物理化学学报 >> 2021, Vol. 37 >> Issue (11): 2008033.doi: 10.3866/PKU.WHXB202008033
所属专题: 能源与材料化学
石浩东1,2,3, 李亚光1,2, 路鹏飞1,2, 吴忠帅1,2,*()
收稿日期:
2020-08-13
录用日期:
2020-09-08
发布日期:
2020-09-14
通讯作者:
吴忠帅
E-mail:wuzs@dicp.ac.cn
基金资助:
Haodong Shi1,2,3, Yaguang Li1,2, Pengfei Lu1,2, Zhong-Shuai Wu1,2,*()
Received:
2020-08-13
Accepted:
2020-09-08
Published:
2020-09-14
Contact:
Zhong-Shuai Wu
E-mail:wuzs@dicp.ac.cn
About author:
Zhong-Shuai Wu, Email: wuzs@dicp.ac.cn; Tel.: +86-411-82463036Supported by:
摘要:
锂金属具有超高的理论容量(3860 mAh∙g−1)、低氧化还原电位(−3.04 V)被认为是最具前途的负极材料之一。然而,锂枝晶生长、以及“死锂”等问题阻碍了其实际应用。发展亲锂载体来调控锂成核行为是抑制锂枝的有效方法。本工作中我们采用石墨烯负载的氧配位钴单原子(Co-O-G SA)作为锂沉积载体,调节锂的成核和生长行为。Co-O-G SA具有均匀的亲锂位点、高电导率、以及高表面积(519 m2∙g−1),可显著降低锂沉积过程中局部电流密度,提高锂在循环过程中的可逆性。因此,基于Co-O-G SA锂负极在电流密度为1 mA∙cm−2,沉积容量1 mAh∙cm−2时具有99.9%的库伦效率和优异的倍率性能,在8 mA∙cm−2高电流密度下寿命达到1300 h。在对称电池中,Co-O-G SA锂负极(Co-O-G SA/Li)在1 mA∙cm−2的电流密度下,电压稳定在18 mV,寿命达到780 h。当匹配硫正极,获得全电池在0.5C (1C = 1675 mA∙g−1)的条件下,具有1002 mAh∙g−1的比容量,1000次循环过程中仅有0.036%的容量衰减率。本工作为通过调控单原子的配位环境来实现无枝晶锂负极提供了重要的见解。
MSC2000:
石浩东, 李亚光, 路鹏飞, 吴忠帅. 石墨烯负载的氧配位钴单原子稳定金属锂负极[J]. 物理化学学报, 2021, 37(11): 2008033.
Haodong Shi, Yaguang Li, Pengfei Lu, Zhong-Shuai Wu. Single-Atom Cobalt Coordinated to Oxygen Sites on Graphene for Stable Lithium Metal Anodes[J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2008033.
Fig 1
Morphology and structure characterizations of the as-prepared Co-O-G SA. (a) SEM image of Co-O-G SA. (b) Nitrogen adsorption-desorption isotherm, and (c) pore size distribution of Co-O-G SA. (d) High-resolution Co 2p XPS spectrum, and (e) XRD pattern of Co-O-G SA. (f) HAADF-STEM image of Co-O-G SA, where the single Co atoms present as red circles. (g) K-edge XANES and (h) FT-EXAFS spectra of Co-O-G SACs with references of CoO and Co foil. (i) The FT-EXAFS curves of the proposed Co-O4(OH)2 architecture (red line) and the measured Co-O-G SACs (black line). Inset is the proposed model of Co-O4(OH)2 architecture."
Fig 2
Coulombic efficiency of Co-O-G SA electrodes. (a) The Coulombic efficiencies of Co-O-G SA, Co-N-G SA, G-O and Cu electrodes with Li deposition amount of 0.5 mAh ∙ cm–2 at 0.5 mA ∙ cm–2. (b) The Columbic efficiency of Co-O-G SA electrode obtained at 1 mA∙cm−2 with 1 mAh∙cm−2. (c) Nucleation voltage profiles of Co-O-G SA, Co-N-G SA, G-O and Cu electrodes at the first cycle. (d, e) Coulombic efficiencies of Co-O-G SA electrodes with increasing capacities at fixed (d) time of 1 h, and (e) current density of 0.5 mA ∙cm−2."
