物理化学学报 >> 2020, Vol. 36 >> Issue (10): 1910003.doi: 10.3866/PKU.WHXB201910003
所属专题: 胶体与界面化学前沿
Zhang Chengcheng, Crisci Ralph, Chen Zhan()
收稿日期:
2019-10-07
录用日期:
2019-11-25
发布日期:
2020-06-11
通讯作者:
Chen Zhan
E-mail:zhanc@umich.edu
作者简介:
Professor Zhan Chen was born on June 4, 1966. He received his BS degree in Chemistry from Peking University in 1988, MS degree in Physics from Chinese Academy of Sciences in 1991, PhD degree in Chemistry from the University of California at Berkeley in 1998 and did his postdoctoral research in Lawrence Berkeley National Laboratory between 1998 and 2000. He then worked at the University of Michigan as an assistant professor (2000–2005), an associate professor with tenure (2005–2009), and was promoted to a full professor with tenure in 2009. Currently he is a professor of chemistry, macromolecular science and engineering, biophysics, and applied physics at the University of Michigan. Professor Chen's research is focused on the molecular level understanding of structures of polymers and biological molecules at interfaces. His fundamental research has been extensively supported by a variety of Federal funding agencies such as National Science Foundation, National Institutes of Health, Office of Naval Research, Army Research Office, Defense Threat Reduction Agency, etc. He has also widely collaborated with companies such as Dow Chemical, BASF, P & G, Intel, IBM, BMS, Sanofi, Texas Instruments, etc. on applied research. Professor Chen received the Beckman Young Investigator Award, Dow Corning Professorship, National Science Foundation CAREER Award, and Japan Society for the Promotion of Science Invitation Fellowship. He is a senior editor of Langmuir and an associate editor-in-chief of Chinese Chemical Letters. Professor Chen is a Fellow of American Association for the Advancement of Science (AAAS) and a Fellow of Royal Society of Chemistry (RSC). He published 280 peer reviewed research articles and gave more than 330 invited talks at various institutions and conferences
基金资助:
Chengcheng Zhang, Ralph Crisci, Zhan Chen()
Received:
2019-10-07
Accepted:
2019-11-25
Published:
2020-06-11
Contact:
Zhan Chen
E-mail:zhanc@umich.edu
Supported by:
摘要:
海洋生物附着在船体表面会导致严重的燃油消耗的增加,防污高分子材料的研究因此成为对海洋船只运行极其重要的课题。这些高分子可以被用作船只的表面涂层,从而保护船只不受到海洋生物的吸附和生长的影响。两性离子高分子近年来已经逐渐成为潜力巨大的防污材料。研究表明,这些两性离子高分子的表面在水中的强水化作用对于其防污性能有至关重要的影响。在本篇综述中,我们总结了最近通过使用和频(SFG)振动光谱技术来实现的对防污材料的界面分析工作。SFG是一种表面敏感的技术,可以在原位并实时检测界面高分子和水分子的分子结构。我们总结的防污材料包括两性离子高分子,混合电荷式高分子以及两性的拟肽高分子材料。这些材料的界面水研究,以及盐离子对界面水分子作用会被详细讨论。我们也将介绍这些防污材料与蛋白质及海藻之间的作用。以上这些研究清楚地表明了高分子界面强水化与防污性能之间的关联,也显示了SFG是对高分子材料防污机理探索的一个强有力的分析技术。
MSC2000:
Zhang Chengcheng, Crisci Ralph, Chen Zhan. 原位探测防污高分子材料与液体界面的分子结构[J]. 物理化学学报, 2020, 36(10): 1910003.
Chengcheng Zhang, Ralph Crisci, Zhan Chen. Probing Molecular Structures of Antifouling Polymer/Liquid Interfaces In Situ[J]. Acta Physico-Chimica Sinica, 2020, 36(10): 1910003.
Scheme 1
Molecular formulae of the zwitterionic polymer brushes (A) and mixed charged polymers (B) reviewed in this article. Adapted with permission from Ref. 15. J. Phys. Chem. C 2014, 118, 15840. Copyright 2014 American Chemical Society and from Ref. 20. Langmuir 2018, 34, 6538. Copyright 2018 American Chemical Society."
