物理化学学报 >> 2021, Vol. 37 >> Issue (10): 2005008.doi: 10.3866/PKU.WHXB202005008
杨晓庆1, 杨华琳1, 卢欢2,*(), 丁皓璇3, 童妍心1, 饶斐1, 张鑫1, 申茜4,*(
), 高健智1,*(
), 朱刚强1
收稿日期:
2020-05-05
录用日期:
2020-06-05
发布日期:
2020-06-15
通讯作者:
卢欢,申茜,高健智
E-mail:huanlu@snnu.edu.cn;iamqshen@njtech.edu.cn;jianzhigao@snnu.edu.cn
作者简介:
第一联系人:†These authors contributed equally to this work.
基金资助:
Xiaoqing Yang1, Hualin Yang1, Huan Lu2,*(), Haoxuan Ding3, Yanxin Tong1, Fei Rao1, Xin Zhang1, Qian Shen4,*(
), Jianzhi Gao1,*(
), Gangqiang Zhu1
Received:
2020-05-05
Accepted:
2020-06-05
Published:
2020-06-15
Contact:
Huan Lu,Qian Shen,Jianzhi Gao
E-mail:huanlu@snnu.edu.cn;iamqshen@njtech.edu.cn;jianzhigao@snnu.edu.cn
About author:
Email: jianzhigao@snnu.edu.cn (J.G), Tel.: +86-29-81530750 (J.G)Supported by:
摘要:
本研究采用水热法构建出2D/2D Ti3C2/Bi4O5Br2纳米异质结,在可见光下研究了该复合材料对NO的光催化去除能力。实验表明,15%Ti3C2/Bi4O5Br2对NO的光催化去除效率相比纯Bi4O5Br2显著提高:其降解效率达到57.6%,比Bi4O5Br2高27.1%。同时,15%Ti3C2/Bi4O5Br2具有很好的稳定性,经过5次循环催化,其催化率依然接近50.0%。研究发现,反应过程中主要的反应活性物质是e−和·O2−,光氧化产物主要为NO2−和NO3−。分析复合材料的光催化机制,发现光催化活性的提高主要得益于2D/2D Ti3C2/Bi4O5Br2异质结提高了电子与空穴的分离率,从而提高了光催化效率。这项工作提供了一个制备2D/2D纳米复合材料用于光催化降解环境污染物的有效方法,在缓解能源紧张与环境污染方面有巨大应用潜力。
MSC2000:
杨晓庆, 杨华琳, 卢欢, 丁皓璇, 童妍心, 饶斐, 张鑫, 申茜, 高健智, 朱刚强. 高催化活性2D/2D Ti3C2/Bi4O5Br2纳米片异质结的构建及其可见光催化去除NO[J]. 物理化学学报, 2021, 37(10): 2005008.
Xiaoqing Yang, Hualin Yang, Huan Lu, Haoxuan Ding, Yanxin Tong, Fei Rao, Xin Zhang, Qian Shen, Jianzhi Gao, Gangqiang Zhu. 2D/2D Ti3C2/Bi4O5Br2 Nanosheet Heterojunction with Enhanced Visible Light Photocatalytic Activity for NO Removal[J]. Acta Phys. -Chim. Sin., 2021, 37(10): 2005008.
1 |
Fan W. G. ; Chan K. Y. ; Zhang C. X. ; Zhang K. ; Ning Z. ; Leung M. K. H Appl. Energy 2018, 225, 535.
doi: 10.1016/j.apenergy.2018.04.134 |
2 |
Jia Y. F. ; Li S. P. ; Gao J. Z. ; Zhu G. Q. ; Zhang F. C. ; Shi X. J. ; Huang Y. ; Liu C. L Appl. Catal. B 2019, 240, 241.
doi: 10.1016/j.apcatb.2018.09.005 |
3 |
Peng M. Q. ; Zhao R. ; Xia M. ; Li C. J. ; Gong X. L. ; Wang D. ; Xia D. S Fuel 2017, 200, 290.
