刘弘禹1,2, 孟钢1, 邓赞红1, 李蒙1,2, 常鋆青1,2, 代甜甜1,2, 方晓东1
收稿日期:
2020-08-06
修回日期:
2020-08-27
录用日期:
2020-08-28
发布日期:
2020-09-03
通讯作者:
孟钢, 方晓东
E-mail:menggang@aiofm.ac.cn;xdfang@aiofm.ac.cn
基金资助:
Hongyu Liu1,2, Gang Meng1, Zanhong Deng1, Meng Li1,2, Junqing Chang1,2, Tiantian Dai1,2, Xiaodong Fang1
Received:
2020-08-06
Revised:
2020-08-27
Accepted:
2020-08-28
Published:
2020-09-03
Supported by:
摘要: 具有体积小、功耗低、灵敏度高、硅工艺兼容性好等优点的金属氧化物半导体(MOS)气体传感器现已广泛地应用于军事、科研和国民经济的各个领域。然而MOS传感器的低选择性阻碍了其在物联网(IoT)时代的应用前景。为此,本文综述了解决MOS传感器选择性的研究进展,主要介绍了敏感材料性能提升、电子鼻和热调制三种改善MOS传感器选择性的技术方法,阐述了三种方法目前所存在的问题及其未来的发展趋势。同时,本文还对比介绍了机器嗅觉领域主流的主成分分析(PCA)、线性判别分析(LDA)和神经网络(NN)模式识别/机器学习算法。最后,本综述展望了具有数据降维、特征提取和鲁棒性识别分类性能的卷积神经网络(CNN)深度学习算法在气体识别领域的应用前景。基于敏感材料性能的提升、多种调制手段与阵列技术的结合以及人工智能(AI)领域深度学习算法的最新进展,将会极大地增强非选择性MOS传感器的挥发性有机化合物(VOCs)分子识别能力。
MSC2000:
刘弘禹, 孟钢, 邓赞红, 李蒙, 常鋆青, 代甜甜, 方晓东. VOCs分子的半导体型传感器识别检测研究进展[J]. 物理化学学报, 2008018.
Hongyu Liu, Gang Meng, Zanhong Deng, Meng Li, Junqing Chang, Tiantian Dai, Xiaodong Fang. Progress in Research on VOC Molecule Recognition by Semiconductor Sensors[J]. Acta Physico-Chimica Sinica, 2008018.
(1) Peng, G.; Tisch, U.; Adams, O.; Hakim, M.; Shehada, N.; Broza, Y. Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Haick, H. Nat. Nanotechnol. 2009, 4 (10), 669. doi: 10.1038/nnano.2009.235 (2) Turner, M. A.; Bandelow, S.; Edwards, L.; Patel, P.; Martin, H. J.; Wilson, I. D.; Thomas, C. L. P. J. Breath Res. 2013, 7 (1), 017102. doi: 10.1088/1752-7155/7/1/017102 (3) Kim, H. J.; Yoon, J. W.; Choi, K. I.; Jang, H. W.; Umar, A.; Lee, J. H. Nanoscale 2013, 5 (15), 7066. doi: 10.1039/c3nr01281f (4) Meng, F.; Zheng, H.; Sun, Y.; Li, M.; Liu, J. Sensors 2017, 17 (7), 1478. doi: 10.3390/s17071478 (5) Guntner, A. T.; Koren, V.; Chikkadi, K.; Righettoni, M.; Pratsinis, S. E ACS Sens. 2016, 1 (5), 528. doi: 10.1021/acssensors.6b00008 (6) Zhang, Q.; Guan, Z. Instrument Technique and Sensor 2006, 7, 6. [张强, 管自生. 仪表技术与传感器, 2006, 7, 6.] (7) Meng, G.; Zhuge, F.; Nagashima, K.; Nakao, A.; Kanai, M.; He, Y.; Boudot, M.; Takahashi, T.; Uchida, K.; Yanagida, T ACS Sens. 2016, 1 (8), 997. doi: 10.1021/acssensors.6b00364 (8) Dai, Z.; Xu, L.; Duan, G.; Li, T.; Zhang, H.; Li, Y.; Wang, Y.; Wang, Y.; Cai, W. Sci. Rep. 2013, 3, 1669. doi: 10.1038/srep01669 (9) Zhu, B.; Yin, C.; Zhang, Z.; Yang, L. J. Nanjing Univ. Technol. 2013, 35, 61. [朱斌, 殷晨波, 张子立. 