Fig 4
(A) SFG spectra collected from two zwitterionic polymers, pCBMA and pSBMA, in water (pH ∼7). (B) Replotted SFG spectra in the C―H stretching frequency range from (A). (C) Schematic plots showing that water molecules have different absolute orientations on the pCBMA and pSBMA surfaces. Reproduced with permission from Ref. 21. Langmuir 2019, 35, 1327. Copyright 2019 American Chemical Society. "
Fig 5
(A) SFG spectra collected from the interfaces between pCBMA and water with different pH values. (B) Replotted SFG spectra in the C―H stretching frequency range from (A). (C) Time-dependent SFG signal intensity (detected at 3200 cm−1) from the interface between pCBMA and water before and after the contacting aqueous phase (pH = 12) was changed to water (pH = 7). Reproduced with permission from Ref. 21. Langmuir 2019, 35, 1327. Copyright 2019 American Chemical Society. "
Fig 6
(A) SFG spectra collected from the interface between pSBMA and water at different pH values. (B) Time-dependent SFG signal intensity (detected at 3200 cm−1) from the interface between pSBMA and water before and after the contacting aqueous phase (pH = 12) was changed to water (pH = 7). Reproduced with permission from Ref. 21. Langmuir 2019, 35, 1327. Copyright 2019 American Chemical Society. "
Fig 7
SFG spectra of (A, D) pCBAA1, (B, E) pCBAA2, and (C, F) pSBMA in contact with (A–C) NaCl or KCl solutions and (D–F) MgCl2 or CaCl2 solutions. The NaCl solutions were prepared with various concentrations. Inset in panel C: enlarged portion of the water spectra in panel C for a clear comparison. (G) Corresponding normalized H2O signal intensities. Reproduced with permission from Ref. 15. J. Phys. Chem. C 2014, 118, 15840. Copyright 2014 American Chemical Society. "
Fig 9
(A) After the contacting water was replaced by a 0.2 mol∙L−1 NaCl solution, SFG spectra were collected from the interface between pCBMA and 0.2 mol∙L−1 NaCl solution at different time points. (B) Time-dependent SFG signal intensity (detected at 3200 cm−1) from the interface between pCBMA and solution before and after the contacting water was changed to 0.2 mol∙L−1 NaCl solution. (C) Similar SFG spectra were observed from the interface between pSBMA and 0.2 mol∙L−1 NaCl solution at 5 and 75 min after the contacting water was changed to the 0.2 mol∙L−1 NaCl solution. (The spectra collected between 5 and 75 min are not shown because they have the same O―H stretching signal.) (D) Time-dependent SFG signal intensity (detected at 3200 cm−1) before and after water in contact with pSBMA was replaced by the 0.2 mol∙L−1 NaCl solution. Reproduced with permission from Ref. 21. Langmuir 2019, 35, 1327. Copyright 2019 American Chemical Society. "
Fig 10
(A) SFG signals of pSBMA collected in air before and after contacting proteins. (B) Time-dependent water SFG signals as the contacting aqueous phase was switched from water to protein solutions at 200 s. (C) SFG signals of pSBMA/water and pSBMA/water and pSBMA/protein solution interfaces. Adapted with permission from Ref. 14. ACS Appl. Mater. Interf. 2015, 7, 16881. Copyright 2015 American Chemical Society. "
Fig 11
SFG spectra collected from the mixed charged polymer/water and polymer/protein solution interfaces. (a1), (b1) and (c1) are the beginning mixed charged polymer/water interface SFG spectra. (a2), (b2) and (c2) are polymer/protein solution interface spectra for BSA, fibrinogen and lysozyme respectively. (a3), (b3) and (c3) are polymer/water interface spectra collected again after protein contact and washing. Reproduced with permission from Ref. 20. Langmuir 2018, 34, 6538. Copyright 2018 American Chemical Society. "
Fig 12
(A) Molecular structures of the polypeptoid samples studied here. (B) Time-dependent water contact angles at polypeptoid sample surfaces. (C) SFG signal intensity of strongly hydrogen-bonded water at 3200 cm−1 collected from polypeptoids/water interfaces. Adapted with permission from Ref. 57. Langmuir 2015, 31, 9306. Copyright 2015 American Chemical Society. "
Fig 14
(A) Molecular structures of the PDMS-based block copolymers, incorporating either hydrogen-bonding peptoids or non-hydrogen-bonding peptoids. (B) Biofouling assay settlement data for U. linza on different polypeptoid sample surfaces. (C) SFG spectra collected from hydrogen-bonding peptoid/water interface and non-hydrogen bonding peptoid/water interface. Adapted with permission from Ref. 42. Macromolecules 2019, 52, 1287. Copyright 2019 American Chemical Society. "
1 |
Banerjee I. ; Pangule R. C. ; Kane R. S. Adv. Mater. 2011, 23, 690.