doi: 10.1016/j.fuel.2017.03.062 |
4 |
Wang T. ; Liu H. Z. ; Zhang X. Y. ; Guo Y. H. ; Zhang Y. S. ; Wang Y. ; Sun B. M Fuel Process. Technol. 2017, 158, 199.
doi: 10.1016/j.fuproc.2017.01.011 |
5 |
Liu Z. M. ; Zhu J. Z. ; Li J. H. ; Ma L. L. ; Woo S. I ACS Appl. Mater. Interfaces 2014, 6 (16), 14500.
doi: 10.1021/am5038164 |
6 |
Boubnov A. ; Carvalho H. W. P. ; Doronkin D. E. ; Gunter T. ; Gallo E. ; Atkins A. J. ; Jacob C. R. ; Grunwaldt J. D J. Am. Chem. Soc. 2014, 136 (37), 13006.
doi: 10.1021/ja5062505 |
7 |
Hu J. D. ; Chen D. Y. ; Li N. J. ; Xu Q. F. ; Li H. ; He J. H. ; Lu J. M Appl. Catal. B 2017, 217, 224.
doi: 10.1016/j.apcatb.2017.05.088 |
8 |
Dong G. H. ; Ho W. K. ; Zhang L. Z Appl. Catal. B 2015, 168–169, 490.
doi: 10.1016/j.apcatb.2015.01.014 |
9 |
Jin S. ; Dong G. H. ; Luo J. M. ; Ma F. Y. ; Wang C. Y Appl. Catal. B 2018, 227, 24.
doi: 10.1016/j.apcatb.2018.01.020 |
10 |
Yang X. Y. ; Cao X. J. ; Tang B. M. ; Shan B. L. ; Deng M. ; Liu Y. G J. Photochem. Photobiol. A 2019, 375, 40.
doi: 10.1016/j.jphotochem.2019.02.011 |
11 |
Wang H. ; Sun Y. J. ; Jiang G. M. ; Zhang Y. X. ; Huang H. W. ; Wu Z. B. ; Lee S. C. ; Dong F Environ. Sci. Technol. 2018, 52 (3), 1479.
doi: 10.1021/acs.est.7b05457 |
12 |
Jia Y. F. ; Li S. P. ; Ma H. X. ; Gao J. Z. ; Zhu G. Q. ; Zhang F. C. ; Park J. Y. ; Cha S. W. ; Bae J. S. ; Liu C. L J. Hazard. Mater. 2020, 382, 121121.
doi: 10.1016/j.jhazmat.2019.121121 |
13 |
Wang J. J. ; Tang L. ; Zeng G. M. ; Deng Y. C. ; Liu Y. N. ; Wang L. L. ; Zhou Y. Y. ; Guo Z. ; Wang J. J. ; Zhang C Appl. Catal. B 2017, 209, 285.
doi: 10.1016/j.apcatb.2017.03.019 |
14 |
Sun Z. C. ; Yu Z. Q. ; Liu Y. Y. ; Shi C. ; Zhu M. S. ; Wang A. J J. Colloid Interface Sci. 2019, 533, 251.
doi: 10.1016/j.jcis.2018.08.071 |
15 |
Wang Q. ; Wang W. ; Zhong L. L. ; Liu D. M. ; Cao X. Z. ; Cui F. Y Appl. Catal. B 2018, 220, 290.
doi: 10.1016/j.apcatb.2017.08.049 |
16 |
Chen Y. ; Jia G. ; Hu Y. F. ; Fan G. Z. ; Tsang Y. H. ; Li Z. S. ; Zou Z. G Sustain. Energy Fuels 2017, 1 (9), 1875.
doi: 10.1039/c7se00344g |
17 |
Zhang Z. Y. ; Huang J. D. ; Zhang M. Y. ; Yuan Q. ; Dong B Appl. Catal. B 2015, 163, 298.
