物理化学学报 >> 2021, Vol. 37 >> Issue (2): 2008090.doi: 10.3866/PKU.WHXB202008090
所属专题: 金属锂负极
收稿日期:
2020-08-31
录用日期:
2020-09-23
发布日期:
2020-10-09
通讯作者:
罗加严
E-mail:jluo@tju.edu.cn
作者简介:
Prof. Jiayan Luo received his BS/MS in Chemistry from Fudan University in 2006 and 2009, respectively. In 2013, he obtained his Ph.D from Northwestern University in the US. After working at the Massachusetts Institute of Technology (MIT), he started his independent career in the School of Chemical Engineering at Tianjin University in 2014. His current interests focus on light metals for energy storage and additive manufacturing. He is a recipient of the International Society of Electrochemistry Applied Electrochemistry Award, Electrochemical Society Nanocarbon Young Investigator Award, Energy Storage Materials Young Scientist Award, Chinese Chemical Society Young Chemist Award, etc
基金资助:
Yumeng Zhao, Lingxiao Ren, Aoxuan Wang, Jiayan Luo()
Received:
2020-08-31
Accepted:
2020-09-23
Published:
2020-10-09
Contact:
Jiayan Luo
E-mail:jluo@tju.edu.cn
About author:
Jiayan Luo, Email: jluo@tju.edu.cnSupported by:
摘要:
锂金属具有理论比容量高、电位低等优点,被认为是电极中的“圣杯”。然而,锂金属负极在循环过程当中存在着不可控的枝晶生长、体积膨胀等问题,严重地阻碍了锂金属电池的商业化进程。本综述首先概述了锂枝晶的形成机理,然后对由小及大,自内而外,总结了近年来三种不同层次的锂金属电池复合负极:锂金属负极内部结构的复合、锂金属电池内部结构的复合以及锂金属电池内部环境与外界操作条件的复合。最后,本综述对未来多层次锂金属电池复合负极的前景做出了展望。
MSC2000:
赵雨萌, 任凌霄, 王澳轩, 罗加严. 锂金属电池中的复合负极[J]. 物理化学学报, 2021, 37(2): 2008090.
Yumeng Zhao, Lingxiao Ren, Aoxuan Wang, Jiayan Luo. Composite Anodes for Lithium Metal Batteries[J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008090.
Table 1
Theoretical models of lithium dendrite formation and corresponding strategies using composite anodes for LMBs."
Model | Solution | Strategy with composite anodes | Ref. |
Space charged model | Reduce effective current density/increase Li+ mobility/uniformize Li+ distribution | Composite with scaffolds | |
Plating model | Mechanically blocking | Composite with solid electrolytes | |
Charge induced model | Homogenize surface charge distribution | Composite with physical fields |
Fig 1
Compositing with NC scaffolds. (a) Polymer nanofiber network uniforms the distribution of Li+ and inhibits the dendrites formation. Adapted from Ref. 52. Copyright 2015, American Chemical Society. (b) Schematic of lithium deposition and dissolution on lithium-coated polymeric matrix. Adapted from Ref. 40. Copyright 2016, Nature Publishing Group."
Fig 2
Compositing with metal-based EC scaffolds. (a) Schematic of fabricating Ni foam and Li composite anode through thermal diffusion method. Adapted from Ref. 36. Copyright 2017, Wiley-VCH. (b) Electric field distribution of normal Cu foil and 3D current collector with submicron skeleton fibers. Adapted from Ref. 38. Copyright 2014, Nature Publishing Group. (c) Schematic of 3D current collector composed of Cu pillars and ZnO layer. Adapted from Ref. 37. Copyright 2018, Wiley-VCH. (d) Schematic of 3D Cu scaffold with vertically aligned microchannels. Adapted from Ref. 55. Copyright 2017, Wiley-VCH."
Fig 3
Compositing with carbon-based EC scaffolds. (a) Schematic of fabricating carbon fiber net and Li composite anode through thermal diffusion method. Adapted from Ref. 35. Copyright 2016, National Academy of Sciences. (b) Schematic of the GCF electrode. Adapted from Ref. 34. Copyright 2017, Wiley-VCH. (c) Schematic of horizontal centripetally grown lithium metal anode. Adapted from Ref. 23. Copyright 2018, Elsevier. (d) Schematic of lithium metal deposition inside the folds of the rGO balls and between the graphene particles. Adapted from Ref. 24. Copyright 2018, Elsevier."