南京工业大学学报, 2013, 35, 61.] (10) Qin, W.; Yuan, Z.; Gao, H.; Meng, F. Sensors 2020, 20 (12), 3353. doi: 10.3390/s20123353 (11) Meng, D.; Si, J. P.; Wang, M. Y.; Wang, G. S.; Shen, Y. B.; San, X. G.; Meng, F. L Vacuum 2020, 171, 108994. doi: 10.1016/j.vacuum.2019.108994 (12) Sedghi, S. M.; Mortazavi, Y.; Khodadadi, A. Sens. Actuator B-Chem. 2010, 145 (1), 7. doi: 10.1016/j.snb.2009.11.002 (13) Zou, X. M.; Wang, J. L.; Liu, X. Q.; Wang, C. L.; Jiang, Y.; Wang, Y.; Xiao, X. H.; Ho, J. C.; Li, J. C.; Jiang, C. Z.; et al Nano Lett. 2013, 13 (7), 3287. doi: 10.1021/nl401498t (14) Li, M.; Li, B.; Meng, F.; Liu, J.; Yuan, Z.; Wang, C.; Liu, J Sens. Actuator B-Chem. 2018, 273, 543. doi: 10.1016/j.snb.2018.06.081 (15) Ahn, M. W.; Park, K. S.; Heo, J. H.; Park, J. G.; Kim, D. W.; Choi, K. J.; Lee, J. H.; Hong, S. H. Appl. Phys. Lett. 2008, 93 (26), 263103. doi: 10.1063/1.3046726 (16) Sun, P.; Zhou, X.; Wang, C.; Shimanoe, K.; Lu, G.; Yamazoe, N. J. Mater. Chem. A 2014, 2 (5), 1302. doi: 10.1039/c3ta13707d (17) Walker, J. M.; Akbar, S. A.; Morris, P. A. Sens. Actuator B-Chem. 2019, 286, 624. doi: 10.1016/j.snb.2019.01.049 (18) Xie, F.; Li, W. H.; Zhang, Q. Y.; Zhang, S. P IEEE Sens. J. 2019, 19 (22), 10674. doi: 10.1109/jsen.2019.2929504 (19) Zhang, M.; Guo, J. X.; Xie, F.; Wang, J. C.; Zhang, S. P.; Guo, X. Solid State Ion. 2020, 347, 115274. doi: 10.1016/j.ssi.2020.115274 (20) Sysoev, V. V.; Goschnick, J.; Schneider, T.; Strelcov, E.; Kolmakov, A. Nano Lett. 2007, 7 (10), 3182. doi: 10.1021/nl071815+ (21) Han, J. W.; Rim, T.; Baek, C. K.; Meyyappan, M. ACS Appl. Mater. Interfaces 2015, 7 (38), 21263. doi: 10.1021/acsami.5b05479 (22) Persaud, K.; Dodd, G. Nature 1982, 299 (5881), 352. doi: 10.1038/299352a0 (23) Chen, P. C.; Ishikawa, F. N.; Chang, H. K.; Ryu, K.; Zhou, C. Nanotechnology 2009, 20 (12), 125503. doi: 10.1088/0957-4484/20/12/125503 (24) Wu, Z.; Zhou, C.; Zu, B.; Li, Y.; Dou, X. Adv. Funct. Mater. 2016, 26 (25), 4578. doi: 10.1002/adfm.201600592 (25) Li, S.; Jaegle, M.; Boettner, H. Chin. J. Sensors Actuators 2005, 18, 36. [李松, Jaegle, M., Boettner, H. 传感技术学报, 2015, 18, 36.] (26) Gutierrez-Osuna, R.; Gutierrez-Galvez, A.; Powar, N Sens. Actuator B-Chem. 2003, 93 (1–3), 57. doi: 10.1016/S0925-4005(03)00248-X (27) Hossein-Babaei, F.; Amini, A. Sens. Actuator B-Chem. 2012, 166, 419. doi: 10.1016/j.snb.2012.02.082 (28) Sears, W. M.; Colbow, K.; Consadori, F. Semicond. Sci. Technol. 