doi: 10.1002/adma.201001215 |
2 |
Rosenhahn A. ; Schilp S. ; Kreuzer H. J. ; Grunze M. Phys. Chem. Chem. Phys. 2010, 12 (17), 4275.
doi: 10.1039/c001968m |
3 |
Yang W. J. ; Neoh K. G. ; Kang E. T. ; Teo S. L. M. ; Rittschof D. Prog. Polym. Sci. 2014, 39 (5), 1017.
doi: 10.1016/j.progpolymsci.2014.02.002 |
4 |
Grozea C. M. ; Walker G. C. Soft Matter 2009, 5 (21), 4088.
doi: 10.1039/b910899h |
5 |
Zheng J. ; Li L. ; Tsao H. K. ; Sheng Y. J. ; Chen S. ; Jiang S. Biophys. J. 2005, 89 (1), 158.
doi: 10.1529/biophysj.105.059428 |
6 |
Herrwerth S. ; Eck W. ; Reinhardt S. ; Grunze M. J. Am. Chem. Soc. 2003, 125 (31), 9359.
doi: 10.1021/ja034820y |
7 |
Chen S. ; Li L. ; Boozer C. L. ; Jiang S. Langmuir 2000, 16 (24), 9287.
doi: 10.1021/la000417i |
8 |
Yu Q. ; Zhang Y. ; Wang H. ; Brash J. ; Chen H. Acta Biomater. 2011, 7 (4), 1550.
doi: 10.1016/j.actbio.2010.12.021 |
9 |
Han S. ; Kim C. ; Kwon D. Polymer 1997, 38 (2), 317.
doi: 10.1016/S0032-3861(97)88175-X |
10 |
Schlenoff J. B. Langmuir 2014, 30 (32), 9625.
doi: 10.1021/la500057j |
11 |
Jiang S. ; Cao Z. Adv. Mater. 2010, 22 (9), 920.
doi: 10.1002/adma.200901407 |
12 |
Zhang Z. ; Finlay J. A. ; Wang L. ; Gao Y. ; Callow J. A. ; Callow M. E. ; Jiang S. Langmuir 2009, 25 (23), 13516.
doi: 10.1021/la901957k |
13 |
Li G. ; Xue H. ; Cheng G. ; Chen S. ; Zhang F. ; Jiang S. J. Phys. Chem. B 2008, 112 (48), 15269.
doi: 10.1021/jp8058728 |
14 |
Leng C. ; Hung H. C. ; Sun S. ; Wang D. ; Li Y. ; Jiang S. ; Chen Z. ACS Appl. Mater. Interfaces 2015, 7 (30), 16881.
doi: 10.1021/acsami.5b05627 |
15 |
Leng C. ; Han X. ; Shao Q. ; Zhu Y. ; Li Y. ; Jiang S. ; Chen Z. J. Phys. Chem. C 2014, 118 (29), 15840.
doi: 10.1021/jp504293r |
16 |
Leng C. ; Sun S. ; Zhang K. ; Jiang S. ; Chen Z. Acta Biomater. 2016, 40, 6.
doi: 10.1016/j.actbio.2016.02.030 |
17 |
Kondo T. ; Gemmei-Ide M. ; Kitano H. ; Ohno K. ; Noguchi H. ; Uosaki K. Colloids. Surf. 2012, 91, 215.
doi: 10.1016/j.colsurfb.2011.11.012 |
18 |
Nagasawa D. ; Azuma T. ; Noguchi H. ; Uosaki K. ; Takai M. J. Phys. Chem. C 2015, 119 (30), 17193.
doi: 10.1021/acs.jpcc.5b04186 |
19 |
Hibino H. ; Takai M. ; Noguchi H. ; Sawamura S. ; Takahashi Y. ; Sakai H. ; Shiku H. J. Physiol. Sci. 2017, 67 (4), 439.