Fig 4
Compositing with IC scaffolds and MIEC scaffolds. (a) The deposition process of embedded Li anode. Adapted from Ref. 39. Copyright 2017, National Academy of Sciences. (b) LLZO nanoparticles incorporated into 3D carbon nanofibers as MIEC scaffold. Adapted from Ref. 64. Copyright 2018, Wiley-VCH. (c) MXene aerogel as MIEC scaffold. Adapted from Ref. 26. Copyright 2018, Wiley-VCH."
Fig 5
Compositing with electrolytes. (a) The deposition process of lithium metal in the porous of the bilayer garnet structure electrolyte. Adapted from Ref. 47. Copyright 2018, Elsevier. (b) The deposition process of lithium metal in the porous of the trilayer garnet structure electrolyte. Adapted from Ref. 44. Copyright 2018, National Academy of Sciences. (c) Flowable PEG electrolyte accommodates the continuous volume change. Adapted from Ref. 48. Copyright 2017, American Association for the Advancement of Science. (d) The process of gel swelling and shrinkage. Adapted from Ref. 45. Copyright 2019, Wiley-VCH."
Fig 6
Compositing with external physical fields. (a) Homogeneous Li+ distribution due to the external magnetic field. Adapted from Ref. 81. Copyright 2019, Wiley-VCH. (b) Even Li+ distribution at the anode due to the external AC and DC. Adapted from Ref. 83. Copyright 2019, Wiley-VCH. (c) Self-healing of the dendrites. Adapted from Ref. 84. Copyright 2018, American Association for the Advancement of Science. (d) Schematic of Li nuclei generation and growth mechanism influenced by high temperature. Adapted from Ref. 85. Copyright 2019, Wiley-VCH."
1 |
Grande L. ; Paillard E. ; Hassoun J. ; Park J. ; Lee Y. ; Sun Y. ; Passerini S. ; Scrosati B. Adv. Mater. 2015, 27, 784.
doi: 10.1002/adma.201403064 |
2 |
Zhang X. ; Wang A. ; Liu X. ; Luo J. Acc. Chem. Res. 2019, 52, 3223.
doi: 10.1021/acs.accounts.9b00437 |
3 |
Patil A. ; Patil V. ; Wook Shin D. ; Choi J. ; Paik D. ; Yoon S. Mater. Res. Bull. 2008, 43, 1913.
doi: 10.1016/j.materresbull.2007.08.031 |
4 |
Tarascon J. M. ; Armand M. Nature 2001, 414, 359.
doi: 10.1038/35104644 |
5 |
Janek J. ; Zeier W. G. Nat. Energy 2016, 1, 16141.
doi: 10.1038/nenergy.2016.141 |
6 |
Zhang Z. ; Peng Z. ; Zheng J. ; Wang S. ; Liu Z. ; Bi Y. ; Chen Y. ; Wu G. ; Li H. ; Cui P. ; et al J. Mater. Chem. A 2017, 5, 9339.
doi: 10.1039/C7TA02144E |
7 |
Ye H. ; Xin S. ; Yin Y. ; Li J. ; Guo Y. ; Wan L. J. Am. Chem. Soc. 2017, 139, 5916.
doi: 10.1021/jacs.7b01763 |
8 |
Liu S. ; Zhang X. ; Li R. ; Gao L. ; Luo J. Energy Storage Mater. 2018, 14, 143.
doi: 10.1016/j.ensm.2018.03.004 |
9 |
Ma Q. ; Zhang X. ; Wang A. ; Xia Y. ; Liu X. ; Luo J. Adv. Funct. Mater. 2020, 30, 2002824.
doi: 10.1002/adfm.202002824 |
10 |
Wang C. ; Wang A. ; Ren L. ; Guan X. ; Wang D. ; Dong A. ; Zhang C. ; Li G. ; Luo J. Adv. Funct. Mater. 2019, 29, 1905940.
doi: 10.1002/adfm.201905940 |
11 |
Ren L. ; Wang A. ; Zhang X. ; Li G. ; Liu X. ; Luo J. Adv. Energy Mater. 2019, 10, 1902932.
