(3) | 1.477(3) | 1.478(4) | 1.475(3) | 1.475(3) | 1.478(3) | 1.477(3) | 1.475–1.478 |
cis- O―M―O | 87.23(3)–92.77(3) | 87.25(3)–92.75(4) | 87.27(4)–92.73(4) | 87.18(3)–92.82(3) | 87.18(3)–92.82(3) | 87.14(3)–92.86(3) | 87.21(5)–92.79(5) | 87.01(3)–92.99(3) | 87.04(3)–92.96(3) | 87.06(3)–92.94(3) | 87.01(3)–92.99(3) | 87.01–92.99 |
trans- O―M―O | 180 | 180 | 180 | 180 | 180 | 180 | 180 | 180 | 180 | 180 | 180 | 180 |
M―O―C | 120.29(8)–121.72(8) | 120.22(8)–121.7(1) | 120.3(1)–121.7(1) | 120.24(6)–121.68(8) | 120.30(7)–121.77(7) | 120.31(8)–121.80(8) | 120.4(1)–122.0(1) | 120.25(7)–121.74(9) | 120.22(7)–121.74(7) | 120.26(7)–121.75(9) | 120.25(8)–121.73(9) | 120.22–122.0 |
O―C―O | 123.9(2)–124.6(1) | 124.1(2)–124.5(1) | 124.0(2)–124.6(2) | 124.0(1)–124.5(1) | 123.7(2)–124.6(1) | 124.0(2)–124.6(1) | 123.8(3)–124.8(2) | 124.0(2)–124.5(1) | 123.8(2)–124.5(1) | 123.9(2)–124.5(1) | 123.9(2)–124.4(1) | 123.7–124.6 |
N…O/N―H…O | 2.862(1)/173(2) 3.042(2)/147(1) | 2.862(1)/174(2) 3.045(2)/147(1) | 2.861(2)/172(2) 3.043(2)/148(1) | 2.862(1)/172(2) 3.044(2)/147.4(9) | 2.861(1)/172(2) 3.043(2)/147.8(9) | 2.859(1)/170(2) 3.045(2)/148.4(9) | 2.861(2)/171(2) 3.047(3)/148(1) | 2.861(1)/172(2) 3.045(2)/148.2(9) | 2.861(1)/171(2) 3.044(2)/147.9(9) | 2.864(1)/172(2) 3.043(2)/147.6(9) | 2.863(1)/173(2) 3.046(2)/147(1) | 2.859–2.864/170–173 3.042–3.047/147–148 |
C…O contacts | > 3.11 | > 3.11 | > 3.11 | > 3.11 | > 3.11 | > 3.11 | > 3.11 | > 3.11 | > 3.11 | > 3.11 | > 3.11 | > 3.11 |
M…M | 5.8185(2)–5.8352(3) | 5.8189(2)–5.8387(2) | 5.8148(2)–5.8356(3) | 5.8180(2)–5.8377(2) | 5.8145(2)–5.8304(2) | 5.8139(2)–5.8287(2) | 5.8204(2)–5.8386(3) | 5.8121(2)–5.8361(2) | 5.8122(2)–5.8340(2) | 5.8156(2)–5.8406(3) | 5.8150(2)–5.8403(3) | 5.8121–5.8406 |
Table 3
Summary of magnetic properties of Co10 to Co100. Magnetization and susceptibility data are represented for per mole Co and under 100 Oe if not otherwise specified. In last column the data in parentheses were taken from Ref. 6a (under different fields, temperatures and orientations of single crystal, see the reference 6a)."