doi: 10.1016/j.apcatb.2014.08.013 |
18 |
Guo F. ; Shi W. L. ; Li M. Y. ; Shi Y. ; Wen H. B Sep. Purif. Technol. 2019, 210, 608.
doi: 10.1016/j.seppur.2018.08.055 |
19 |
Cheng H. F. ; Huang B. B. ; Dai Y Nanoscale 2014, 6 (4), 2009.
doi: 10.1039/c3nr05529a |
20 |
Xia J. X. ; Ge Y. P. ; Di J. ; Xu L. ; Yin S. ; Chen Z. G. ; Liu P. J. ; Li H. M J. Colloid Interface Sci. 2016, 473, 112.
doi: 10.1016/j.jcis.2016.03.046 |
21 |
Chou S. Y. ; Chen C. C. ; Dai Y. M. ; Lin J. H. ; Lee W. W RSC Adv. 2016, 6 (40), 33478.
doi: 10.1039/c5ra28024a |
22 |
Zhang J. Y. ; Zhu G. Q. ; Li S. P. ; Rao F. ; Hassan Q. U. ; Gao J. Z. ; Huang Y. ; Hojamberdiev M ACS Appl. Mater. Interfaces 2019, 11 (41), 37822.
doi: 10.1021/acsami.9b14300 |
23 |
Zhu G. Q. ; Li S. P. ; Gao J. Z. ; Zhang F. C. ; Liu C. L. ; Wang Q. Z. ; Hojamberdiev M Appl. Surf. Sci. 2019, 493, 913.
doi: 10.1016/j.apsusc.2019.07.119 |
24 |
Mao X. M. ; Xie F. X. ; Li M Mater. Lett. 2016, 166, 296.
doi: 10.1016/j.matlet.2015.12.090 |
25 |
Ji M. X. ; Di J. ; Ge Y. P. ; Xia J. X. ; Li H. M Appl. Surf. Sci. 2017, 413, 372.
doi: 10.1016/j.apsusc.2017.03.287 |
26 |
Liu D. ; Yao W. Q. ; Wang J. ; Liu Y. F. ; Zhang M. ; Zhu Y. F Appl. Catal. B 2015, 172–173, 100.
doi: 10.1016/j.apcatb.2015.01.037 |
27 |
Ding S. S. ; Mao D. J. ; Yang S. G. ; Wang F. ; Meng L. J. ; Han M. S. ; He H. ; Sun C. ; Xu B Appl. Catal. B 2017, 210, 386.
doi: 10.1016/j.apcatb.2017.04.002 |
28 |
Feng W. L. ; Luo H. ; Wang Y. ; Zeng S. F. ; Tan Y. Q. ; Zhang H. B. ; Peng S. M Ceram. Int. 2018, 44 (6), 7084.
doi: 10.1016/j.ceramint.2018.01.147 |
29 |
Li J. B. ; Yan D. ; Hou S. J. ; Li Y. Q. ; Lu T. ; Yao Y. F. ; Pan L. K J. Mater. Chem. A 2018, 6 (3), 1234.
doi: 10.1039/c7ta08261d |
30 |
Low J. X. ; Zhang L. Y. ; Tong T. ; Shen B. J. ; Yu J. G J. Catal. 2018, 361, 255.
doi: 10.1016/j.jcat.2018.03.009 |
31 |
Zhang H. L. ; Li M. ; Cao J. L. ; Tang Q. J. ; Kang P. ; Zhu C. X. ; Ma M. J Ceram. Int. 2018, 44 (16), 19958.
doi: 10.1016/j.ceramint.2018.07.262 |
32 |
Cai T. ; Wang L. L. ; Liu Y. T. ; Zhang S. Q. ; Dong W. Y. ; Chen H. ; Yi X. Y. ; Yuan J. L. ; Xia X. N. Liu C ; Liu C. B. ; et al Appl. Catal. B 2018, 239, 545.