doi: 10.1002/aenm.201902932 |
12 |
Tikekar M. D. ; Choudhury S. ; Tu Z. ; Archer L. A. Nat. Energy 2016, 1, 16114.
doi: 10.1038/nenergy.2016.114 |
13 |
Lin D. ; Liu Y. ; Liang Z. ; Lee H. ; Sun J. ; Wang H. ; Yan K. ; Xie J. ; Cui Y. Nat. Nanotech. 2016, 11, 626.
doi: 10.1038/nnano.2016.32 |
14 |
Ye H. ; Zhang Y. ; Yin Y. ; Cao F. ; Guo Y. ACS Cent. Sci. 2020, 6, 661.
doi: 10.1021/acscentsci.0c00351 |
15 |
Ye H. ; Xin S. ; Yin Y. ; Guo Y. Adv. Energy Mater. 2017, 7, 1700530.
doi: 10.1002/aenm.201700530 |
16 |
Shi P. ; Zhang X. Q. ; Shen X. ; Zhang R. ; Liu H. ; Zhang Q. Adv. Mater. Technol-US. 2020, 5, 1900806.
doi: 10.1002/admt.201900806 |
17 |
Zhang R. ; Cheng X. ; Zhao C. ; Peng H. ; Shi J. ; Huang J. ; Wang J. ; Wei F. ; Zhang Q. Adv. Mater. 2016, 28, 2155.
doi: 10.1002/adma.201504117 |
18 |
Guan X. ; Wang A. ; Liu S. ; Li G. ; Liang F. ; Yang Y. ; Liu X. ; Luo J. Small 2018, 14, 1801423.
doi: 10.1002/smll.201801423 |
19 |
Cheng X. ; Zhang R. ; Zhao C. ; Wei F. ; Zhang J. ; Zhang Q. Adv. Sci. 2016, 3, 1500213.
doi: 10.1002/advs.201500213 |
20 |
Zhang H. ; Eshetu G. G. ; Judez X. ; Li C. ; Rodriguez Martínez L. M. ; Armand M. Angew. Chem. Int. Ed. 2018, 130, 15220.
doi: 10.1002/ange.201712702 |
21 |
Li N. ; Yin Y. ; Yang C. ; Guo Y. Adv. Mater. 2016, 28, 1853.
doi: 10.1002/adma.201504526 |
22 |
Liu Y. ; Lin D. ; Yuen P. Y. ; Liu K. ; Xie J. ; Dauskardt R. H. ; Cui Y. Adv. Mater. 2017, 29, 1605531.
doi: 10.1002/adma.201605531 |
23 |
Wang A. ; Zhang X. ; Yang Y. ; Huang J. ; Liu X. ; Luo J. Chem 2018, 4, 2192.
doi: 10.1016/j.chempr.2018.06.017 |
24 |
Liu S. ; Wang A. ; Li Q. ; Wu J. ; Chiou K. ; Huang J. ; Luo J. Joule 2018, 2, 184.
doi: 10.1016/j.joule.2017.11.004 |
25 |
Guo W. ; Liu S. ; Guan X. ; Zhang X. ; Liu X. ; Luo J. Adv. Energy Mater. 2019, 9, 1900193.
doi: 10.1002/aenm.201900193 |
26 |
Zhang X. ; Lv R. ; Wang A. ; Guo W. ; Liu X. ; Luo J. Angew. Chem. Int. Ed. 2018, 130, 15248.
doi: 10.1002/ange.201808714 |
27 |
Tang W. ; Tang S. ; Guan X. ; Zhang X. ; Xiang Q. ; Luo J. Adv. Funct. Mater. 2019, 29, 1900648.
doi: 10.1002/adfm.201900648 |
28 |
Tang W. ; Tang S. ; Zhang C. ; Ma Q. ; Xiang Q. ; Yang Y. ; Luo J. Adv. Energy Mater. 2018, 8, 1800866.
doi: 10.1002/aenm.201800866 |
29 |
Gopalan A. ; Santhosh P. ; Manesh K. ; Nho J. ; Kim S. ; Hwang C. ; Lee K. J. Membrane Sci. 2008, 325, 683.
doi: 10.1016/j.memsci.2008.08.047 |
30 |
Zhang W. ; Tu Z. ; Qian J. ; Choudhury S. ; Archer L. A. ; Lu Y. Small 2018, 14, 1703001.
