物理化学学报 >> 2021, Vol. 37 >> Issue (7): 2009033.doi: 10.3866/PKU.WHXB202009033
所属专题: 电催化
收稿日期:
2020-09-09
录用日期:
2020-11-05
发布日期:
2020-11-16
通讯作者:
孙振宇
E-mail:sunzy@mail.buct.edu.cn
作者简介:
Zhenyu Sun was born in April 1977. He is currently a full professor in the College of Chemical Engineering at Beijing University of Chemical Technology (China). He completed his Ph.D. at Institute of Chemistry, Chinese Academy of Sciences in 2006. He did postdoctoral research in Trinity College Dublin (Ireland) from 2006 to 2008, at Ruhr University, Bochum (Germany) from 2011 to 2014, and University of Oxford from 2014 to 2015. He has obtained a Humboldt Research Fellowship for Experienced Researchers (Germany). His current research focuses on energy conversion reactions using two-dimensional materials
基金资助:
Received:
2020-09-09
Accepted:
2020-11-05
Published:
2020-11-16
Contact:
Zhenyu Sun
E-mail:sunzy@mail.buct.edu.cn
About author:
Zhenyu Sun, Email: sunzy@mail.buct.edu.cn. Tel.: +86-13301308339Supported by:
摘要:
电催化方法还原二氧化碳制备高附加值化学品,在降低二氧化碳浓度、平衡碳循环和储存可再生途径产生的电能等方面展现较大潜力。通过设计高效电催化剂来降低二氧化碳电催化还原过程所需的过电位并提高产物的选择性和电流密度,对电催化还原二氧化碳的发展和应用具有重要意义。本文总结了金属氧化物基材料作为电催化剂在二氧化碳电还原中的最新研究进展,深入探讨了金属氧化物在催化反应中的作用、稳定性及结构性能关系,并对金属氧化物基材料在二氧化碳电还原中未来的设计和研究方向做出思考。
MSC2000:
郝磊端, 孙振宇. 基于金属氧化物材料的二氧化碳电催化还原[J]. 物理化学学报, 2021, 37(7): 2009033.
Leiduan Hao, Zhenyu Sun. Metal Oxide-Based Materials for Electrochemical CO2 Reduction[J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009033.
Fig 4
a) SEM image, b) Transmission electron microscopy (TEM) image and selected-area electron diffraction (SAED) analysis (inset), c) High-resolution transmission electron microscopy (HRTEM) image and d) Scanning TEM-EDS elemental mapping of the multihollow Cu2O. e) Schematic illustration of the confinement effect. Adapted from Ref. 47. Copyright © 2020, American Chemical Society. "
Fig 8
a) Cu 2p and b) O 1s XPS spectra. c) CO2 adsorption isotherms. d) Electrochemical impedance spectroscopy (EIS) curves of the initial and cathodized La2CuO4 catalysts in the flow cell at a potential of −0.4 V vs. RHE in 1.0 mol∙L−1 KOH. Adapted from Ref. 67. Copyright © 2020, American Chemical Society. "
Fig 13
a, b) HRTEM images and SAED pattern (inset in b) of the WIT SnO2 nanofibers. c, d) Scanning TEM images and line scan results (inset in d) of the WIT SnO2 nanofibers. e) Magnified TEM image of the WIT SnO2 nanofibers. FE for f) C1 products, g) HCOOH, h) CO and i) H2 over the WIT SnO2 electrode and the NP SnO2 electrode. Adapted from Ref. 87. Copyright © 2018, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. "
Fig 15
a) CO2 adsorption isotherms. b) Tafel plots of formate for the Co3O4 atomic layers with different thicknesses. c) Schematic illustration of CO2 electroreduction to formate over the Co3O4 atomic-layers. Adapted from Ref. 95. Copyright © 2016, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. "
Table 1
Summary of representative metal oxide-based materials for ECR."