doi: 10.1016/j.apcatb.2018.08.053 |
33 |
Gao Y. P. ; Wang L. B. ; Zhou A. G. ; Li Z. Y. ; Chen J. K. ; Bala H. ; Hu Q. K. ; Cao X. X Mater. Lett. 2015, 150, 62.
doi: 10.1016/j.matlet.2015.02.135 |
34 |
Yan P. T. ; Zhang R. J. ; Jia J. ; Wu C. ; Zhou A. G. ; Xu J. ; Zhang X. S J. Power Sources 2015, 284, 38.
doi: 10.1016/j.jpowsour.2015.03.017 |
35 |
Li Z. Z. ; Zhang H. G. ; Wang L. ; Meng X. C. ; Shi J. J. ; Qi C. X. ; Zhang Z. S. ; Feng L. J. ; Li C. H J. Photochem. Photobiol. A 2020, 386, 112099.
doi: 10.1016/j.jphotochem.2019.112099 |
36 |
Li Y. J. ; Deng X. T. ; Tian J. ; Liang Z. Q. ; Cui H. Z Appl. Mater. Today 2018, 13, 217.
doi: 10.1016/j.apmt.2018.09.004 |
37 |
Peng C. ; Wang H. J. ; Yu H. ; Peng F Mater. Res. Bull. 2017, 89, 16.
doi: 10.1016/j.materresbull.2016.12.049 |
38 |
Li R. ; Liu J. X. ; Zhang X. F. ; Wang Y. W. ; Wang Y. F. ; Zhang C. M. ; Zhang X. C. ; Fan C. M Chem. Eng. J. 2018, 339, 42.
doi: 10.1016/j.cej.2018.01.109 |
39 |
Bai Y. ; Chen T. ; Wang P. Q. ; Wang L. ; Ye L. Q Chem. Eng. J. 2016, 304, 454.
doi: 10.1016/j.cej.2016.06.100 |
40 |
Xue Q. ; Zhang H. J. ; Zhu M. S. ; Pei Z. X. ; Li H. F. ; Wang Z. F. ; Huang Y. ; Huang Y. ; Deng Q. H ; Zhou J. ; et al Adv. Mater. 2017, 29 (15), 1604847.
doi: 10.1002/adma.201604847 |
41 |
Liu N. ; Lu N. ; Su Y. ; Wang P. ; Quan X Sep. Purif. Technol. 2019, 211, 782.
doi: 10.1016/j.seppur.2018.10.027 |
42 |
Bai X. J. ; Wang L. ; Wang Y. J. ; Yao W. Q. ; Zhu Y. F Appl. Catal. B 2014, 152–153, 262.
doi: 10.1016/j.apcatb.2014.01.046 |
43 |
Wang H. ; He W. J. ; Dong X. A. ; Wang H. Q. ; Dong F Chin. Sci. Bull. 2018, 63 (2), 117.
doi: 10.1016/j.scib.2017.12.013 |
44 |
Dong G. H. ; Ho W. K. ; Li Y. H. ; Zhang L. Z Appl. Catal. B 2015, 174–175, 477.
doi: 10.1016/j.apcatb.2015.03.035 |
45 |
Zhang W. D. ; Liu X. L. ; Dong X. A. ; Dong F. ; Zhang Y. X Chin. J. Catal. 2017, 38 (12), 2030.
doi: 10.1016/s1872-2067(17)62941-3 |
46 |
Rao F. ; Zhu G. Q. ; Hojamberdiev M. ; Zhang W. B. ; Li S. P. ; Gao J. Z. ; Zhang F. C. ; Huang Y. H. ; Huang Y J. Phys. Chem. C 2019, 123 (26), 16268.
doi: 10.1021/acs.jpcc.9b03961 |
47 |
Cao T. ; Huo W. C. ; Guo Z. Y. ; Jing C. ; Chen Y. X. ; Zhang Y. X. ; Zhou Z Appl. Surf. Sci. 2019, 498, 143848.