Compound | Co10 | Co19 | Co29 | Co40 | Co48 | Co59 | Co69 | Co78 | Co88 | Co100 |
Co% | 10.0 | 19.4 | 29.3 | 39.7 | 48.4 | 59.2 | 69.1 | 77.7 | 88.3 | 100 |
Ca/cm3·K·mol-1 | 4.12 | 3.98 | 3.77 | 3.75 | 3.71 | 3.77 | 3.67 | 3.83 | 3.72 | 3.51 (3.42) j |
Θb/K | -35.4 | -37.4 | -34.6 | -36.9 | -35.4 | -43.7 | -44.9 | -48.4 | -50.6 | -51.7 (-43.5) j |
(χT)300 K/cm3·K·mol-1 | 3.71 | 3.57 | 3.38 | 3.34 | 3.32 | 3.30 | 3.21 | 3.31 | 3.19 | 2.99 (2.96) j |
(χT)50 K/cm3·K·mol-1 | 2.54 | 2.38 | 2.28 | 2.20 | 2.18 | 2.07 | 1.97 | 1.98 | 1.87 | 1.74 |
(χT)minc/cm3·K·mol-1, Tmin/K | 1.24, 7.0 | 1.28, 11.0 | 1.28, 13.0 | 1.19, 14.0 | 1.13, 15.0 | 1.12, 16.0 | 1.02, 16.0 | 0.96, 16.5 | ||
(χT)max c/cm3·K·mol-1, Tmax/K | 3.70, 2.6 | 5.90, 3.7 | 8.64, 5.1 | 11.8, 6.6 | 14.9, 8.2 | 18.6, 10.0 | 19.4, 12.0 | |||
(χT)2 K/cm3·K·mol-1 | 1.26 | 1.01 | 1.64 | 3.53 | 4.28 | 4.31 | 4.34 | 4.28 | 4.34 | 3.86 |
(M)2 K/cm3·G·mol-1 (ZFC, FC at 10 Oe) | 7.1, 7.1 | 6.1, 9.3 | 22.9, 44.6 | 72.0, 141.4 | 134.9, 190.7 | 133.0, 200.7 | 139.2, 204.7 | 135.8, 203.6 | 123.2, 207.5 | 128.3, 185.5 |
TP d/K (dZFC/dT, dFC/dT, at 10 Oe) | 2.2, 2.2 | 4.4, 4.2 | 6.4, 6.2 | 8.3, 8.1 | 10.4, 10.0 | 12.0, 12.0 | 14.1, 14.2 | |||
TP d/K (dχ/dT) | 2.4 | 4.2 | 6.2 | 8.2 | 10.1 | 12.0 | 14.2 | |||
TN e/K (average based on dc measurements) | 2.3 | 4.3 | 6.3 | 8.2 | 10.2 | 12.0 | 14.2 | |||
Tp/K (on χ′ and χ" at 10 Hz) | 2.1 4.1 | 4.2 | 6.6 7.0 | 8.6 8.6 | 10.4 10.4 | 12.4, 14.0 12.8, 14.0 | 14.2, 14.5, 15.2 14.1, 14.5, 15.2 | |||
HC f/kOe(at 2 K) | 0.075 | 0.29 | 0.68 | 2.53 | 3.87 | 4.58 | 5.21 | 4.98 (4) j | ||
MR g/Nβ (at 2 K) | ~0 | ~0 | 0.0074 | 0.027 | 0.038 | 0.041 | 0.040 | 0.038 | 0.036 | 0.031 (0.19/0) j |
M50 kOe h/Nβ (at 2 K) | 2.14 | 1.82 | 1.53 | 1.29 | 1.11 | 0.86 | 0.69 | 0.55 | 0.43 | 0.36 |
HSP i/kOe (at 2 K) | ~40 | ~40 | ~40 | ~50 | > 50 |
Fig 2
Magnetism for Co100 to Co10. (a) Plots of χT vs T (under 100 Oe field and T axis in logarithmic scale) and inset ZFC/FC plots (under 10 Oe). (b) The isothermal magnetization plots at 2 K and inset the plots in low field region. (c) The Co% dependence of the Curie constants, χT values at 300 K, 50 K and 2 K, and of the ZFC/FC magnetizations (under 10 Oe) at 2 K. (d) The Co% dependence of magnetizations (in logarithmic scale) under different fields, with plots at some fields highlighted, and the Co% dependence of HC."
