物理化学学报 >> 2020, Vol. 36 >> Issue (8): 1907057.doi: 10.3866/PKU.WHXB201907057
收稿日期:
2019-07-19
录用日期:
2019-09-09
发布日期:
2020-05-19
通讯作者:
严新焕
E-mail:xhyan@zjut.edu.cn
基金资助:
Chao Zhang, Sihan Li, Chenliang Wu, Xiaoqing Li, Xinhuan Yan()
Received:
2019-07-19
Accepted:
2019-09-09
Published:
2020-05-19
Contact:
Xinhuan Yan
E-mail:xhyan@zjut.edu.cn
Supported by:
摘要:
采用种子生长法,在不存在保护剂和结构导向剂的情况下,成功制备Pt@Au核壳结构纳米颗粒,即在Pt纳米颗粒表面,AuCl4−被H2还原成Au(0),并沉积在Pt核纳米颗粒上。通过透射电子显微镜(TEM),能量色散X射线光谱(EDS),高分辨率TEM (HRTEM),傅里叶变换(FFT)和X射线粉末衍射(XRD),X射线光电子能谱(XPS),红外光谱(IR)和H2-程序升温还原(H2-TPR)等表征证实了核壳结构。所制得的Pt@Aux/Al2O3催化剂在常压下由固定床反应器测定其在甲苯氧化中的活性。相比于单金属催化剂Pt/Al2O3与Au/Al2O3,Pt@Aux/Al2O3核壳催化剂显示出更高的催化活性,且Pt1@Au1/Al2O3对于甲苯氧化具有最好的催化活性,这归因于Au和Pt之间的电子交换促进了Au上活性氧的形成。Pt@Aux/Al2O3对甲苯氧化良好的催化性能和高选择性与其较高的吸附氧物质浓度,较好的低温还原性和强相互作用有关。
MSC2000:
张超, 李思汉, 吴辰亮, 李小青, 严新焕. Pt@Au/Al2O3核壳纳米粒子的制备和表征及其在催化氧化甲苯中的应用[J]. 物理化学学报, 2020, 36(8): 1907057.
Chao Zhang, Sihan Li, Chenliang Wu, Xiaoqing Li, Xinhuan Yan. Preparation and Characterization of Pt@Au/Al2O3 Core-Shell Nanoparticles for Toluene Oxidation Reaction[J]. Acta Physico-Chimica Sinica, 2020, 36(8): 1907057.
1 |
Zhang Q. ; Lee I. ; Joo J. B. ; Zaera F. ; Yin Y. Acc. Chem. Res. 2012, 46, 1816.
doi: 10.1021/ar300230s |
2 |
Sun Q. ; Zhang X. Q. ; Wang Y. ; Lu A. H. Chin. J. Catal. 2015, 36, 683.
doi: 10.1016/S1872-2067(14)60298-9 |
3 |
Lee J. ; Yoo J. K. ; Kim J. ; Sohn Y. ; Rhee C. K. Electrochim. Acta 2018, 290, 244.
doi: 10.1016/j.electacta.2018.09.078 |
4 |
Shim K. ; Lee W. C. ; Park M. S. ; Shahabuddin M. ; Yamauchi Y. ; Hossain M. S. A. ; Shim Y. B. ; Kim J. H. Sens. Actuator B-Chem. 2019, 278, 88.
doi: 10.1016/j.snb.2018.09.048 |
5 |
Zhou S. ; McIlwrath K. ; Jackson G. ; Eichhorn B. J. Am. Chem. Soc. 2006, 128, 1780.
doi: 10.1021/ja056924 |
6 |
Jiang R. ; Tung S. O. ; Tang Z. ; Li L. ; Ding L. ; Xi X. ; Liu Y. ; Zhang L. ; Zhang J. Energy Storage Mater. 2018, 12, 260.
doi: 10.1016/j.ensm.2017.11.005 |
7 |
Jiang L. ; Yuan X. ; Liang J. ; Zhang J. ; Wang H. ; Zeng G. J. Power Sources 2016, 331, 408.
doi: 10.1016/j.jpowsour.2016.09.054 |
8 |
Campani V. ; Giarra S. ; De Rosa G. OpenNano 2018, 3, 5.
doi: 10.1016/j.onano.2017.12.001 |
9 |
Chen G. ; Wang Y. ; Xie R. ; Gong S. Adv. Drug Delivery Rev. 2018, 130, 58.