doi: 10.1016/j.apsusc.2019.143848 |
48 |
Zhu G. Q. ; Hojamberdiev M. ; Zhang S. L. ; Din S. T. U. ; Yang W Appl. Surf. Sci. 2019, 467–468, 968.
doi: 10.1016/j.apsusc.2018.10.246 |
[1] | 刘弘禹, 孟钢, 邓赞红, 李蒙, 常鋆青, 代甜甜, 方晓东. VOCs分子的半导体型传感器识别检测研究进展[J]. 物理化学学报, 2022, 38(5): 2008018 - . |
[2] | 何科林, 沈荣晨, 郝磊, 李佑稷, 张鹏, 江吉周, 李鑫. 纳米SiC基光催化剂研究进展[J]. 物理化学学报, 2022, 38(11): 2201021 - . |
[3] | 李开宁, 张梦曦, 欧小雨, 李睿娜, 李覃, 范佳杰, 吕康乐. 高活性氮化碳纳米片的制备策略[J]. 物理化学学报, 2021, 37(8): 2008010 - . |
[4] | 周易, 欧阳威龙, 王岳军, 王海强, 吴忠标. 核壳结构NH2-UiO-66@TiO2的制备及其可见光下的甲苯降解性能研究[J]. 物理化学学报, 2021, 37(8): 2009045 - . |
[5] | 刘东, 陈圣韬, 李仁杰, 彭天右. 用于光催化能量转换的Z-型异质结的研究进展[J]. 物理化学学报, 2021, 37(6): 2010017 - . |
[6] | 吴进, 刘京, 夏雾, 任颖异, 王锋. 基于CdS和CdSe纳米半导体材料的可见光催化二氧化碳还原研究进展[J]. 物理化学学报, 2021, 37(5): 2008043 - . |
[7] | 王艺蒙, 张申平, 葛宇, 王臣辉, 胡军, 刘洪来. 多孔双金属氧化物/碳复合光催化剂对四环素的高效光催化降解[J]. 物理化学学报, 2020, 36(8): 1905083 - . |
[8] | 黄娟娟,杜建梅,杜海威,徐更生,袁玉鹏. 氨氛围热处理g-C3N4控制N空位浓度提高光催化制氢性能[J]. 物理化学学报, 2020, 36(7): 1905056 - . |
[9] | 曹丹,安华,严孝清,赵宇鑫,杨贵东,梅辉. SiC/Pt/CdS纳米棒Z型异质结的制备及其高效光催化产氢性能[J]. 物理化学学报, 2020, 36(3): 1901051 - . |
[10] | 李明亮, 李硕, 王国治, 郭雪峰. 烷基链工程对两亲有机半导体热力学性能影响的研究[J]. 物理化学学报, 2020, 36(11): 1908036 - . |
[11] | 母晓玥,李路. 室温光驱动甲烷活化[J]. 物理化学学报, 2019, 35(9): 968 -976 . |
[12] | 王根旺,侯超剑,龙昊天,杨立军,王扬. 二维半导体材料纳米电子器件和光电器件[J]. 物理化学学报, 2019, 35(12): 1319 -1340 . |
[13] | 王子昂, 郭航, 荣欣, 董桂芳. 有机半导体图案化成膜中的马兰戈尼与咖啡环效应协同作用[J]. 物理化学学报, 2019, 35(11): 1259 -1266 . |
[14] | 张春梅,聂亦涵,杜爱军. 二维铁电材料ABP2X6内在极高的负泊松比[J]. 物理化学学报, 2019, 35(10): 1128 -1133 . |
[15] | 任玉美,许群. 构筑先进二维异质结构Ag/WO3−x用于提升光电转化效率[J]. 物理化学学报, 2019, 35(10): 1157 -1164 . |
|