1989, 4 (5), 351. doi: 10.1088/0268-1242/4/5/004 (29) Nakata, S.; Kato, Y.; Kaneda, Y.; Yoshikawa, K. Appl. Surf. Sci. 1996, 103 (4), 369. doi: 10.1016/S0169-4332(96)00551-X (30) Hierlemann, A.; Gutierrez-Osuna, R. Chem. Rev. 2008, 108 (2), 563. doi: 10.1021/cr068116m (31) Nakata, S.; Nakasuji, M.; Ojima, N.; Kitora, M. Appl. Surf. Sci. 1998, 135 (1–4), 285. doi: 10.1016/S0169-4332(98)00290-6 (32) Huang, X. J.; Liu, J. H.; Shao, D. L.; Pi, Z. X.; Yu, Z. L. Sens. Actuator B-Chem. 2003, 96 (3), 630. doi: 10.1016/j.snb.2003.07.006 (33) Nakata, S.; Okunishi, H Appl. Surf. Sci. 2005, 240 (1–4), 366. doi: 10.1016/j.apsusc.2004.07.005 (34) Lee, A. P.; Reedy, B. J. Sens. Actuator B-Chem. 1999, 60 (1), 35. doi: 10.1016/S0925-4005(99)00241-5 (35) Bukowiecki, S.; Pfister, G.; Reis, A.; Troup, A. P.; Ulli, H. P. Gas or Vapor Alarm System Including Scanning Gas Sensors. USA Patent 4567475, 1986. (36) Deng, Q.; Gao, S.; Lei, T.; Ling, Y.; Zhang, S.; Xie, C. Sens. Actuator B-Chem. 2017, 247, 903. doi: 10.1016/j.snb.2017.03.107 (37) Seiyama, T.; Kato, A.; Fujiishi, K.; Nagatani, M. Anal. Chem. 1962, 34 (11), 1502. doi: 10.1021/ac60191a001 (38) Kim, H. J.; Lee, J. H. Sens. Actuator B-Chem. 2014, 192, 607. doi: 10.1016/j.snb.2013.11.005 (39) Zhang, X.; Lan, W.; Xu, J.; Luo, Y.; Pan, J.; Liao, C.; Yang, L.; Tan, W.; Huang, X. Sens. Actuator B-Chem. 2019, 289, 144. doi: 10.1016/j.snb.2019.03.090 (40) Liu, H.; Shen, W.; Chen, X.; Corriou, J. P. J. Mater. Sci.-Mater. Electron. 2018, 29 (21), 18380. doi: 10.1007/s10854-018-9952-9 (41) Zhang, B.; Li, M.; Song, Z.; Kan, H.; Yu, H.; Liu, Q.; Zhang, G.; Liu, H. Sens. Actuator B-Chem. 2017, 249, 558. doi: 10.1016/j.snb.2017.03.098 (42) Li, Y.; Zhang, Q.; Li, X.; Bai, H.; Li, W.; Zeng, T.; Xi, G. RSC Adv. 2016, 6 (98), 95747. doi: 10.1039/c6ra20531c (43) Shao, S.; Chen, X.; Chen, Y.; Zhang, L.; Kim, H. W.; Kim, S. S ACS Appl. Nano Mater. 2020, 3 (6), 5220. doi: 10.1021/acsanm.0c00642 (44) Zhang, D.; Wu, Z.; Zong, X Sens. Actuator B-Chem. 2019, 288, 232. doi: 10.1016/j.snb.2019.02.093 (45) Wang, Z.; Zhang, T.; Han, T.; Fei, T.; Liu, S.; Lu, G. Sens. Actuator B-Chem. 2018, 266, 812. doi: 10.1016/j.snb.2018.03.169 (46) Kim, H. W.; Na, H. G.; Kwon, Y. J.; Kang, S. Y.; Choi, M. S.; Bang, J. H.; Wu, P.; Kim, S. S. ACS Appl. Mater. Interfaces 2017, 9 (37), 31667. doi: 10.1021/acsami.7b02533 (47) Srivastava, V.; Jain, K. Mater. Lett. 2016, 169, 28. doi: 10.1016/j.matlet.2015.12.115 (48) Chen, K.; Lu, H.; Li, G.; Zhang, J.; Tian, Y.; Gao, Y.; Guo, Q.; Lu, H.; Gao, J. Sens. Actuator B-Chem. 2020, 308, 127716. doi: 10.1016/j.snb.2020.127716 (49) Zhang, M.; Guo, J.; Xie, F.; Wang, J.; Zhang, S.; Guo, X. Solid State Ion. 2020, 347, 115274. doi: 10.1016/j.ssi.2020.115274 (50) Huang, B.; Wang, Y.; Hu, Q.; Mu, X.; Zhang, Y.; Bai, J.; Wang, Q.; Sheng, Y.; Zhang, Z.; Xie, E. J. Mater. Chem. C 2018, 6 (40), 10935. doi: 10.1039/c8tc03669a (51) Wu, H.; Huang, H.; Zhou, J.; Hong, D.; Ikram, M.; Rehman, A. U.; Li, L.; Shi, K. Sci. Rep. 2017, 7, 1688. doi: 10.1038/s41598-017-15319-3 (52) Sui, L.; Zhang, X.; Cheng, X.; Wang, P.; Xu, Y.; Gao, S.; Zhao, H.; Huo, L. ACS Appl. Mater. Interfaces 2017, 9 (2), 1661. doi: 10.1021/acsami.6b11754 (53) Lee, J. H.; Jung, H.; Yoo, R.; Park, Y.; Lee, H. S.; Choe, Y. S.; Lee, W. Sens. Actuator B-Chem. 2019, 284, 444. doi: 10.1016/j.snb.2018.12.144 (54) Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev. 2010, 110 (1), 132. doi: 10.1021/cr900070d (55) Xu, C. N.; Tamaki, J.; Miura, N.; Yamazoe, N. Sens. Actuator B-Chem. 1991, 3 (2), 147. doi: 10.1016/0925-4005(91)80207-Z (56) Shaver, P. J. Appl. Phys. Lett. 1967, 11 (8), 255. doi: 10.1063/1.1755123 (57) Hwang, I. S.; Choi, J. K.; Woo, H. S.; Kim, S. J.; Jung, S. Y.; Seong, T. Y.; Kim, I. D.; Lee, J. H. ACS Appl. Mater. Interfaces 2011, 3 (8), 3140. doi: 10.1021/am200647f (58) Gardner, J. W.; Bartlett, P. N. Electronic Noses Principles and Applications; Oxford University Press: London, 1999; p. 1. (59) Amoore, J. E.; Johnston, J. W.; Rubin, M. Sci. Am. 1964, 210 (2), 42. doi: 10.1038/scientificamerican0264-42 (60) Ghasemi-Varnamkhasti, M.; Amiri, Z. S.; Tohidi, M.; Dowlati, M.; Mohtasebi, S. S.; Silva, A. C.; Fernandes, D. D. S.; Araujo, M. C. U. Talanta 2018, 176, 221. doi: 10.1016/j.talanta.2017.08.024 (61) Liu, H.; He, Y.; Nagashima, K.; Meng, G.; Dai, T.; Tong, B.; Deng, Z.; Wang, S.; Zhu, N.; Yanagida, T.; et al. Sens. Actuator B-Chem. 2019, 293, 342. doi: 10.1016/j.snb.2019.04.078 (62) Gardner, J. W.; Bartlett, P. N. Sens. Actuator B-Chem. 1994, 18 (1–3), 211. (63) Kiani, S.; Minaei, S.; Ghasemi-Varnamkhasti, M. Chemometrics Intell. Lab. Syst. 2016, 156, 148. doi: 10.1016/j.chemolab.2016.05.013 (64) Ucar, A.; Ozalp, R. Chemometrics Intell. Lab. Syst. 2017, 166, 69. doi: 10.1016/j.chemolab.2017.05.013 (65) Estanislao Acuna-Avila, P.; Calavia, R.; Vigueras-Santiago, E.; Llobet, E. Sensors 2017, 17 (12), 2943. doi: 10.3390/s17122943 (66) Corcoran, P.; Lowery, P.; Anglesea, J. Sens. Actuator B-Chem. 1998, 48 (1–3), 448. doi: 10.1016/S0925-4005(98)00083-5 (67) Srivastava, A. K. Sens. Actuator B-Chem. 2003, 96 (1–2), 24. doi: 10.1016/S0925-4005(03)00477-5 (68) Penza, M.; Cassano, G. Sens. Actuator B-Chem. 2003, 89 (3), 269. doi: 10.1016/s0925-4005(03)00002-9 (69) Sudarmaji, A.; Kitagawa, A. J. Sens. 2016, 2016, 1035902. doi: 10.1155/2016/1035902 (70) Bonnefille, M Practical Analysis of Flavor and Fragrance Materials; Goodner, K., Rouseff, R. Eds; John Wiley & Sons Ltd.: New Jersey, 2011; p. 111. (71) Amini, A.; Bagheri, M. A.; Montazer, G. A. Sens. Actuator B-Chem. 2013, 187, 241. doi: 10.1016/j.snb.2012.10.140 (72) Bastuck, M.; Leidinger, M.; Sauerwald, T.; Sch€utze, A. Improved Quantification of Naphthalene Using Non-Linear Partial Least Squares Regression. 