doi: 10.1002/smll.201703001 |
31 |
Goodenough J. B. Energy Storage Mater. 2015, 1, 158.
doi: 10.1016/j.ensm.2015.07.001 |
32 |
Chazalviel J. N. Phys. Rev. A 1990, 42, 7355.
doi: 10.1103/physreva.42.7355 |
33 |
Monroe C. ; Newman J. J. Electrochem. Soc. 2005, 152, A396.
doi: 10.1149/1.1850854 |
34 |
Zuo T. ; Wu X. ; Yang C. ; Yin Y. ; Ye H. ; Li N. ; Guo Y. Adv. Mater. 2017, 29, 1700389.
doi: 10.1002/adma.201700389 |
35 |
Liang Z. ; Lin D. ; Zhao J. ; Lu Z. ; Liu Y. ; Liu C. ; Lu Y. ; Wang H. ; Yan K. ; Tao X. ; et al Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 2862.
doi: 10.1073/pnas.1518188113 |
36 |
Chi S. ; Liu Y. ; Song W. ; Fan L. ; Zhang Q. Adv. Funct. Mater. 2017, 27, 1700348.
doi: 10.1002/adfm.201700348 |
37 |
Chen K. ; Sanchez A. J. ; Kazyak E. ; Davis A. L. ; Dasgupta N. P. Adv. Energy Mater. 2019, 9, 1802534.
doi: 10.1002/aenm.201802534 |
38 |
Yang C. ; Yin Y. ; Zhang S. ; Li N. ; Guo Y. Nat. Commun. 2015, 6, 8058.
doi: 10.1038/ncomms9058 |
39 |
Lin D. ; Zhao J. ; Sun J. ; Yao H. ; Liu Y. ; Yan K. ; Cui Y. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 4613.
doi: 10.1073/pnas.1619489114 |
40 |
Liu Y. ; Lin D. ; Liang Z. ; Zhao J. ; Yan K. ; Cui Y. Nat. Commun. 2016, 7, 10992.
doi: 10.1038/ncomms10992 |
41 |
Yamaki J. ; Tobishima S. ; Hayashi K. ; Keiichi S. ; Nemoto Y. ; Arakawa M. J. Power Sources 1998, 74, 219.
doi: 10.1016/S0378-7753(98)00067-6 |
42 |
Huang Y. ; Chen B. ; Duan J. ; Yang F. ; Wang T. ; Wang Z. ; Yang W. ; Hu C. ; Luo W. ; Huang Y. Angew. Chem. Int. Ed. 2020, 132, 3728.
doi: 10.1002/ange.201914417 |
43 |
Kim K. H. ; Iriyama Y. ; Yamamoto K. ; Kumazaki S. ; Asaka T. ; Tanabe K. ; Fisher C. A. J. ; Hirayama T. ; Murugan R. ; Ogumi Z. J. Power Sources 2011, 196, 764.
doi: 10.1016/j.jpowsour.2010.07.073 |
44 |
Yang C. ; Zhang L. ; Liu B. ; Xu S. ; Hamann T. ; McOwen D. ; Dai J. ; Luo W. ; Gong Y. ; Wachsman E. D. ; et al Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 3770.
doi: 10.1073/pnas.1719758115 |
45 |
Zhang Y. ; Shi Y. ; Hu X. C. ; Wang W. P. ; Wen R. ; Xin S. ; Guo Y. G. Adv. Energy Mater. 2019, 10, 1903325.
doi: 10.1002/aenm.201903325 |
46 |
Xu S. ; Mcowen D. W. ; Wang C. ; Zhang L. ; Luo W. ; Chen C. ; Li Y. ; Gong Y. ; Dai J. ; Kuang Y. ; et al Nano Lett. 2018, 18, 3926.
doi: 10.1021/acs.nanolett.8b01295 |
47 |
Liu B. ; Zhang L. ; Xu S. ; Mcowen D. W. ; Gong Y. ; Yang C. ; Pastel G. R. ; Xie H. ; Fu K. ; Dai J. ; et al Energy Storage Mater. 2018, 14, 376.