1 | (a) Wang, Z. L.; Wang, Z. C. Functional and Smart Materials – Structural Evolution and Structural Analysis; Plenum Press: New York, 1998. |
(b) Müller, K. A.; Kool, T. W. Properties of Perovskites and Other Oxides; World Scientific Publishing Co. Pte. Ltd.: London, 2010. | |
2 | (a) Saparov, B.; Mitzi, D. B. Chem. Rev. 2016, 116, 4558. doi: 10.1021/acs.chemrev.5b00715 |
(b) Mitzi, D. B. Prog. Inorg. Chem. 1999, 48, 1. doi: 10.1002/9780470166499.ch1 | |
(c) Li, W.; Wang, Z. M.; Deschler, F.; Gao, S.; Friend, R. H.; Cheetham, A. K. Nat. Rev. Mater. 2017, 2, 16099. doi: 10.1038/natrevmats.2016.99 | |
(d) Xu, W. J.; Du, Z. Y.; Zhang, W. X.; Chen, X. M. CrystEngComm 2016, 18, 7915. doi: 10.1039/c6ce01485b | |
3 | (a) Shang, R.; Chen, S.; Wang, Z. M.; Gao, S. Functional Magnetic Materials Based on Metal Formate Frameworks. In Metal-Organic Framework Materials; Macgillivray, L. R., Lukehart, C. M. Eds; John Wiley & Sons, Ltd.: Chichester, 2014. doi: 10.1002/9781119951438.eibc2215 |
(b) Wang, Z. M.; Hu, K. L.; Gao, S.; Kobayashi, H. Adv. Mater. 2010, 22, 1526. doi: 10.1002/adma.200904438 | |
4 | (a) Wang, Z. M.; Zhang, B.; Otsuka, T.; Inoue, K.; Kobayashi, H.; Kurmoo, M. Dalton Trans. 2004, 2209. doi: 10.1039/b404466e |
(b) Wang, X. Y.; Gan, L.; Zhang, S. W.; Gao, S. Inorg. Chem. 2004, 43, 4615. doi: 10.1021/ic0498081 | |
(c) Hu, K. L.; Kurmoo, M.; Wang, Z. M.; Gao, S. Chem. Eur. J. 2009, 15, 12050. doi: 10.1002/chem.200901605 | |
5 | (a) Chen, S.; Shang, R.; Hu, K. L.; Wang, Z. M.; Gao, S. Inorg. Chem. Front. 2014, 1, 83. doi: 10.1039/c3qi00034f |
(b) Kieslich, G.; Kumagai, S.; Butler, K. T.; Okamura, T.; Hendon, C. H.; Sun, S.; Yamashita, M.; Walshd, A.; Cheetham, A. K. Chem. Commun. 2015, 51, 15538. doi: 10.1039/c5cc06190c | |
(c) Kieslich, G.; Forse, A. C.; Sun, S.; Butler, K. T.; Kumagai, S.; Wu, Y.; Warren, M. R.; Walsh, A.; Grey, C. P.; Cheetham, A. K. Chem. Mater. 2016, 28, 312. doi: 10.1021/acs.chemmater.5b04143 | |
6 | (a) Gómez-Aguirre, L. C.; Pato-Doldán, B.; Mira, J.; Castro-García, S.; Señarís-Rodríguez, M. A.; Sánchez-Andújar, M.; Singleton, J.; Zapf, V. S. J. Am. Chem. Soc. 2016, 138, 1122. doi: 10.1021/jacs.5b11688 |
(b) Fu, D. W.; Zhang, W.; Cai, H. L.; Zhang, Y.; Ge, J. Z.; Xiong, R. G.; Huang, S. D.; Nakamura, T. Angew. Chem. Int. Ed. 2011, 50, 11947. doi: 10.1002/anie.201103265 | |
(c) Jain, P.; Ramachandran, V.; Clark, R. J.; Zhou, H. D.; Toby, B. H.; Dalal, N. S.; Kroto, H. W.; Cheetham, A. K. J. Am. Chem. Soc. 2009, 131, 13625. doi: 10.1021/ja904156s | |
(d) Mączka, M.; Gągor, A.; Ptak, M.; Paraguassu, W. T.; da Silva, A.; Sieradzki, A.; Pikul, A. Chem. Mater. 2017, 29, 2264. doi: 10.1021/acs.chemmater.6b05249 | |
7 | (a) Yu, Y.; Shang, R.; Chen, S.; Wang, B. W.; Wang, Z. M.; Gao, S. Chem. Eur. J. 2017, 23, 9857. doi: 10.1002/chem.201701099 |
(b) Mączka, M.; Pietraszko, A.; Macalik, L.; Sieradzki, A.; Trzmiel, J.; Pikul, A. Dalton Trans. 2014, 43, 17075. doi: 10.1039/c4dt02586e | |