Fig 3
Electrochemical performance of symmetric batteries with Co-O-G SA anode. (a) Galvanostatic cycling of symmetric cells based on Co-O-G/Li, and Co-N-G/ Li anodes with current density of 1 mA∙cm−2 under stripping/plating capacity of 1 mAh∙cm−2, and (b) corresponding voltage hysteresis variation with cycling number. (c) High current density (3 mA∙cm−2) cycling performance of symmetric cells based on Co-O-G SA/ Li anode with a capacity of 3 mAh∙cm−2. (d, e) Binding energy of a Li atom with (d) Co-O-G SA and (e) Co-N-G SA (grey ball: C atom; red ball: O atom; blue ball: N atom; white ball: H atom; purple ball: Li atom). (f) Top-view SEM image of Co-O-G SA electrode at the stage of plating Li with capacity of 1 mAh∙cm−2."
Fig 4
Electrochemical performance of Li-S full cells with Co-O-G SA/Li anodes. (a, b) Charge and discharge curves of (a) Co-O-G SA/Li-S and (b) Co-N-G SA/Li-S full batteries measured at 0.5C for different cycles. (c) Voltage profile comparison of Co-O-G SA/Li-S and Co-N-G SA/Li-S batteries obtained at 1st cycle. (d) Long-term cycling stability of Li-S full batteries based on Co-O-G SA/Li or Co-N-G SA/Li anodes tested at 0.5C."
1 |
Kang K. ; Meng Y. S. ; Bréger J. ; Grey C. P. ; Ceder G. Science 2006, 311, 977.
doi: 10.1126/science.1122152 |
2 |
Choi J. W. ; Aurbach D. Nat. Rev. Mater. 2016, 1, 16013.
doi: 10.1038/natrevmats.2016.13 |
3 |
Goodenough J. B. ; Kim Y. Chem. Mater. 2010, 22, 587.
doi: 10.1021/cm901452z |
4 |
Armand M. ; Tarascon J. M. Nature 2008, 451, 652.
doi: 10.1038/451652a |
5 |
Shi H. ; Zhang C. J. ; Lu P. ; Dong Y. ; Wen P. ; Wu Z. S. ACS Nano 2019, 13, 14308.
doi: 10.1021/acsnano.0c03042 |
6 |
Shi H. ; Qin J. ; Huang K. ; Lu P. ; Zhang C. ; Dong Y. ; Ye M. ; Liu Z. ; Wu Z. S. Angew. Chem. Int. Ed. 2020, 59, 12147.
doi: 10.1002/anie.202004284 |
7 |
Cheng X. B. ; Zhang R. ; Zhao C. Z. ; Zhang Q. Chem. Rev. 2017, 117, 10403.
doi: 10.1021/acs.chemrev.7b00115 |
8 |
Xu X. ; Wang S. ; Wang H. ; Hu C. ; Jin Y. ; Liu J. ; Yan H. J. Am. Chem. Soc. 2018, 27, 513.
doi: 10.1016/j.jechem.2017.11.010 |
9 |
Chen S. ; Niu C. ; Lee H. ; Li Q. ; Yu L. ; Xu W. ; Zhang J. G. ; Dufek E. J. ; Whittingham M. S. ; Meng S. Joule 2019, 3, 1094.
doi: 10.1016/j.joule.2019.02.004 |
10 | Ran Q. ; Sun T. ; Han C. ; Zhang H. ; Yan J. ; Wang J. Acta Phys. -Chim. Sin. 2020, 36, 1912068. |
冉琴; 孙天霷; 韩冲宇; 张浩楠; 颜剑; 汪靖伦. 物理化学学报, 2020, 36, 1912068.
doi: 10.3866/PKU.WHXB201912068 |
|
11 |
Ding F. ; Xu W. ; Graff G. L. ; Zhang J. ; Sushko M. L. ; Chen X. ; Shao Y. ; Engelhard M. H. ; Nie Z. ; Xiao J. ; et al J. Am. Chem. Soc. 2013, 135, 4450.