16th International Symposium on Olfaction and Electronic Nose, Dijon, French, 2015. (73) Sauerwald, T.; Baur, T.; Sch€utze, A. Strategien Zur Optimierung Des Temperaturzyklischen Betriebs Von Halbleitergassensoren. Symposium des Arbeitskreises der Hochschullehrer für Messtechnik, Aachen, Germany, 2014. (74) Schultealbert, C.; Baur, T.; Schuetze, A.; Boettcher, S.; Sauerwald, T. Sens. Actuator B-Chem. 2017, 239, 390. doi: 10.1016/j.snb.2016.08.002 (75) Baur, T.; Schutze, A.; Sauerwald, T. tm-Tech. Mess. 2017, 84 (Suppl. 1), S88. doi: 10.1515/teme-2017-0035 (76) Le Vine, H. D. Method and Apparatus for Operating a Gas Sensor. USA Patent 3906473, 1975. (77) Eicker, H. Method and Apparatus for Determining the Concentration of One Gaseous Component in Amixture of Gases. USA Patent 4012692, 1977. (78) Nakata, S.; Ozaki, E.; Ojima, N. Anal. Chim. Acta 1998, 361 (1–2), 93. doi: 10.1016/s0003-2670(98)00013-0 (79) Nakata, S.; Akakabe, S.; Nakasuji, M.; Yoshikawa, K. Anal. Chem. 1996, 68 (13), 2067. doi: 10.1021/ac9510954 (80) Nakata, S.; Takemura, K.; Neya, K. Sens. Actuator B-Chem. 2001, 76 (1–3), 436. doi: 10.1016/s0925-4005(01)00652-9 (81) Huang, J. R.; Li, G. Y.; Huang, Z. Y.; Huang, X. J.; Liu, J. H. Sens. Actuator B-Chem. 2006, 114 (2), 1059. doi: 10.1016/j.snb.2005.07.070 (82) Ge, H.; Liu, J Sens. Actuator B-Chem. 2006, 117 (2), 408. doi: 10.1016/j.snb.2005.11.037 (83) Dattoli, E. N.; Davydov, A. V.; Benkstein, K. D Nanoscale 2012, 4 (5), 1760. doi: 10.1039/c2nr11885h (84) Hossein-Babaei, F.; Amini, A. Sens. Actuator B-Chem. 2014, 194, 156. doi: 10.1016/j.snb.2013.12.061 (85) Hosseini-Golgoo, S. M.; Bozorgi, H.; Saberkari, A. Meas. Sci. Technol. 2015, 26 (6), 065103. doi: 10.1088/0957-0233/26/6/065103 (86) Chen, Q.; Chen, Z.; Liu, D.; He, Z.; Wu, J. ACS Appl. Mater. Interfaces 2020, 12 (15), 17725. doi: 10.1021/acsami.0c00720 (87) Kim, S. J.; Choi, S. J.; Jang, J. S.; Cho, H. J.; Kim, I. D. Accounts Chem. Res. 2017, 50 (7), 1587. doi: 10.1021/acs.accounts.7b00047 (88) Gancarz, M.; Nawrocka, A.; Rusinek, R. J. Food Sci. 2019, 84 (8), 2077. doi: 10.1111/1750-3841.14701 (89) Liu, Q.; Zhao, N.; Zhou, D.; Sun, Y.; Sun, K.; Pan, L.; Tu, K. Food Chem. 2018, 262, 226. doi: 10.1016/j.foodchem.2018.04.100 (90) Gruber, J.; Nascimento, H. M.; Yamauchi, E. Y.; Li, R. W. C.; Esteves, C. H. A.; Rehder, G. P.; Gaylarde, C. C.; Shirakawa, M. A. Mater. Sci. Eng. C-Mater. Biol. Appl. 2013, 33 (5), 2766. doi: 10.1016/j.msec.2013.02.043 (91) Gwizdz, P.; Radecka, M.; Zakrzewska, K. Array of Gas Sensors Based on TiO2 upon Temperature Modulation. 