doi: 10.1016/j.addr.2018.07.008 |
10 |
Zhang N. ; Liu S. ; Xu Y. Nanoscale 2012, 4, 2227.
doi: 10.1039/c2nr00009a |
11 |
Tada H. ; Suzuki F. ; Ito S. ; Akita T. ; Tanaka K. ; Kawahara T. ; Kobayashi H. J. Phys. Chem. B 2002, 106, 8714.
doi: 10.1021/jp0202690 |
12 |
Yoon J. ; Baik H. ; Lee S. ; Kwon S. J. ; Lee K. Nanoscale 2014, 6, 6434.
doi: 10.1039/c4nr00551a |
13 |
Yang C. ; Zhang F. ; Lei N. ; Yang M. ; Liu F. ; Miao Z. ; Sun Y. ; Zhao X. ; Wang A. Chin. J. Catal. 2018, 39, 1366.
doi: 10.1016/s1872-2067(18)63103-1 |
14 |
Zhang Y. ; Liu Y. ; Xie S. ; Huang H. ; Guo G. ; Dai H. ; Deng J. Environ. Int. 2019, 128, 335.
doi: 10.1016/j.envint.2019.04.062 |
15 |
Qi Y. ; Shen L. ; Zhang J. ; Yao J. ; Lu R. ; Miyakoshi T. Environ. Pollut. 2019, 245, 810.
doi: 10.1016/j.envpol.2018.11.057 |
16 |
Morin J. ; Gandolfo A. ; Temime-Roussel B. ; Strekowski R. ; Brochard G. ; Bergé. V% Gligorovski S. ; Wortham H. Build. Environ. 2019, 156, 225.
doi: 10.1016/j.buildenv.2019.04.031 |
17 |
Song M. ; Liu X. ; Zhang Y. ; Shao M. ; Lu K. ; Tan Q. ; Feng M. ; Qu Y. Atmos. Environ. 2019, 201, 28.
doi: 10.1016/j.atmosenv.2018.12.019 |
18 |
Kim K. ; Boo S. ; Ahn H. J. Ind. Eng. Chem. 2009, 15, 92.
doi: 10.1016/j.jiec.2008.09.005 |
19 |
Zhu A. ; Zhou Y. ; Wang Y. ; Zhu Q. ; Liu H. ; Zhang Z. ; Lu H. J. Rare Earths 2018, 36, 1272.
doi: 10.1016/j.jre.2018.03.032 |
20 |
Feng Z. ; Ma Y. ; Natarajan V. ; Zhao Q. ; Ma X. ; Zhan J. Sens. Actuator B-Chem. 2018, 255, 884.
doi: 10.1016/j.snb.2017.08.138 |
21 |
Gaálová J. ; Topka P. ; Kaluža L. ; Soukup K. ; Barbier J. Catal. Today. 2019, 333, 190.
doi: 10.1016/j.cattod.2018.04.005 |
22 |
Vallejos S. ; Gràcia I. ; Bravo J. ; Figueras E. ; Hubálek J. ; Cané C. Talanta 2015, 139, 27.
doi: 10.1016/j.talanta.2015.02.034 |
23 |
Usón L. ; Colmenares M. G. ; Hueso J. L. ; Sebastián V. ; Balas F. ; Arruebo M. ; Santamaría J. Catal. Today 2014, 227, 179.
doi: 10.1016/j.cattod.2013.08.014 |
24 |
Mori M. ; Nishimura H. ; Itagaki Y. ; Sadaoka Y. ; Traversa E. Sens. Actuator B-Chem. 2009, 143, 56.
doi: 10.1016/j.snb.2009.09.001 |
25 |
Li J. H. ; Ao P. ; Li X. Q. ; Xu X. S. ; Xu X. X. ; Gao X. ; Yan X. H. Acta Phys. -Chim. Sin. 2015, 31, 173.
doi: 10.3866/PKU.WHXB201411131 |
李加衡; 敖平; 李小青; 许响生; 徐潇潇; 高翔; 严新焕. 物理化学学报, 2015, 31, 173.
doi: 10.3866/PKU.WHXB201411131 |
|
26 |
Sun S. ; Wang Y. ; Wang L. N. ; Guo T. ; Yuan X. ; Zhang D. ; Xue Z. ; Zhou X. ; Lu X. J. Alloy. Compd. 2019, 793, 635.
