物理化学学报

最新录用 上一篇    下一篇

湿空气下制备稳定的CsPbI2Br钙钛矿太阳电池

林飞宇1,2,3, 杨英1,2,3, 朱从潭1,2,3, 陈甜1,2,3, 马书鹏1,2,3, 罗媛1,2,3, 朱刘4,5, 郭学益1,2,3   

  1. 1 中南大学冶金与环境学院, 长沙 410083;
    2 有色金属资源循环利用湖南省重点实验室, 长沙 410083;
    3 有色金属资源循环利用国家地方联合工程研究中心, 长沙 410083;
    4 广东先导稀材股份有限公司, 广东 清远 511517;
    5 清远先导材料有限公司, 广东 清远 511517
  • 收稿日期:2020-05-05 修回日期:2020-06-02 录用日期:2020-06-02 发布日期:2020-06-08
  • 通讯作者: 杨英 E-mail:muyicaoyang@csu.edu.cn
  • 基金资助:
    国家自然科学基金(61774169), 中南大学自由探索创新项目(2019zzts944, 502211922)资助

Fabrication of Stable CsPbI2Br Perovskite Solar Cells in the Humid Air

Feiyu Lin1,2,3, Ying Yang1,2,3, Congtan Zhu1,2,3, Tian Chen1,2,3, Shupeng Ma1,2,3, Yuan Luo1,2,3, Liu Zhu4,5, Xueyi Guo1,2,3   

  1. 1 School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China;
    2 Hunan Key Laboratory of Nonferrous Metal Resources Recycling, Changsha 410083, P. R. China;
    3 National & Regional Joint Engineering Research Center of Nonferrous Metal Resources Recycling, Changsha 410083, P. R. China;
    4 First Rare Materials Co., Ltd., Qingyuan 511517, Guangdong Province, P. R. China;
    5 First Materials Co., Ltd., Qingyuan 511517, Guangdong Province, P. R. China
  • Received:2020-05-05 Revised:2020-06-02 Accepted:2020-06-02 Published:2020-06-08
  • Supported by:
    The project was supported by the National Natural Science Foundation of China (61774169) and the Fundamental Research Funds for the Central South University, China (2019zzts944, 502211922).

摘要: 无机钙钛矿太阳能电池由于具有良好的热稳定性,高吸光系数等优点发展迅速。但无机钙钛矿材料对水分极其敏感,一般在惰性环境下中进行制备,操作复杂。本文通过简单的一步旋涂工艺,在无手套箱空气湿度条件下制备CsPbI2Br无机钙钛矿薄膜,通过介孔TiO2厚度的优化,对钙钛矿薄膜的结晶、成膜及稳定性进行了分析,发现在较厚基底介孔层上制备的钙钛矿晶粒大、无孔隙;随着基底厚度的减小,其上所形成的CsPbI2Br薄膜禁带宽度(Eg)增大;电化学阻抗测试表明在较厚基底介孔层上制备的CsPbI2Br钙钛矿具有更好的载流子提取与传输能力。对不同厚度介孔层上沉积的钙钛矿薄膜稳定性进行测试,发现CsPbI2Br钙钛矿的稳定性随着介孔层厚度的增加而提高,在空气中做放置144 h后无明显变化。在空气湿度条件下组装成器件,获得到了8.16%的最佳光电转换效率,并且对器件无任何修饰及封装的情况下,在相对湿地低于35%的空气中放置72 h后保持最初效率的73%。

关键词: 无机钙钛矿, 太阳能电池, 介孔层厚度, 稳定性, 湿空气制备

Abstract: Inorganic perovskite materials have gained considerable attention owing to their good thermal stability, high absorption coefficient, adjustable bandgap, and simple preparation. However, most inorganic perovskites are sensitive to water and need to be prepared under inert environments in a glove box, which increases their preparation cost. In this study, we used a simple one-step spin coating anti-solvent process to prepare CsPbI2Br, which was then annealed in humid air (relative humidity < 35%) at 300 ℃ for 5 min with isopropanol as the anti-solvent. An inorganic perovskite solar cell with fluorine-doped tin dioxide/compact TiO2/mesoporous TiO2/CsPbI2Br/hole transport materials/Ag structure was prepared. By varying the concentration of the mesoporous precursor, we controlled the thickness of mesoporous TiO2 in order to investigate its effect on the properties of the perovskite films and devices. The X-ray diffraction (XRD) results confirmed the successful synthesis of CsPbI2Br in humid air. Moreover, the thickness of the substrate affected the crystal growth orientation. The scanning electron microscopy results revealed that the thickness of the mesoporous titanium dioxide substrate affected the crystallization processing of CsPbI2Br, resulting in the formation of compounds with different morphologies and phases. The ultraviolet-visible (UV-Vis) and photoluminescence spectra of the perovskite materials revealed that the substrate thickness affected their optical properties. With a decrease in the thickness of the mesoporous TiO2 substrate, the bandgap of CsPbI2Br increased slightly. At the substrate thickness of 145 nm, the defect density of state of CsPbI2Br increased. At the optimum mesoporous titanium dioxide substrate thickness of 732 nm, the device showed the best power conversion efficiency of 8.16%. The electrochemical impedance spectroscopy measurements revealed that the devices prepared on thicker mesoporous layers showed better carrier extraction and transmission capabilities but higher interfacial charge recombination resistance, leading to a lower open-circuit voltage but higher current density. Thus, an increase in the thickness of the mesoporous substrate improved the photovoltaic performance of the devices. The stability of the CsPbI2Br perovskite film improved with an increase in the mesoporous substrate thickness. The stability test results along with the UV-Vis and XRD analysis results showed that the perovskite film prepared on the 732 nm-thick substrate showed no significant structure change after being placed in humid air for 144 h. The stability of the perovskite solar cells was also investigated. The device with the 732 nm-thick substrate could maintain its original efficiency of 73% after exposure to air with relative humidity less than 35% for 72 h. Thus, inorganic perovskite solar cells could be successfully prepared in the humid air environment.

Key words: Inorganic perovskite, Solar cell, Mesoporous layer thickness, Stability, Humid air preparation

MSC2000: 

  • O649