doi: 10.1021/ja312241y |
12 |
Wang G. ; Xiong X. ; Xie D. ; Fu X. ; Ma X. ; Li Y. ; Liu Y. ; Lin Z. ; Yang C. ; Liu M. Energy Storage Mater. 2019, 23, 701.
doi: 10.1016/j.ensm.2019.02.026 |
13 |
Zhao C. Z. ; Duan H. ; Huang J. Q. ; Zhang J. ; Zhang Q. ; Guo Y. G. ; Wan L. J. Sci. China Chem. 2019, 62, 1286.
doi: 10.1007/s11426-019-9519-9 |
14 | Jin F. ; Li J. ; Hu C. J. ; Dong H. C. ; Chen P. ; Shen Y. B. ; Chen L. W. Acta Phys. -Chim. Sin. 2019, 35, 1399. |
金锋; 李静; 胡晨吉; 董厚才; 陈鹏; 沈炎宾; 陈立桅. 物理化学学报, 2019, 35, 1399.
doi: 10.3866/PKU.WHXB201904085 |
|
15 | Zhu G. ; Zhao C. ; Yuan H. ; Nan H. ; Zhao B. ; Hou L. ; He C. ; Liu Q. ; Huang J. Acta Phys. -Chim. Sin. 2021, 37, 2005003. |
朱高龙; 赵辰孜; 袁洪; 南皓雄; 赵铂琛; 侯立鹏; 何传新; 刘全兵; 黄佳琦. 物理化学学报, 2021, 37, 2005003.
doi: 10.3866/PKU.WHXB202005003 |
|
16 |
Zhang H. ; Liao X. ; Guan Y. ; Xiang Y. ; Li M. ; Zhang W. ; Zhu X. ; Ming H. ; Lu L. ; Qiu J. ; et al Nat. Commun. 2018, 9, 3729.
doi: 10.1038/s41467-018-06126-z |
17 |
Zhang C. ; Lyu R. ; Lv W. ; Li H. ; Jiang W. ; Li J. ; Gu S. ; Zhou G. ; Huang Z. ; Zhang Y. ; et al Adv. Mater. 2019, 31, e1904991.
doi: 10.1002/adma.201904991 |
18 |
Ni S. ; Tan S. ; An Q. ; Mai L. J. Energy Chem. 2020, 44, 73.
doi: 10.1016/j.jechem.2019.09.031 |
19 |
Zhang R. ; Chen X. R. ; Chen X. ; Cheng X. B. ; Zhang X. Q. ; Yan C. ; Zhang Q. Angew. Chem. Int. Ed. 2017, 56, 7764.
doi: 10.1002/ange.201702099 |
20 |
Shi H. ; Yue M. ; Zhang C. J. ; Dong Y. ; Lu P. ; Zheng S. ; Huang H. ; Chen J. ; Wen P. ; Xu Z. ; et al ACS Nano 2020, 14, 8678.
doi: 10.1021/acsnano.0c03042 |
21 |
Zhang J. Q. ; Zhao Y. F. ; Guo X. ; Chen C. ; Dong C. L. ; Liu R. S. ; Han C. P. ; Li Y. D. ; Gogotsi Y. ; Wang G. X. Nat. Catal. 2018, 1, 985.
doi: 10.1038/s41929-018-0195-1 |
22 |
Zhang J. Q. ; Zhao Y. F. ; Chen C. ; Huang Y. C. ; Dong C. L. ; Chen C. J. ; Liu R. S. ; Wang C. Y. ; Yan K ; Li Y. D. ; et al J. Am. Chem. Soc. 2019, 141, 20118.
doi: 10.1021/jacs.9b09352 |
23 |
Zhao D. ; Chen Z. ; Yang W. J. ; Liu S. J. ; Zhang X. ; Yu Y. ; Cheong W. C. ; Zheng L. R. ; Ren F. Q. ; Ying G. B. ; et al J. Am. Chem. Soc. 2019, 141, 4086.
doi: 10.1021/jacs.8b13579 |
24 |
Xu K. ; Zhu M. ; Wu X. ; Liang J. ; Liu Y. ; Zhang T. ; Zhu Y. ; Qian Y. Energy Storage Mater. 2019, 23, 587.