doi: 10.1016/j.ensm.2018.04.015 |
48 |
Liu Y. ; Lin D. ; Jin Y. ; Liu K. ; Tao X. ; Zhang Q. ; Zhang X. ; Cui Y. Sci. Adv. 2017, 3, o713.
doi: 10.1126/sciadv.aao0713 |
49 |
Wang D. ; Zhang W. ; Zheng W. ; Cui X. ; Rojo T. ; Zhang Q. Adv. Sci. 2017, 4, 1600168.
doi: 10.1002/advs.201600168 |
50 |
Yun Q. ; He Y. ; Lv W. ; Zhao Y. ; Li B. ; Kang F. ; Yang Q. Adv. Mater. 2016, 28, 6932.
doi: 10.1002/adma.201601409 |
51 |
Li Q. ; Zhu S. ; Lu Y. Adv. Funct. Mater. 2017, 27, 1606422.
doi: 10.1002/adfm.201606422 |
52 |
Liang Z. ; Zheng G. ; Liu C. ; Liu N. ; Li W. ; Yan K. ; Yao H. ; Hsu P. ; Chu S. ; Cui Y. Nano Lett. 2015, 15, 2910.
doi: 10.1021/nl5046318 |
53 |
Cheng X. ; Hou T. ; Zhang R. ; Peng H. ; Zhao C. ; Huang J. ; Zhang Q. Adv. Mater. 2016, 28, 2888.
doi: 10.1002/adma.201506124 |
54 |
Yan K. ; Lu Z. ; Lee H. ; Xiong F. ; Hsu P. ; Li Y. ; Zhao J. ; Chu S. ; Cui Y. Nat. Energy 2016, 1, 16010.
doi: 10.1038/nenergy.2016.10 |
55 |
Wang S. ; Yin Y. ; Zuo T. ; Dong W. ; Li J. ; Shi J. ; Zhang C. ; Li N. ; Li C. ; Guo Y. Adv. Mater. 2017, 29, 1703729.
doi: 10.1002/adma.201703729 |
56 |
Ye H. ; Zheng Z. J. ; Yao H. R. ; Liu S. C. ; Zuo T. T. ; Wu X. W. ; Yin Y. X. ; Li N. W. ; Gu J. J. ; Cao F. F. ; et al Angew. Chem. Int. Ed. 2019, 58, 1094.
doi: 10.1002/anie.201811955 |
57 |
Tang W. ; Yin X. ; Kang S. ; Chen Z. ; Tian B. ; Teo S. L. ; Wang X. ; Chi X. ; Loh K. P. ; Lee H. ; et al Adv. Mater. 2018, 30, 1801745.
doi: 10.1002/adma.201801745 |
58 |
Liang X. ; Pang Q. ; Kochetkov I. R. ; Sempere M. S. ; Huang H. ; Sun X. ; Nazar L. F. Nat. Energy 2017, 2, 17119.
doi: 10.1038/nenergy.2017.119 |
59 |
Yu Y. ; Huang W. ; Song X. ; Wang W. ; Hou Z. ; Zhao X. ; Deng K. ; Ju H. ; Sun Y. ; Zhao Y. ; et al Electrochim. Acta 2019, 294, 413.
doi: 10.1016/j.electacta.2018.10.117 |
60 |
Liu L. ; Yin Y. ; Li J. ; Li N. ; Zeng X. ; Ye H. ; Guo Y. ; Wan L. Joule 2017, 1, 563.
doi: 10.1016/j.joule.2017.06.004 |
61 |
Salvatierra R. V. ; López G. A. ; Jalilov A. S. ; Yoon J. ; Wu G. ; Tsai A. L. ; Tour J. M. Adv. Mater. 2018, 30, 1803869.
doi: 10.1002/adma.201803869 |
62 |
Kim H. ; Chou C. ; Ekerdt J. G. ; Hwang G. S. J. Phys. Chem. C 2010, 115, 2514.
doi: 10.1021/jp1083899 |
63 |
Ma J. ; Wang C. ; Wroblewski S. J. Power Sources 2007, 164, 849.
doi: 10.1016/j.jpowsour.2006.11.024 |
64 |
Zhang C. ; Liu S. ; Li G. ; Zhang C. ; Liu X. ; Luo J. Adv. Mater. 2018, 30, 1801328.