Electrocatalyst | Electrolyte | Major product and maximum FE | Current density b | Stability | Ref. |
O2 plasma treated Cu | 0.1 mol∙L−1 KHCO3 | C2H4, 60.0% at −0.9 V versus RHE | N.A. | 1 h | |
Cyclic voltammetry (CV)-treated Cu | 0.1 mol∙L−1 KHCO3 | C2H4, 40.0% at −1.0 V versus RHE | N.A. | N.A. | |
Multihollow Cu2O | 2 mol∙L−1 KOH | C2+ (C2H4, ethanol, propanol, acetic acid), 75.2% at −0.61 V versus RHE | C2+: 267 mA·cm−2 at −0.61 V versus RHE | > 3 h | |
Cu-Cu2O/Cu | 0.1 mol∙L−1 KCl | C2 (ethanol, acetic acid), 80.7% at −0.4 V versus RHE | C2: 11.5 mA·cm−2 at −0.4 V versus RHE | 24 h | |
Cu2O@CuMOF | 0.1 mol∙L−1 KHCO3 | CH4, 63.2% at −1.71 V versus RHE | CH4: 8.4 mA·cm−2 at −1.71 V versus RHE | 1 h | |
Cu2O-MWCNTs | 0.5 mol∙L−1 NaHCO3 | CH3OH, 38.0% at −0.8 V versus Ag/AgCl | 7.5 mA·cm−2 at −0.8 V versus Ag/AgCl | > 20 min | |
Cu3NiOC | 0.5 mol∙L−1 KHCO3 | HCOO−, 95.9% at −0.57 V versus RHE | HCOO−: 10.9 mA·cm−2 at −0.57 V versus RHE | 25 h | |
Cu/La2CuO4 | 1 mol∙L−1 KOH | CH4, 56.3% at −1.4 V versus RHE | CH4: 117 mA·cm−2 at −1.4 V versus RHE | > 20 min | |
SnOx | 0.1 mol∙L−1 KHCO3 | HCOO−, 64.0% at −1.2 V versus Ag/AgCl | 3 mA·cm−2 at −1.2 V versus Ag/AgCl | 2 h | |
SnOx/Sn | 0.1 mol∙L−1 KHCO3 | HCOO−, 89.0% at −1.7 V versus Ag/AgCl | 6 mA·cm−2 at −1.7 V versus Ag/AgCl | 10 times of reuse | |
Cu/SnO2 | 0.5 mol∙L−1 KHCO3 | CO, 93.0% at −0.7 V versus RHE | 4.6 mA·cm−2 at −0.7 V versus RHE | N.A. | |
Cu/SnOx | 0.1 mol∙L−1 KHCO3 | CO, 89.0% at −0.99 V versus RHE | CO: 11.3 mA·cm−2 at −0.99 V versus RHE | N.A. | |
PbSnO3/C | 0.1 mol∙L−1 nBu4NPF6 in PC a | C2O42−, 85.1% at −1.9 V versus Ag/Ag+ | C2O42−: 2.0 mA·cm−2 at −1.9 V versus Ag/Ag+ | N.A. | |
Zn2SnO4/SnO2 | 0.1 mol∙L−1 KHCO3 | HCOO−, 77.0% at −1.08 V versus RHE | HCOO−: 5.77 mA·cm−2 at −1.18 V versus RHE | 24 h | |
1D wire in tube SnO2 | 0.1 mol∙L−1 KHCO3 | HCOO−, 63.0% at −0.99 V versus RHE | N.A. | 14 h | |
SnO2 quantum wires | 0.1 mol∙L−1 KHCO3 | HCOO−, 87.3% at −1.156 V versus RHE | HCOO−: 13.7 mA·cm−2 at −1.156 V versus RHE | 7 | |
3D SnO2 nanosheets on carbon cloth | 0.5 mol∙L−1 NaHCO3 | HCOO−, 87.0% at −1.6 V versus Ag/AgCl | 50 mA·cm−2 at −1.6 V versus Ag/AgCl | 24 h | |
Co3O4 layer of 1.72 nm thickness | 0.1 mol∙L−1 KHCO3 | HCOO−, 64.3% at −0.88 V versus SCE | 0.68 mA·cm−2 at −0.88 V versus SCE | 20 h | |
Bi2O3 | 0.5 mol∙L−1 KHCO3 | HCOO−, 91.0% at −0.9 V versus RHE | HCOO−: 8 mA·cm−2 at −0.9 V versus RHE | 24 h | |
Bi2O3@C | 0.5 mol∙L−1 KHCO3 | HCOO−, 92.0% at −0.9 V versus RHE | HCOO−: 7.5 mA·cm−2 at −0.9 V versus RHE | 10 h | |
In2O3@C | 0.5 mol∙L−1 KHCO3 | HCOO−, 87.6% at −0.9 V versus RHE | 14.8 mA·cm−2 at −0.9 V versus RHE | 12 h | |
ZnO nanosheets | 0.1 mol∙L−1 KHCO3 | CO, 83.0% at −1.1 V versus RHE | CO: 16.1 mA·cm−2 at −1.1 V versus RHE | 8 h | |
ZrO2/N-doped carbon | 0.5 mol∙L−1 KHCO3 | CO, 64.0% at −0.4 V versus RHE | 2.6 mA·cm−2 at −0.4 V versus RHE | 5 h | |
Ga2O3 | 3.0 mol∙L−1 KCl | HCOOH, 80.0% at −2 V versus Ag/AgCl | 0.3 mA·cm−2 at −2 V versus Ag/AgCl | 50 cycles | |
RuO2-coated diamond | pH = 3.9 aqueous solution | HCOOH, 40.0% at −0.6 V versus SCE | N.A. | N.A. |
1 |
He M. ; Sun Y. ; Han B. Angew. Chem., Int. Ed. 2013, 52, 9620.