doi: 10.1016/j.jallcom.2019.04.212 |
27 |
Peng C. ; Pan N. ; Qian Z. ; Wei X. ; Shao G. Talanta 2017, 175, 114.
doi: 10.1016/j.talanta.2017.06.005 |
28 |
Takahashi S. ; Todoroki N. ; Myochi R. ; Nagao T. ; Taguchi N. ; Ioroi T. ; Feiten F. E. ; Wakisaka Y. ; Asakura K. ; Sekizawa O. ; et al J. Electroanal. Chem. 2019, 842, 1.
doi: 10.1016/j.jelechem.2019.04.053 |
29 |
Lewis L. N. ; Krafft T. A. ; Huffman J. C. Inorg. Chem. 1992, 31, 3555.
doi: 10.1021/ic00043a014 |
30 |
Kristian N. ; Wang X. Electrochem. Commun. 2008, 10, 12.
doi: 10.1016/j.elecom.2007.10.011 |
31 |
Grzelczak M. ; Pérez-Juste J. ; Rodríguez-González B. ; Liz-Marzán L. M. J. Mater. Chem. 2006, 16, 3946.
doi: 10.1039/b606887a |
32 |
Liao M. ; Li W. ; Xi X. ; Luo C. ; Gui S. ; Jiang C. ; Mai Z. ; Chen B. H. J. Electroanal. Chem. 2017, 791, 124.
doi: 10.1016/j.jelechem.2017.03.024 |
33 |
Cao R. ; Xia T. ; Zhu R. ; Liu Z. ; Guo J. ; Chang G. ; Zhang Z. ; Liu X. ; He Y. Appl. Surf. Sci. 2018, 433, 840.
doi: 10.1016/j.apsusc.2017.10.104 |
34 |
Nishita M. ; Park S. Y. ; Nishio T. ; Kamizaki K. ; Wang Z. ; Tamada K. ; Takumi T. ; Hashimoto R. ; Otani H. ; Pazour G. J. ; et al Sci. Rep. 2017, 7, 1306.
doi: 10.1038/s41598-016-0028-x |
35 |
Guo S. ; Li J. ; Dong S. ; Wang E. J. Phys. Chem. C 2010, 114, 15337.
doi: 10.1021/jp104942d |
36 |
Yang H. ; Deng J. ; Liu Y. ; Xie S. ; Wu Z. ; Dai H. J. Mol. Catal. A-Chem. 2016, 414, 9.
doi: 10.1016/j.molcata.2015.12.010 |
37 |
Pei W. ; Liu Y. ; Deng J. ; Zhang K. ; Hou Z. ; Zhao X. ; Dai H. Appl. Catal. B-Environ. 2019, 256, 117814.
doi: 10.1016/j.apcatb.2019.117814 |
38 |
He G. ; Song Y. ; Liu K. ; Walter A. ; Chen S. ; Chen S. ACS Catal. 2013, 3, 831.
doi: 10.1021/cs400114s |
39 |
Zhang X. ; Li Z. ; Zhao J. ; Cui Y. ; Tan B. ; Wang J. ; Zhang C. ; He G. Korean J. Chem. Eng. 2017, 34, 1.
doi: 10.1007/s11814-017-0092-3 |
40 |
Lefèvre G. ; Duc M. ; Lepeut P. ; Caplain R. ; Fédoroff M. Langmuir 2002, 18, 7530.
doi: 10.1021/la025651i |
41 |
Meng T. ; Wang L. ; Jia H. ; Gong T. ; Feng Y. ; Li R. ; Wang H. ; Zhang Y. J. Colloid Interface Sci. 2019, 536, 424.
doi: 10.1016/j.jcis.2018.10.076 |
42 |
Cao Z. ; Bu J. ; Zhong Z. ; Sun C. ; Zhang Q. ; Wang J. ; Chen S. ; Xie X. Appl. Catal. A-Gen. 2019, 578, 105.
doi: 10.1016/j.apcata.2019.04.006 |
43 |
Chenakin S. ; Kruse N. J. Catal. 2018, 358, 224.
doi: 10.1016/j.jcat.2017.12.010 |
44 |
Figueiredo N. M. ; Carvalho N. J. M. ; Cavaleiro A. Appl. Surf. Sci. 2011, 257, 5793.
doi: 10.1016/j.apsusc.2011.01.104 |
45 |
Nartova A. V. ; Gharachorlou A. ; Bukhtiyarov A. V. ; Kvon R. I. ; Bukhtiyarov V. I. Appl. Surf. Sci. 2017, 401, 341.