doi: 10.1016/j.ensm.2019.03.025 |
25 |
Zhai P. ; Wang T. ; Yang W. ; Cui S. ; Zhang P. ; Nie A. ; Zhang Q. ; Gong Y. Adv. Energy Mater. 2019, 9, 1804019.
doi: 10.1002/aenm.201804019 |
26 |
Gu J. ; Zhu Q. ; Shi Y. ; Chen H. ; Zhang D. ; Du Z. ; Yang S. ACS Nano 2020, 14, 891.
doi: 10.1021/acsnano.9b08141 |
27 |
Zheng J. ; Engelhard M. H. ; Mei D. ; Jiao S. ; Polzin B. J. ; Zhang J. G. ; Xu W. Nat. Energy 2017, 2, 17012.
doi: 10.1038/nenergy.2017.12 |
28 |
Li Y. ; Wu Z. S. ; Lu P. ; Wang X. ; Liu W. ; Liu Z. ; Ma J. ; Ren W. ; Jiang Z. ; Bao X. Adv. Sci. 2020, 7, 1903089.
doi: 10.1002/advs.201903089 |
29 |
Xu Y. ; Zhang W. ; Li Y. ; Lu P. ; Wu Z. S. J. Energy Chem. 2020, 43, 52.
doi: 10.1016/j.jechem.2019.08.006 |
30 |
Delley B. J. Chem. Phys. 2000, 113, 7756.
doi: 10.1063/1.1316015 |
31 |
White J. ; Bird D. Phys. Rev. B 1994, 50, 4954.
doi: 10.1103/PhysRevB.50.4954 |
32 |
Perdew J. P. ; Burke K. ; Ernzerhof M. Phys. Rev. Lett. 1996, 77, 3865.
doi: 10.1103/PhysRevLett.77.3865 |
33 |
Monkhorst H. J. ; Pack J. D. Phys. Rev. B 1976, 13, 5188.
doi: 10.1103/PhysRevB.13.5188 |
34 |
Cui J. ; Yao S. ; Ihsan-Ul-Haq M. ; Wu J. ; Kim J. K. Adv. Energy Mater. 2019, 9, 1802777.
doi: 10.1002/aenm.201802777 |
35 |
Sun W. ; Du L. ; Tan Q. ; Zhou J. ; Hu Y. ; Du C. ; Gao Y. ; Yin G. ACS Appl. Mater. Interfaces 2019, 11, 41258.
doi: 10.1021/acsami.9b11830 |
36 |
Yang L. ; Shi L. ; Wang D. ; Lv Y. ; Cao D. Nano Energy 2018, 50, 691.
doi: 10.1016/j.nanoen.2018.06.023 |
37 |
Cheng X. B. ; Yan C. ; Peng H. J. ; Huang J. Q. ; Yang S. T. ; Zhang Q. Energy Storage Mater. 2018, 10, 199.
doi: 10.1016/j.ensm.2017.03.008 |
38 |
Liu K. ; Li Z. ; Xie W. ; Li J. ; Rao D. ; Shao M. ; Zhang B. ; Wei M. Energy Storage Mater. 2018, 15, 308.
doi: 10.1016/j.ensm.2018.05.025 |
39 |
Deng W. ; Zhu W. ; Zhou X. ; Liu Z. Energy Storage Mater. 2018, 15, 266.
doi: 10.1016/j.ensm.2018.05.005 |
40 | Chen, W.; Salvatierra, R. V.; Ren, M.; Chen, J.; Stanford, M. G.; Tour, J. M. Adv. Mater. 2020, 2002850. doi: 10.1002/adma.202002850 |
41 |
Zhang R. ; Chen X. ; Shen X. ; Zhang X. Q. ; Chen X. R. ; Cheng X. B. ; Yan C. ; Zhao C. Z. ; Zhang Q. Joule 2018, 2, 764.
doi: 10.1016/j.joule.2018.02.001 |
42 |
Chen X. ; Chen X. R. ; Hou T. Z. ; Li B. Q. ; Cheng X. B. ; Zhang R. ; Zhang Q. Sci. Adv. 2019, 5, eaau7728.