doi: 10.1002/anie.201209384 |
2 |
Shih C. F. ; Zhang T. ; Li J. ; Bai C. Joule 2018, 2, 1925.
doi: 10.1016/j.joule.2018.08.016 |
3 |
Bushuyev O. S. ; De Luna P. ; Dinh C. T. ; Tao L. ; Saur G. ; van de Lagemaat J. ; Kelley S. O. ; Sargent E. H. Joule 2018, 2, 825.
doi: 10.1016/j.joule.2017.09.003 |
4 |
Zheng Y. ; Vasileff A. ; Zhou X. ; Jiao Y. ; Jaroniec M. ; Qiao S. -Z. J. Am. Chem. Soc. 2019, 141, 7646.
doi: 10.1021/jacs.9b02124 |
5 | Ning H. ; Wang W. H. ; Mao Q. H. ; Zheng S. R. ; Yang Z. X. ; Zhao Q. S. ; Wu M. B. Acta Phys. -Chim. Sin. 2018, 34, 938. |
宁汇; 王文行; 毛勤虎; 郑诗瑞; 杨中学; 赵青山; 吴明铂. 物理化学学报, 2018, 34, 938.
doi: 10.3866/PKU.WHXB201801263 |
|
6 | Gao Y. N. ; Liu S. Z. ; Zhao Z. Q. ; Tao H. C. ; Sun Z. Y. Acta Phys. -Chim. Sin. 2018, 34, 858. |
高云楠; 刘世桢; 赵振清; 陶亨聪; 孙振宇. 物理化学学报, 2018, 34, 858.
doi: 10.3866/PKU.WHXB201802061 |
|
7 |
Fan Q. ; Zhang M. ; Jia M. ; Liu S. ; Qiu J. ; Sun Z. Mater. Today Energy 2018, 10, 280.
doi: 10.1016/j.mtener.2018.10.003 |
8 |
Xie H. ; Wang T. ; Liang J. ; Li Q. ; Sun S. Nano Today 2018, 21, 41.
doi: 10.1016/j.nantod.2018.05.001 |
9 |
Zhu W. ; Michalsky R. ; Metin Ö. ; Lv H. ; Guo S. ; Wright C. J. ; Sun X. ; Peterson A. A. ; Sun S. J. Am. Chem. Soc. 2013, 135, 16833.
doi: 10.1021/ja409445p |
10 |
Yang M. ; Zhang J. ; Cao Y. ; Wu M. ; Qian K. ; Zhang Z. ; Liu H. ; Wang J. ; Chen W. ; Huang W. ChemCatChem 2018, 10, 5128.
doi: 10.1002/cctc.201801423 |
11 |
Chen Z. ; Yao S. ; Liu L. J. Mater. Chem. A 2017, 5, 24651.
doi: 10.1039/C7TA07495F |
12 |
Zhang T. ; Qiu Y. ; Yao P. ; Li X. ; Zhang H. ACS Sustainable Chem. Eng. 2019, 7, 15190.