(c) Mączka, M.; Bondzior, B.; Dereń, P.; Sieradzki, A.; Trzmiel, J.; Pietraszko, A.; Hanuza, J. Dalton Trans. 2015, 44, 6871. doi: 10.1039/c5dt00060b | |
(d) Ptak, M.; Mączka, M.; Gągor, A.; Sieradzki, A.; Stroppa, A.; Di Sante, D.; Perez-Mato, J. M.; Macalik, L. Dalton Trans. 2016, 45, 2574. doi: 10.1039/c5dt04536c | |
(e) Ptak, M.; Mączka, M.; Gągor, A.; Sieradzki, A.; Bondzior, B.; Dereń, P.; Pawlus, S. Phys. Chem. Chem. Phys. 2016, 18, 29629. doi: 10.1039/c6cp05151k | |
8 | (a) Chen, S.; Shang, R.; Wang, B. W.; Wang, Z. M.; Gao, S. Angew. Chem. Int. Ed. 2015, 54, 11093. doi: 10.1002/anie.201504396 |
(b) Kieslich, G.; Kumagai, Sh.; Forse, A. C.; Sun, S.; Henke, S.; Yamashita, M.; Greyd, C. P.; Cheetham, A. K. Chem. Sci. 2016, 7, 5108. doi: 10.1039/c6sc01247g | |
9 | (a) Evans, N. L.; Thygesen, P. M. M.; Boströ m, H. L. B.; Reynolds, E. M.; Collings, I. E.; Phillips, A. E.; Goodwin, A. L. J. Am. Chem. Soc. 2016, 138, 9393. doi: 10.1021/jacs.6b05208 |
(b) Shang, R.; Sun, X.; Wang, Z. M.; Gao, S. Chem. Asian J. 2012, 7, 1697. doi: 10.1002/asia.201200139 | |
10 | (a) Chen, S. Ammonium-Metal-Formate Perovskites: Coexistence and Manipulation of Magnetic and Electric Ordering. Ph. D. Dissertation, Peking University, Beijing, 2016. |
(b) Yu, Y. The Study on the Functional Materials of Heterometallic Ammonium Metal Formates. Ph. D. Dissertation, Peking University, Beijing, 2017. | |
11 | (a) de Jongh, L. J. Static Thermodynamic Properties of Site-Random Magnetic Systems and Percolation Problem. In Magnetic Phase Transitions - Proceedings of a Summer School; Ausloos, M., Elliott R. J. Eds.; Springer-Verlag: Berlin Heidelberg, 1983; pp. 172-194. |
(b) Binder, K.; Kob, W. Glassy Materials and Disordered Solids – An Introduction to Their Statictical Mechanics; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2005. | |
(c) Zallen, R. The Physics of Amorphous Solids; Wiley: New York, 1983. | |
12 | CrysAlisPro software, Rigaku Oxford Diffraction: Tokyo, Japan, 2015. |
13 | Sheldrick G.M. SHELX-97, Program for Crystal Structure Determination Germany: University of Göttingen, 1997. |
14 | Mulay L.N. ; Boudreaux E.A. Theory and Applications of Molecular Diamagnetism New York: John Wiley & Sons Inc., 1976. |
15 | Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds New York: Wiley, 1986. |
16 | (a) Mączka, M.; Ciupa, A.; Gągor, A.; Sieradzki, A.; Pikul, A.; Macalik, B.; Drozd, M. Inorg. Chem. 2014, 53, 5260. doi: 10.1021/ic500479e |
(b) Mączka, M.; Ptak, M.; Macalik, L. Vib. Spectrosc. 2014, 71, 98. doi: 10.1016/j.vibspec.2014.01.013 | |
(c) Mączka, M.; Szymborska-Małek, K.; Ciupa, A.; Hanuza, J. Vib. Spectrosc. 2015, 77, 17. doi: 10.1016/j.vibspec.2015.02.003 | |
17 | (a) van Smaalen, S. Incommensurate Crystallography; Oxford University Press Inc.: New York, 2007. |
(b) Janssen, T.; Chapuis, G.; de Boissieu, M. Aperiodic Crystals: from Modulated Phases to Quasicrystals; Oxford University Press Inc.: New York, 2007. | |
18 |
Chen S. ; Shang R. ; Wang B.W. ; Wang Z.M. ; Gao S. APL Mater. 2018, 6, 114205.