15th International Scientific Conference on Optoelectronic and Electronic Sensors, Warsaw, Poland, 2018. (92) Polese, D.; Martinelli, E.; Catini, A.; D’Amico, A.; Di Natale, C. Proc. Eng. 2010, 5, 156. doi: 10.1016/j.proeng.2010.09.071 (93) Zhou, C.; Wu, Z.; Guo, Y.; Li, Y.; Cao, H.; Zheng, X.; Dou, X. Sci. Rep. 2016, 6, 25588. doi: 10.1038/srep25588 (94) Kwon, O. S.; Park, S. J.; Lee, J. S.; Park, E.; Kim, T.; Park, H. W.; You, S. A.; Yoon, H.; Jang, J. Nano Lett. 2012, 12 (6), 2797. doi: 10.1021/nl204587t (95) Bianchi, G.; Rizzolo, A.; Grassi, M.; Provenzi, L.; Lo Scalzo, R. Postharvest Biol. Technol. 2018, 136, 1. doi: 10.1016/j.postharvbio.2017.09.009 (96) Bieganowski, A.; Jozefaciuk, G.; Bandura, L.; Guz, L.; Lagod, G.; Franus, W. Sensors 2018, 18 (8), 2463. doi: 10.3390/s18082463 (97) Jolayemi, O. S.; Tokatli, F.; Buratti, S.; Alamprese, C. Eur. Food Res. Technol. 2017, 243 (11), 2035. doi: 10.1007/s00217-017-2909-z (98) Giungato, P.; de Gennaro, G.; Barbieri, P.; Briguglio, S.; Amodio, M.; de Gennaro, L.; Lasigna, F. J. Clean Prod. 2016, 133, 1395. doi: 10.1016/j.jclepro.2016.05.148 (99) Giovanelli, G.; Limbo, S.; Buratti, S. Postharvest Biol. Technol. 2014, 98, 72. doi: 10.1016/j.postharvbio.2014.07.002 (100) Liu, H.; Zeng, F. K.; Wang, Q. H.; Wu, H. S.; Tan, L. H Eur. Food Res. Technol. 2013, 237 (2), 245. doi: 10.1007/s00217-013-1986-x (101) Thriumani, R.; Zakaria, A.; Hashim, Y. Z. H. Y.; Jeffree, A. I.; Helmy, K. M.; Kamarudin, L. M.; Omar, M. I.; Shakaff, A. Y. M.; Adom, A. H.; Persaud, K. C. Bmc Cancer 2018, 18, 362. doi: 10.1186/s12885-018-4235-7 (102) Nouri, B.; Mohtasebi, S. S.; Rafiee, S. Int. J. Food Prop. 2020, 23 (1), 9. doi: 10.1080/10942912.2019.1705851 (103) Guney, S.; Atasoy, A Int. J. Pattern Recognit. Artif. Intell. 2020, 34 (3), 2050003. doi: 10.1142/s0218001420500032 (104) Jiarpinijnun, A.; Osako, K.; Siripatrawan, U. Measurement 2020, 157, 107561. doi: 10.1016/j.measurement.2020.107561 (105) Tohidi, M.; Ghasemi-Varnamkhasti, M.; Ghafarinia, V.; Mohtasebi, S. S.; Bonyadian, M. Measurement 2018, 124, 120. doi: 10.1016/j.measurement.2018.04.006 (106) Tohidi, M.; Ghasemi-Varnamkhasti, M.; Ghafarinia, V.; Bonyadian, M.; Mohtasebi, S. S Int. Dairy J. 2018, 77, 