doi: 10.1016/j.apsusc.2016.12.179 |
46 |
Smirnov M. Y. ; Kalinkin A. V. ; Vovk E. I. ; Simonov P. A. ; Gerasimov E. Y. ; Sorokin A. M. ; Bukhtiyarov V. I. Appl. Surf. Sci. 2018, 428, 972.
doi: 10.1016/j.apsusc.2017.09.205 |
47 |
Ousmane M. ; Liotta L. F. ; Carlo G. D. ; Pantaleo G. ; Venezia A. M. ; Deganello G. ; Retailleau L. ; Boreave A. ; Giroir-Fendler A. Appl. Catal. B-Environ. 2011, 101, 629.
doi: 10.1016/j.apcatb.2010.11.004 |
[1] | 周雪梅. 二氧化钛负载单原子催化剂用于光催化反应的研究[J]. 物理化学学报, 2021, 37(6): 2008064 -0 . |
[2] | 王艳秋, 钟子欣, 刘唐康, 刘国亮, 洪昕林. Cu@UiO-66衍生的Cu+-ZrO2界面位点用于高效催化CO2加氢制甲醇[J]. 物理化学学报, 2021, 37(5): 2007089 -0 . |
[3] | 孟怡辰, 况思宇, 刘海, 范群, 马新宾, 张生. 面向CO2电化学转化的铜基催化剂研究进展[J]. 物理化学学报, 2021, 37(5): 2006034 -0 . |
[4] | 吴进, 刘京, 夏雾, 任颖异, 王锋. 基于CdS和CdSe纳米半导体材料的可见光催化二氧化碳还原研究进展[J]. 物理化学学报, 2021, 37(5): 2008043 -0 . |
[5] | 李聪明, 陈阔, 王晓月, 薛楠, 杨恒权. 探究Cu/ZnO相互作用对CO2加氢制甲醇反应性能的影响[J]. 物理化学学报, 2021, 37(5): 2009101 -0 . |
[6] | 李琳, 沈水云, 魏光华, 章俊良. 基于血红素衍生的中空非贵金属催化剂氧还原反应电催化活性[J]. 物理化学学报, 2021, 37(3): 1911011 -0 . |
[7] | 周远, 韩娜, 李彦光. 钯基纳米材料电化学还原二氧化碳研究进展[J]. 物理化学学报, 2020, 36(9): 2001041 -0 . |
[8] | 王艺蒙, 张申平, 葛宇, 王臣辉, 胡军, 刘洪来. 多孔双金属氧化物/碳复合光催化剂对四环素的高效光催化降解[J]. 物理化学学报, 2020, 36(8): 1905083 -0 . |
[9] | 刘丹叶,陈东,刘卉,杨军. 贵金属在Ag2S纳米颗粒中由内向外的迁移现象[J]. 物理化学学报, 2020, 36(7): 1906069 -0 . |
[10] | 刘冬梅,陈秀梅,袁泽,闾敏,殷丽莎,谢小吉,黄岭. 上转换纳米粒子的Y(OH)CO3壳层包覆及壳层转化[J]. 物理化学学报, 2020, 36(7): 1907011 -0 . |
[11] | 方波,冯立纲. 纳米颗粒结合ZIF-67衍生的PtCo-NC催化剂用于醇类燃料电氧化[J]. 物理化学学报, 2020, 36(7): 1905023 -0 . |
[12] | 王梁,朱澄鹭,殷丽莎,黄维. Pt-M (M = Co, Ni, Fe)/g-C3N4复合材料构建及其高效光解水制氢性能[J]. 物理化学学报, 2020, 36(7): 1907001 -0 . |
[13] | 苗静,郭睿凤,刘志宏. BaO∙4B2O3∙5H2O纳米材料的制备及其对聚丙烯阻燃性能的热分解动力学方法评价[J]. 物理化学学报, 2020, 36(6): 1905052 -0 . |
[14] | 孙万军,林军奇,梁向明,杨峻懿,马宝春,丁勇. 基于立方烷结构的分子催化剂在光催化水氧化中的研究进展[J]. 物理化学学报, 2020, 36(3): 1905025 -0 . |
[15] | 张若兰,王超,陈浩,赵恒,刘婧,李昱,苏宝连. 硫化镉反蛋白石光子晶体制备及光解水制氢[J]. 物理化学学报, 2020, 36(3): 1803014 -0 . |
|