doi: 10.1063/1.5040688 |
19 | Carlin R.L. ; van Duyneveldt A.J. Magnetic Properties of Transition Metal Compounds; New York: Springer-Verlag 1977. |
20 | (a) Kurmoo, M. Chem. Soc. Rev. 2009, 38, 1353. doi: 10.1039/b804757j |
(b) Lloret, F.; Julve, M.; Cano, J.; Ruiz-García, R.; Pardo, E. Inorg. Chim. Acta 2008, 361, 3432. doi: 10.1016/j.ica.2008.03.114 | |
(c) Palii, A. V.; Tsukerblat, B. S.; Coronado, E.; Clemente-Juan, J. M.; Borras-Almenar, J. J. Inorg. Chem. 2003, 42, 2455. doi: 10.1021/ic0259686 | |
21 |
Boča M. ; Svoboda I. ; Renz F. ; Fuess H. Acta Cryst. C. 2004, 60, m631.
doi: 10.1107/s0108270104025776 |
22 | Casey, A. T.; Mitra, S. Magnetic Behavior of Components Containing dn Ions. In Theory and Application of Molecular Paramagnetism; Mulay, L. N., Boudreaux, E. A. Eds; Wiley: New York, 1976; pp. 211-215. |
23 | (a) Breed, D. J.; Gilijamse, K.; Sterkenburg, J. W. E.; Miedema, A. R. J. Appl. Phys. 1970, 41, 1267. doi: 10.1063/1.1658906 |
(b) Harris, A. B.; Kirkpatrick, S. Phys. Rev. B 1977, 16, 542. doi: 10.1103/physrevb.16.542 | |
(c) King, A. R.; Jaccarino, V. J. Appl. Phys. 1981, 52, 1785. doi: 10.1063/1.329714 | |
24 |
ManakaH. ; Nagata S. ; Watanabe Y. ; Kikunaga K. ; Yamamoto T. ; Terada N. ; Obara K. J. Phys.: Conf. Ser. 2009, 145, 012080.