doi: 10.1021/acssuschemeng.9b01985 |
13 | Meng Y. C. ; Kuang S. Y. ; Liu H. ; Fan Q. ; Ma X. B. ; Zhang S. Acta Phys. -Chim. Sin. 2021, 37, 2006034. |
孟怡辰; 况思宇; 刘海; 范群; 马新宾; 张生. 物理化学学报, 2021, 37, 2006034.
doi: 10.3866/PKU.WHXB202006034 |
|
14 |
Jia M. ; Fan Q. ; Liu S. ; Qiu J. ; Sun Z. Curr. Opin. Green Sustainable Chem. 2019, 16, 1.
doi: 10.1016/j.cogsc.2018.11.002 |
15 |
Angamuthu R. ; Byers P. ; Lutz M. ; Spek A. L. ; Bouwman E. Science 2010, 327, 313.
doi: 10.1126/science.1177981 |
16 |
Weng Z. ; Wu Y. ; Wang M. ; Jiang J. ; Yang K. ; Huo S. ; Wang X. -F. ; Ma Q. ; Brudvig G. W. ; Batista V. S. ; et al Nat. Commun. 2018, 9, 415.
doi: 10.1038/s41467-018-02819-7 |
17 |
Ma T. ; Fan Q. ; Tao H. ; Han Z. ; Jia M. ; Gao Y. ; Ma W. ; Sun Z. Nanotechnology 2017, 28, 472001.
doi: 10.1088/1361-6528/aa8f6f |
18 |
Ma T. ; Fan Q. ; Li X. ; Qiu J. ; Wu T. ; Sun Z. J. CO2 Util. 2019, 30, 168.
doi: 10.1016/j.jcou.2019.02.001 |
19 |
Sun Z. ; Ma T. ; Tao H. ; Fan Q. ; Han B. Chem 2017, 3, 560.
doi: 10.1016/j.chempr.2017.09.009 |
20 |
Bandi A. J. Electrochem. Soc. 1990, 137, 2157.
doi: 10.1149/1.2086903 |
21 |
Tayyebi E. ; Hussain J. ; Abghoui Y. ; Skúlason E. J. Phys. Chem. C 2018, 122, 10078.
doi: 10.1021/acs.jpcc.8b02224 |
22 |
Mistry H. ; Varela A. S. ; Bonifacio C. S. ; Zegkinoglou I. ; Sinev I. ; Choi Y. -W. ; Kisslinger K. ; Stach E. A. ; Yang J. C. ; Strasser P. ; et al Nat. Commun. 2016, 7, 12123.
doi: 10.1038/ncomms12123 |
23 |
Zhang R. ; Lv W. ; Lei L. Appl. Surf. Sci. 2015, 356, 24.
doi: 10.1016/j.apsusc.2015.08.006 |
24 |
Permyakova A. A. ; Herranz J. ; El Kazzi M. ; Diercks J. S. ; Povia M. ; Mangani L. R. ; Horisberger M. ; Pătru A. ; Schmidt T. J. ChemPhysChem 2019, 20, 3120.
doi: 10.1002/cphc.201900468 |
25 |
Chu S. ; Yan X. ; Choi C. ; Hong S. ; Robertson A. ; Masa J. ; Han B. ; Jung Y. ; Sun Z. Green Chem. 2020, 22, 6540.
doi: 10.1039/D0GC02279A |
26 |
Kortlever R. ; Shen J. ; Schouten K. J. P. ; Calle-Vallejo F. ; Koper M. T. M. J. Phys. Chem. Lett. 2015, 6, 4073.
doi: 10.1021/acs.jpclett.5b01559 |
27 |
Kumar B. ; Atla V. ; Brian J. P. ; Kumari S. ; Nguyen T. Q. ; Sunkara M. ; Spurgeon J. M. Angew. Chem. Int. Ed. 2017, 56, 3645.
doi: 10.1002/anie.201612194 |
28 |
Peterson A. A. ; Abild-Pedersen F. ; Studt F. ; Rossmeisl J. ; Nørskov J. K. Energy Environ. Sci. 2010, 3, 1311.
doi: 10.1039/C0EE00071J |
29 |
Cheng T. ; Xiao H. ; Goddard W. A. J. Am. Chem. Soc. 2016, 138, 13802.
doi: 10.1021/jacs.6b08534 |
30 |
Schouten K. J. P. ; Qin Z. ; Pérez Gallent E. ; Koper M. T. M. J. Am. Chem. Soc. 2012, 134, 9864.