doi: 10.1002/adma.201801328 |
65 |
Yan C. ; Cheng X. ; Yao Y. ; Shen X. ; Li B. ; Li W. ; Zhang R. ; Huang J. ; Li H. ; Zhang Q. Adv. Mater. 2018, 30, 1804461.
doi: 10.1002/adma.201804461 |
66 |
Yang C. ; Xie H. ; Ping W. ; Fu K. ; Liu B. ; Rao J. ; Dai J. ; Wang C. ; Pastel G. ; Hu L. Adv. Mater. 2018, 31, 1804815.
doi: 10.1002/adma.201804815 |
67 |
Murugan R. ; Thangadurai V. ; Weppner W. Angew. Chem. Int. Ed. 2007, 46, 7778.
doi: 10.1002/anie.200701144 |
68 | Gu L. Acta Phys. -Chim. Sin. 2018, 34, 331. |
谷林. 物理化学学报, 2018, 34, 331.
doi: 10.3866/PKU.WHXB201709281 |
|
69 |
Bouchet R. ; Maria S. ; Meziane R. ; Aboulaich A. ; Lienafa L. ; Bonnet J. ; Phan T. N. T. ; Bertin D. ; Gigmes D. ; Devaux D. ; et al Nat. Mater. 2013, 12, 452.
doi: 10.1038/nmat3602 |
70 |
Fu K. K. ; Gong Y. ; Liu B. ; Zhu Y. ; Xu S. ; Yao Y. ; Luo W. ; Wang C. ; Lacey S. D. ; Dai J. ; et al Sci. Adv. 2017, 3, e1601659.
doi: 10.1126/sciadv.1601659 |
71 |
Tsai C. L. ; Roddatis V. ; Chandran C. V. ; Ma Q. ; Uhlenbruck S. ; Bram M. ; Heitjans P. ; Guillon O. ACS Appl. Mater. Interfaces 2016, 8, 10617.
doi: 10.1021/acsami.6b00831 |
72 |
Sharafi A. ; Kazyak E. ; Davis A. L. ; Yu S. ; Thompson T. ; Siegel D. J. ; Dasgupta N. P. ; Sakamoto J. Chem. Mater. 2017, 29, 7961.
doi: 10.1021/acs.chemmater.7b03002 |
73 |
Li Y. ; Zhou W. ; Chen X. ; Lü X. ; Cui Z. ; Xin S. ; Xue L. ; Jia Q. ; Goodenough J. B. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 13313.
doi: 10.1073/pnas.1615912113 |
74 |
Yu R. ; Du Q. ; Zou B. ; Wen Z. ; Chen C. J. Power Sources 2016, 306, 623.
doi: 10.1016/j.jpowsour.2015.12.065 |
75 |
Zheng J. ; Tang M. ; Hu Y. Angew. Chem. Int. Ed. 2016, 128, 12726.
doi: 10.1002/ange.201607539 |
76 |
Trevey J. E. ; Jung Y. S. ; Lee S. Electrochim. Acta 2011, 56, 4243.
doi: 10.1016/j.electacta.2011.01.086 |
77 |
Bai P. ; Li J. ; Brushett F. R. ; Bazant M. Z. Energy Environ. Sci. 2016, 9, 3221.
doi: 10.1039/C6EE01674J |
78 |
Wang D. ; Zhang W. ; Zheng W. ; Cui X. ; Rojo T. ; Zhang Q. Adv. Sci. 2017, 4, 1600168.
doi: 10.1002/advs.201600168 |
79 |
Monzon L. M. A. ; Coey J. M. D. Electrochem. Commun. 2014, 42, 38.
doi: 10.1016/j.elecom.2014.02.006 |
80 |
Chopart J. P. ; Aaboubi O. ; Merienne E. ; Olivier A. ; Amblard J. Energy Convers. Manage. 2002, 43, 365.
doi: 10.1016/S0196-8904(01)00110-8 |
81 |
Wang A. ; Deng Q. ; Deng L. ; Guan X. ; Luo J. Adv. Funct. Mater. 2019, 29, 1902630.
doi: 10.1002/adfm.201902630 |
82 |
Shen K. ; Wang Z. ; Bi X. ; Ying Y. ; Zhang D. ; Jin C. ; Hou G. ; Cao H. ; Wu L. ; Zheng G. ; et al Adv. Energy Mater. 2019, 9, 1900260.