doi: 10.1088/1742-6596/145/1/012080 |
25 | (a) Christensen, K.; Moloney, N. R. Complexity and Criticality; Imperial College Press: London, 2005. |
(b) Stinchcombe, R. B. J. Phys. C: Solid State Phys. 1979, 12, 4533. doi: 10.1088/0022-3719/12/21/020 | |
(c) Sur, A.; Lebowitz, J. L.; Marro, J.; Kalos, M. H.; Kirkpatrick, S. J. Statis. Phys. 1976, 15, 345. doi: 10.1007/bf01020338 | |
26 | (a) Enoki, T.; Tsujikawa, I. J. Phys. Soc. Japan 1975, 39, 324. doi: 10.1143/jpsj.39.324 |
(b) Elliott, R. J.; Heap, B. R. Proc. R. Soc. London. Ser. A 1962, 265, 264. doi: 10.1098/rspa.1962.0008 |
[1] | 王晨璐, 宿素玲, 任宁, 张建军. 卤代芳香族羧酸与含氮配体合成镧系配合物的结构、热化学和荧光性质[J]. 物理化学学报, 2023, 39(1): 2206035 -0 . |
[2] | 夏洲, 邵元龙. 湿法纺制石墨烯纤维:工艺、结构、性能与智能应用[J]. 物理化学学报, 2022, 38(9): 2103046 - . |
[3] | 温烨烨, 任明, 邸江涛, 张锦. 烯碳材料在人工肌肉领域的应用进展[J]. 物理化学学报, 2022, 38(9): 2107006 - . |
[4] | 韩高伟, 徐飞燕, 程蓓, 李佑稷, 余家国, 张留洋. 反蛋白石结构ZnO@PDA用于增强光催化产H2O2性能[J]. 物理化学学报, 2022, 38(7): 2112037 - . |
[5] | 朱弼辰, 洪小洋, 唐丽永, 刘芹芹, 唐华. 二维/一维BiOBr0.5Cl0.5/WO3 S型异质结助力光催化CO2还原[J]. 物理化学学报, 2022, 38(7): 2111008 - . |
[6] | 杨越, 朱加伟, 王鹏彦, 刘海咪, 曾炜豪, 陈磊, 陈志祥, 木士春. 镶嵌于NH2-MIL-125 (Ti)衍生氮掺多孔碳中的花状超细纳米TiO2作为高活性和稳定性的锂离子电池负极材料[J]. 物理化学学报, 2022, 38(6): 2106002 - . |
[7] | 朱思颖, 李辉阳, 胡忠利, 张桥保, 赵金保, 张力. 锂离子电池氧化亚硅负极结构优化和界面改性研究进展[J]. 物理化学学报, 2022, 38(6): 2103052 - . |
[8] | 宋雨珂, 谢文富, 邵明飞. 一体化电极电催化二氧化碳还原研究进展[J]. 物理化学学报, 2022, 38(6): 2101028 - . |
[9] | 张威, 梁海琛, 朱科润, 田泳, 刘瑶, 陈佳音, 李伟. 三维大孔/介孔碳-碳化钛复合材料用于无枝晶锂金属负极[J]. 物理化学学报, 2022, 38(6): 2105024 - . |
[10] | 王磊, 孙毯毯, 闫娜娜, 刘晓娜, 马超, 徐舒涛, 郭鹏, 田鹏, 刘中民. 不同结构导向剂合成不同硅含量SAPO-34分子筛的酸性质[J]. 物理化学学报, 2022, 38(4): 2003046 - . |
[11] | 姜美慧, 盛利志, 王超, 江丽丽, 范壮军. 超级电容器用石墨烯薄膜:制备、基元结构及表面调控[J]. 物理化学学报, 2022, 38(2): 2012085 - . |
[12] | 陈宇新, 王丽君, 姚志波, 郝磊端, 谭心怡, Masa Justus, Robertson Alex W., 孙振宇. 单原子配位结构及与载体相互作用的调控用于二氧化碳电催化还原[J]. 物理化学学报, 2022, 38(11): 2207024 -0 . |
[13] | 陈鲜红, 阮鹏超, 吴贤文, 梁叔全, 周江. 水系锌二次电池MnO2正极的晶体结构、反应机理及其改性策略[J]. 物理化学学报, 2022, 38(11): 2111003 - . |
[14] | 何子旭, 陈亚威, 黄凡洋, 揭育林, 李新鹏, 曹瑞国, 焦淑红. 氟代溶剂在锂金属电池中的应用[J]. 物理化学学报, 2022, 38(11): 2205005 - . |
[15] | 陈清, 赵健, 程虎虎, 曲良体. 石墨烯三维结构组装体制备及光热水蒸发和水处理研究进展[J]. 物理化学学报, 2022, 38(1): 2101020 - . |
|