doi: 10.1126/sciadv.aau7728 |
43 |
Yin Y. X. ; Xin S. ; Guo Y. G. ; Wan L. J. Angew. Chem. Int. Ed. 2013, 52, 13186.
doi: 10.1002/anie.201304762 |
44 |
Shi H. ; Zhao X. ; Wu Z. S. ; Dong Y. ; Lu P. ; Chen J. ; Ren W. ; Cheng H. M. ; Bao X. Nano Energy 2019, 60, 743.
doi: 10.1016/j.nanoen.2019.04.006 |
45 |
Shi H. ; Dong Y. ; Zhou F. ; Chen J. ; Wu Z. S. J. Phys.: Energy 2018, 1, 015002.
doi: 10.1088/2515-7655/aadef6 |
[1] | 张威, 梁海琛, 朱科润, 田泳, 刘瑶, 陈佳音, 李伟. 三维大孔/介孔碳-碳化钛复合材料用于无枝晶锂金属负极[J]. 物理化学学报, 2022, 38(6): 2105024 - . |
[2] | 黄小雄, 马英杰, 智林杰. 超薄氮掺杂碳纳米片负载单原子镍用于高效电催化还原二氧化碳[J]. 物理化学学报, 2022, 38(2): 2011050 - . |
[3] | 陈宇新, 王丽君, 姚志波, 郝磊端, 谭心怡, Masa Justus, Robertson Alex W., 孙振宇. 单原子配位结构及与载体相互作用的调控用于二氧化碳电催化还原[J]. 物理化学学报, 2022, 38(11): 2207024 -0 . |
[4] | 周君慧, 敖志敏, 安太成. 基于密度泛函理论下H2S在单原子催化剂V/Ti2CO2上的分解机理研究[J]. 物理化学学报, 2021, 37(8): 2007086 - . |
[5] | 周雪梅. 二氧化钛负载单原子催化剂用于光催化反应的研究[J]. 物理化学学报, 2021, 37(6): 2008064 - . |
[6] | 崔新江, 石峰. 基于单原子催化剂的二氧化碳选择性转化[J]. 物理化学学报, 2021, 37(5): 2006080 - . |
[7] | 赵雨萌, 任凌霄, 王澳轩, 罗加严. 锂金属电池中的复合负极[J]. 物理化学学报, 2021, 37(2): 2008090 - . |
[8] | 张云博, 林乔伟, 韩俊伟, 韩志远, 李曈, 康飞宇, 杨全红, 吕伟. 细菌纤维素衍生的三维碳集流体用于无枝晶的锂金属负极[J]. 物理化学学报, 2021, 37(2): 2008088 - . |
[9] | 关俊, 李念武, 于乐. 人工界面层在金属锂负极中的应用[J]. 物理化学学报, 2021, 37(2): 2009011 - . |
[10] | 钱华明, 李喜飞. 功能化固态电解质膜改性锂金属负极的研究进展[J]. 物理化学学报, 2021, 37(2): 2008092 - . |
[11] | 王骞, 吴恺, 王航超, 刘文, 周恒辉. 亲锂的三维二硫化锡@碳纤维布用于稳定的锂金属负极[J]. 物理化学学报, 2021, 37(1): 2007092 - . |
[12] | 秦金利, 任龙涛, 曹欣, 赵亚军, 许海军, 刘文, 孙晓明. 多孔泡沫铜和硫脲协同作用构筑无枝晶锂负极[J]. 物理化学学报, 2021, 37(1): 2009020 - . |
[13] | 刘亚, 郑磊, 谷巍, 沈炎宾, 陈立桅. 原位聚合表面修饰的金属锂负极[J]. 物理化学学报, 2021, 37(1): 2004058 - . |
[14] | 王文元, 张杰夫, 李喆, 邵翔. 单原子分散的Au/Cu(111)表面合金的表面结构与吸附性质[J]. 物理化学学报, 2020, 36(8): 1911035 - . |
[15] | 王丹,丁迅雷,廖珩璐,戴佳钰. 单个金或银原子掺杂的氧化钒团簇上的甲烷活化反应[J]. 物理化学学报, 2019, 35(9): 1005 -1013 . |
|