doi: 10.1007/s12576-017-0530-3 |
20 |
Leng C. ; Huang H. ; Zhang K. ; Hung H. C. ; Xu Y. ; Li Y. ; Jiang S. ; Chen Z. Langmuir 2018, 34 (22), 6538.
doi: 10.1021/acs.langmuir.8b00768 |
21 |
Han X. ; Leng C. ; Shao Q. ; Jiang S. ; Chen Z. Langmuir 2019.
doi: 10.1021/acs.langmuir.8b01515 |
22 |
Chen S. ; Li L. ; Zhao C. ; Zheng J. Polymer 2010, 51 (23), 5283.
doi: 10.1016/j.polymer.2010.08.022 |
23 |
Liu L. ; Li W. ; Liu Q. WIREs. Nanomed. Nanobiotechnol. 2014, 6 (6), 599.
doi: 10.1002/wnan.1278 |
24 |
Statz A. R. ; Meagher R. J. ; Barron A. E. ; Messersmith P. B. J. Am. Chem. Soc. 2005, 127 (22), 7972.
doi: 10.1021/ja0522534 |
25 |
Buskens P. ; Wouters M. ; Rentrop C. ; Vroon Z. J. Coat. Technol. Res. 2013, 10 (1), 29.
doi: 10.1007/s11998-012-9456-0 |
26 |
Badi N. ; Lutz J. F. Chem. Soc. Rev. 2009, 38 (12), 3383.
doi: 10.1039/B806413J |
27 |
Seo Y. ; Brown J. R. ; Hall L. M. Macromolecules 2015, 48 (14), 4974.
doi: 10.1021/ma502309h |
28 |
Ganesan V. ; Kumar N. A. ; Pryamitsyn V. Macromolecules 2012, 45 (15), 6281.
doi: 10.1021/ma301136y |
29 |
Chang L. W. ; Lytle T. K. ; Radhakrishna M. ; Madinya J. J. ; Vélez J. ; Sing C. E. ; Perry S. L. Nat. Commun. 2017, 8 (1), 1273.
doi: 10.1038/s41467-017-01249-1 |
30 | van Zoelen, W.; Buss, H. G.; Ellebracht, N. C.; Lynd, N. A.; Fischer, D. A.; Finlay, J.; Hill, S.; Callow, M. E.; Callow, J. A.; Kramer, E. J.; et al. ACS Macro Lett. 2014, 3 (4), 364. doi: 10.1021/mz500090n |
31 |
Callow J. A. ; Callow M. E. Nat. Commun. 2011, 2 (1), 244.
doi: 10.1038/ncomms1251 |
32 | Ekblad, T.; Bergström, G.; Ederth, T.; Conlan, S. L.; Mutton, R.; Clare, A. S.; Wang, S.; Liu, Y.; Zhao, Q.; D'Souza, F.; et al. Biomacromolecules 2008, 9 (10), 2775. doi: 10.1021/bm800547m |
33 |
Rosales A. M. ; Murnen H. K. ; Zuckermann R. N. ; Segalman R. A. Macromolecules 2010, 43 (13), 5627.
doi: 10.1021/ma1002563 |
34 |
Murnen H. K. ; Rosales A. M. ; Jaworski J. N. ; Segalman R. A. ; Zuckermann R. N. J. Am. Chem. Soc. 2010, 132 (45), 16112.
doi: 10.1021/ja106340f |
35 |
Rosales A. M. ; McCulloch B. L. ; Zuckermann R. N. ; Segalman R. A. Macromolecules 2012, 45 (15), 6027.
doi: 10.1021/ma300625b |
36 |
Rosales A. M. ; Segalman R. A. ; Zuckermann R. N. Soft Matter 2013, 9 (35), 8400.
doi: 10.1039/C3SM51421H |
37 |
Davidson E. C. ; Rosales A. M. ; Patterson A. L. ; Russ B. ; Yu B. ; Zuckermann R. N. ; Segalman R. A. Macromolecules 2018, 51 (5), 2089.
doi: 10.1021/acs.macromol.8b00055 |
38 | Patterson, A. L.; Wenning, B.; Rizis, G.; Calabrese, D. R.; Finlay, J. A.; Franco, S. C.; Zuckermann, R. N.; Clare, A. S.; Kramer, E. J.; Ober, C. K.; et al. Macromolecules 2017, 50 (7), 2656. doi: 10.1021/acs.macromol.6b02505 |
39 |
Calabrese D. R. ; Wenning B. M. ; Hilda B. ; Finlay J. A. ; Fischer D. ; Clare A. S. ; Segalman R. A. ; Ober C. K. Green Mater. 2017, 5 (1), 31.