doi: 10.1002/aenm.201900260 |
83 |
Chen Y. ; Dou X. ; Wang K. ; Han Y. Adv. Energy Mater. 2019, 9, 1900019.
doi: 10.1002/aenm.201900019 |
84 |
Li L. ; Basu S. ; Wang Y. ; Chen Z. ; Hundekar P. ; Wang B. ; Shi J. ; Shi Y. ; Narayanan S. ; Koratkar N. Science 2018, 359, 1513.
doi: 10.1126/science.aap8787 |
85 |
Yan K. ; Wang J. ; Zhao S. ; Zhou D. ; Sun B. ; Cui Y. ; Wang G. Angew. Chem. Int. Ed. 2019, 58, 11364.
doi: 10.1002/ange.201905251 |
[1] | 朱迎迎, 王勇, 徐淼, 吴勇民, 汤卫平, 朱地, 何雨石, 马紫峰, 李林森. 追踪锂金属负极的压力与形貌变化[J]. 物理化学学报, 2023, 39(1): 2110040 -0 . |
[2] | 张威, 梁海琛, 朱科润, 田泳, 刘瑶, 陈佳音, 李伟. 三维大孔/介孔碳-碳化钛复合材料用于无枝晶锂金属负极[J]. 物理化学学报, 2022, 38(6): 2105024 - . |
[3] | 何子旭, 陈亚威, 黄凡洋, 揭育林, 李新鹏, 曹瑞国, 焦淑红. 氟代溶剂在锂金属电池中的应用[J]. 物理化学学报, 2022, 38(11): 2205005 - . |
[4] | 张云博, 林乔伟, 韩俊伟, 韩志远, 李曈, 康飞宇, 杨全红, 吕伟. 细菌纤维素衍生的三维碳集流体用于无枝晶的锂金属负极[J]. 物理化学学报, 2021, 37(2): 2008088 - . |
[5] | 关俊, 李念武, 于乐. 人工界面层在金属锂负极中的应用[J]. 物理化学学报, 2021, 37(2): 2009011 - . |
[6] | 钱华明, 李喜飞. 功能化固态电解质膜改性锂金属负极的研究进展[J]. 物理化学学报, 2021, 37(2): 2008092 - . |
[7] | 吴晨, 周颖, 朱晓龙, 詹忞之, 杨汉西, 钱江锋. 锂金属电池用高浓度电解液体系研究进展[J]. 物理化学学报, 2021, 37(2): 2008044 - . |
[8] | 石浩东, 李亚光, 路鹏飞, 吴忠帅. 石墨烯负载的氧配位钴单原子稳定金属锂负极[J]. 物理化学学报, 2021, 37(11): 2008033 - . |
[9] | 王骞, 吴恺, 王航超, 刘文, 周恒辉. 亲锂的三维二硫化锡@碳纤维布用于稳定的锂金属负极[J]. 物理化学学报, 2021, 37(1): 2007092 - . |
[10] | 郑国瑞, 向宇轩, 杨勇. 中子深度剖析技术研究可充锂金属负极[J]. 物理化学学报, 2021, 37(1): 2008094 - . |
[11] | 刘凡凡, 张志文, 叶淑芬, 姚雨, 余彦. 锂金属负极的挑战与改善策略研究进展[J]. 物理化学学报, 2021, 37(1): 2006021 - . |
[12] | 刘亚, 郑磊, 谷巍, 沈炎宾, 陈立桅. 原位聚合表面修饰的金属锂负极[J]. 物理化学学报, 2021, 37(1): 2004058 - . |
[13] | 王木钦, 彭哲, 林欢, 李振东, 刘健, 任重民, 何海勇, 王德宇. 一种有助于稳定锂金属循环的富氟化位点框架结构[J]. 物理化学学报, 2021, 37(1): 2007016 - . |
[14] | 秦金利, 任龙涛, 曹欣, 赵亚军, 许海军, 刘文, 孙晓明. 多孔泡沫铜和硫脲协同作用构筑无枝晶锂负极[J]. 物理化学学报, 2021, 37(1): 2009020 - . |
[15] | 孙明明;张世超. 锂离子电池用纳米Sn/SnSb合金三维复合负极的制备及性能[J]. 物理化学学报, 2007, 23(12): 1937 -1942 . |
|