38. doi: 10.1016/j.idairyj.2017.09.003 (107) Ali, A. A. S.; Farhat, A.; Mohamad, S.; Amira, A.; Bensaali, F.; Benammar, M.; Bermak, A. IEEE Sens. J. 2018, 18 (11), 4633. doi: 10.1109/jsen.2018.2822711 (108) Hosseini-Golgoo, S. M.; Ebrahimpour, N. Comparison of Different Feature Reduction Methods in the Improvement of Gas Diagnosis of a Temperature Modulated Resistive Gas Sensor. 5th International Conference on Materials and Applications for Sensors and Transducers, Mykonos, Greece, 2016. doi: 10.1088/1757-899X/108/1/012001 (109) Gao, K.; Li, S.; Zhuang, L.; Qin, Z.; Zhang, B.; Huang, L.; Wang, P. Biosens. Bioelectron. 2018, 102, 150. doi: 10.1016/j.bios.2017.08.055 (110) Bright, C. J.; Nallon, E. C.; Polcha, M. P.; Schnee, V. P. Anal. Chem. 2015, 87 (24), 12270. doi: 10.1021/acs.analchem.5b03559 (111) Chen, Q.; Song, J.; Bi, J.; Meng, X.; Wu, X Food Res. Int. 2018, 105, 605. doi: 10.1016/j.foodres.2017.11.054 (112) Gorji-Chakespari, A.; Nikbakht, A. M.; Sefidkon, F.; Ghasemi-Varnamkhasti, M.; Brezmes, J.; Llobet, E. Sensors 2016, 16 (5), 636. doi: 10.3390/s16050636 (113) Xu, S.; Zhou, Z.; Lu, H.; Luo, X.; Lan, Y.; Zhang, Y.; Li, Y Sensors 2014, 14 (10), 18114. doi: 10.3390/s141018114 (114) Xiong, Y.; Xiao, X.; Yang, X.; Yan, D.; Zhang, C.; Zou, H.; Lin, H.; Peng, L.; Xiao, X.; Yan, Y J. Pharm. Biomed. Anal. 2014, 91, 68. doi: 10.1016/j.jpba.2013.12.016 (115) Tian, X.; Long, M.; Liu, Y. L.; Zhang, P.; Bai, X. Q.; Wang, J.; Wei, Z. B.; Chen, S. E.; Ma, Z. R.; Song, L.; et al J. Food Qual. 2020, 2020, 6145189. doi: 10.1155/2020/6145189 (116) Wijaya, D. R.; Sarno, R.; Zulaika, E. Comput. Electron. Agric. 2019, 157, 305. doi: 10.1016/j.compag.2019.01.001 (117) Schuermans, V. N. E.; Li, Z.; Jongen, A. C. H. M.; Wu, Z.; Shi, J.; Ji, J.; Bouvy, N. D. Surg. Innov. 2018, 25 (5), 429. doi: 10.1177/1553350618781267 (118) Chang, F.; Heinemann, P. H Trans. ASABE 2018, 61 (2), 399. doi: 10.13031/trans.12177 (119) Aleixandre, M.; Cabellos, J. M.; Arroyo, T.; Horrillo, M. C. Front. Bioeng. Biotechnol. 2018, 6, 14. doi: 10.3389/fbioe.2018.00014 (120) Shahid, A.; Choi, J. H.; Rana, A. U. H. S.; Kim, H. S. Sensors 2018, 18 (5), 1446. doi: 10.3390/s18051446 (121) Dong, W.; Zhao, J.; Hu, R.; Dong, Y.; Tan, L. Food Chem. 2017, 229, 743. doi: 10.1016/j.foodchem.2017.02.149 (122) Yao, M. S.; Cao, L. A.; Hou, G. L.; Cai, M. L.; Xiu, J. W.; Fang, C. H.; Yuan, F. L.; Chen, Y. F. RSC Adv. 2017, 7 (33), 2027. doi: 10.1039/c7ra02282d (123) Jeong, S. Y.; Yoon, J. W.; Kim, T. H.; Jeong, H. M.; Lee, C. S.; Kang, Y. C.; Lee, J. H. J. Mater. Chem. A 