doi: 10.1680/jgrma.17.00006 |
40 |
Gudipati C. S. ; Greenlief C. M. ; Johnson J. A. ; Prayongpan P. ; Wooley K. L. J. Polym. Sci. A: Polym. Chem. 2004, 42 (24), 6193.
doi: 10.1002/pola.20466 |
41 | Weinman, C. J.; Finlay, J. A.; Park, D.; Paik, M. Y.; Krishnan, S.; Sundaram, H. S.; Dimitriou, M.; Sohn, K. E.; Callow, M. E.; Callow, J. A.; et al. Langmuir 2009, 25 (20), 12266. doi: 10.1021/la901654q |
42 | Barry, M. E.; Davidson, E. C.; Zhang, C.; Patterson, A. L.; Yu, B.; Leonardi, A. K.; Duzen, N.; Malaviya, K.; Clarke, J. L.; Finlay, J. A.; et al. Macromolecules 2019, 52 (3), 1287. doi: 10.1021/acs.macromol.8b02390 |
43 |
Shen Y. R. Nature. 1989, 337 (6207), 519.
doi: 10.1038/337519a0 |
44 |
Wang J. ; Woodcock S. E. ; Buck S. M. ; Chen C. ; Chen Z. J. Am. Chem. Soc. 2001, 123 (38), 9470.
doi: 10.1021/ja0164071 |
45 |
Wang J. ; Paszti Z. ; Even M. A. ; Chen Z. J. Am. Chem. Soc. 2002, 124 (24), 7016.
doi: 10.1021/ja012387r |
46 |
Lu X. ; Zhang C. ; Ulrich N. ; Xiao M. ; Ma Y. H. ; Chen Z. Anal. Chem. 2017, 89 (1), 466.
doi: 10.1021/acs.analchem.6b04320 |
47 | Chen Z. Acta Phys. -Chim. Sin. 2012, 28 (3), 504. |
陈战. 物理化学学报, 2012, 28 (3), 504.
doi: 10.3866/PKU.WHXB201201091 |
|
48 |
Clarke M. L. ; Chen C. ; Wang J. ; Chen Z. Langmuir 2006, 22 (21), 8800.
doi: 10.1021/la061386f |
49 |
Wang J. ; Buck S. M. ; Even M. A. ; Chen Z. J. Am. Chem. Soc. 2002, 124 (44), 13302.
doi: 10.1021/ja026881m |
50 |
Wang J. ; Buck S. M. ; Chen Z. J. Phys. Chem. B 2002, 106 (44), 11666.
doi: 10.1021/jp021363j |
51 |
Ding B. ; Jasensky J. ; Li Y. ; Chen Z. Acc. Chem. Res. 2016, 49 (6), 1149.
doi: 10.1021/acs.accounts.6b00091 |
52 |
Lee H. ; Scherer N. F. ; Messersmith P. B. Proc. Natl. Acad. Sci. U.S.A. 2006, 103 (35), 12999.
doi: 10.1073/pnas.0605552103 |
53 |
Yu J. ; Wei W. ; Danner E. ; Ashley R. K. ; Israelachvili J. N. ; Waite J. H. Nat. Chem. Biol. 2011, 7, 588.
doi: 10.1038/nchembio.630 |
54 |
Naldrett M. J. ; Kaplan D. L. Mar. Biol. 1997, 127 (4), 629.
doi: 10.1007/s002270050053 |
55 |
Kamino K. Biochem. J. 2001, 356 (2), 503.
doi: 10.1042/bj3560503 |
56 |
Kamino K. Biofouling 2013, 29 (6), 735.
doi: 10.1080/08927014.2013.800863 |
57 |
Leng C. ; Buss H. G. ; Segalman R. A. ; Chen Z. Langmuir 2015, 31 (34), 9306.
doi: 10.1021/acs.langmuir.5b01440 |
[1] | 胡立梅, 蔺存国, 王利, 苑世领. 溶菌酶蛋白在聚合物防污膜表面的吸附[J]. 物理化学学报, 2014, 30(11): 2149 -2156 . |
|