2017, 5 (4), 1446. doi: 10.1039/c6ta09397c (124) Luis Herrero, J.; Lozano, J.; Pedro Santos, J.; Ignacio Suarez, J. Chemosphere 2016, 152, 107. doi: 10.1016/j.chemosphere.2016.02.106 (125) Sudarmaji, A.; Kitagawa, A. J. Sens. 2016, 2016, 1035902. doi: 10.1155/2016/1035902 (126) Her, Y. C.; Yeh, B. Y.; Huang, S. L. ACS Appl. Mater. Interfaces 2014, 6 (12), 9150. doi: 10.1021/am5012518 (127) LeCun, Y.; Boser, B.; Denker, J. S.; Henderson, D.; Howard, R. E.; Hubbard, W.; Jackel, L. D Neural Comput. 1989, 1 (4), 541. doi: 10.1162/neco.1989.1.4.541 (128) Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P Proc. IEEE 1998, 86 (11), 2278. doi: 10.1109/5.726791 (129) Krizhevsky, A.; Sutskever, I.; Hinton, G. E Commun. ACM 2017, 60 (6), 84. doi: 10.1145/3065386 (130) Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015. doi: 10.1109/cvpr.2015.7298594 (131) He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. IEEE Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2016. doi: 10.1109/CVPR.2016.90 (132) Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. International Conference on Learning Representations, San Diego, USA, 2015. |
[1] | 何冰,罗勇,李秉轲,薛英,余洛汀,邱小龙,杨登贵. 基于分子描述符和机器学习方法预测和虚拟筛选乳腺癌靶向蛋白HEC1抑制剂[J]. 物理化学学报, 2015, 31(9): 1795 -1802 . |
[2] | 杜海英, 王兢, 乔俏, 孙炎辉, 邵强, 李晓干. ZnO/PPy异质纳米复合材料的制备、表征及其气敏特性[J]. 物理化学学报, 2015, 31(4): 800 -806 . |
[3] | 冯秋霞,于鹏,王兢,李晓干. Y掺杂的ZnO纳米纤维材料的制备及其气敏传感器作用机理[J]. 物理化学学报, 2015, 31(12): 2405 -2412 . |
[4] | 胡瑞金,王兢,朱慧超. PdO, Au, CdO修饰SnO2纳米纤维的制备及其气敏特性[J]. 物理化学学报, 2015, 31(10): 1997 -2004 . |
[5] | 唐伟, 王兢, 姚朋军, 杜海英, 孙炎辉. ZnO掺杂的SnO2纳米纤维的制备、表征及气敏机理[J]. 物理化学学报, 2014, 30(4): 781 -788 . |
[6] | 李秉轲, 丛湧, 田之悦, 薛英. 基于分子描述符和机器学习方法预测和虚拟筛选MMP-13对MMP-1的选择性抑制剂[J]. 物理化学学报, 2014, 30(1): 171 -182 . |
[7] | 吕巍, 薛英, 孟庆伟. 基于机器学习方法的H1N1神经氨酸苷酶抑制剂的分类预测[J]. 物理化学学报, 2013, 29(01): 217 -223 . |
[8] | 田相桂, 张跃, 杨泰生. H2在WO3表面解离吸附反应的第一性原理研究[J]. 物理化学学报, 2012, 28(05): 1063 -1069 . |
[9] | 吕巍, 薛英. 基于机器学习方法的丙型肝炎病毒非结构蛋白5B聚合酶抑制剂活性预测[J]. 物理化学学报, 2011, 27(06): 1407 -1416 . |
[10] | 程应武, 杨志, 魏浩, 王艳艳, 魏良明, 张亚非. 碳纳米管气体传感器研究进展[J]. 物理化学学报, 2010, 26(12): 3127 -3142 . |
[11] | 杨国兵, 李泽荣, 饶含兵, 李象远, 陈宇综. 机器学习方法用于建立乙酰胆碱酯酶抑制剂的分类模型[J]. 物理化学学报, 2010, 26(12): 3351 -3359 . |
[12] | 王金兴, 于连香, 王浩铭, 阮圣平, 李佳静, 吴凤清. Ce掺杂In2O3纳米纤维的制备及其三乙胺气敏性能[J]. 物理化学学报, 2010, 26(11): 3101 -3105 . |
[13] | 吕巍, 薛英. 基于机器学习方法的激素敏感脂肪酶抑制剂活性预测[J]. 物理化学学报, 2010, 26(02): 471 -477 . |
[14] | 李卫;同格拉格;牟其勇;其鲁;郭进. 影响锰酸锂材料性能的工艺因素的化学模式识别[J]. 物理化学学报, 2007, 23(Supp): 10 -13 . |
[15] | 太惠玲;蒋亚东;谢光忠;杜晓松;陈璇. 聚苯胺/二氧化钛复合薄膜的制备及其气敏性能[J]. 物理化学学报, 2007, 23(06): 883 -888 . |
|