doi: 10.1021/ja302668n |
31 |
Gao D. ; Arán-Ais R. M. ; Jeon H. S. ; Roldan Cuenya B. Nat. Catal. 2019, 2, 198.
doi: 10.1038/s41929-019-0235-5 |
32 | Yang Y. ; Zhang Y. ; Hu J. S. ; Wan L. J. Acta Phys. -Chim. Sin. 2020, 36, 1906085. |
杨艳; 张云; 胡劲松; 万立骏. 物理化学学报, 2020, 36, 1906085.
doi: 10.3866/PKU.WHXB201906085 |
|
33 |
Mistry H. ; Reske R. ; Zeng Z. ; Zhao Z. -J. ; Greeley J. ; Strasser P. ; Cuenya B. R. J. Am. Chem. Soc. 2014, 136, 16473.
doi: 10.1021/ja508879j |
34 |
Yang K. D. ; Ko W. R. ; Lee J. H. ; Kim S. J. ; Lee H. ; Lee M. H. ; Nam K. T. Angew. Chem. Int. Ed. 2017, 56, 796.
doi: 10.1002/anie.201610432 |
35 |
Zhang Y. -J. ; Sethuraman V. ; Michalsky R. ; Peterson A. A. ACS Catal. 2014, 4, 3742.
doi: 10.1021/cs5012298 |
36 |
Ma M. ; Djanashvili K. ; Smith W. A. Angew. Chem. Int. Ed. 2016, 55, 6680.
doi: 10.1002/anie.201601282 |
37 |
Xiang H. ; Rasul S. ; Hou B. ; Portoles J. ; Cumpson P. ; Yu E. H. ACS Appl. Mater. Interfaces 2020, 12, 601.
doi: 10.1021/acsami.9b16862 |
38 |
Wang H. ; Matios E. ; Wang C. ; Luo J. ; Lu X. ; Hu X. ; Li W. Nano Lett. 2019, 19, 3925.
doi: 10.1021/acs.nanolett.9b01197 |
39 |
Li C. W. ; Kanan M. W. J. Am. Chem. Soc. 2012, 134, 7231.
doi: 10.1021/ja3010978 |
40 |
Eilert A. ; Cavalca F. ; Roberts F. S. ; Osterwalder J. ; Liu C. ; Favaro M. ; Crumlin E. J. ; Ogasawara H. ; Friebel D. ; Pettersson L. ; et al J. Phys. Chem. Lett. 2017, 8, 285.
doi: 10.1021/acs.jpclett.6b02273 |
41 |
Favaro M. ; Xiao H. ; Cheng T. ; Goddard W. A. ; Yano J. ; Crumlin E. J. Proc. Natl. Acad. Sci. 2017, 114, 6706.
doi: 10.1073/pnas.1701405114 |
42 |
Fields M. ; Hong X. ; Nørskov J. K. ; Chan K. J. Phys. Chem. C 2018, 122, 16209.
doi: 10.1021/acs.jpcc.8b04983 |
43 |
Garza A. J. ; Bell A. T. ; Head-Gordon M. J. Phys. Chem. Lett. 2018, 9, 601.
doi: 10.1021/acs.jpclett.7b03180 |
44 |
Xiao H. ; Goddard W. A. ; Cheng T. ; Liu Y. Proc. Natl. Acad. Sci. 2017, 114, 6685.
doi: 10.1073/pnas.1702405114 |
45 |
Chou T. -C. ; Chang C. -C. ; Yu H. -L. ; Yu W. -Y. ; Dong C. -L. ; Velasco-Vélez J. -J. ; Chuang C. -H. ; Chen L. -C. ; Lee J. -F. ; Chen J. -M. ; et al J. Am. Chem. Soc. 2020, 142, 2857.
doi: 10.1021/jacs.9b11126 |
46 |
Velasco-Vélez J. -J. ; Jones T. ; Gao D. ; Carbonio E. ; Arrigo R. ; Hsu C. -J. ; Huang Y. -C. ; Dong C. -L. ; Chen J. -M. ; Lee J. -F. ; et al ACS Sustainable Chem. Eng. 2019, 7, 1485.
doi: 10.1021/acssuschemeng.8b05106 |
47 |
Yang P. -P. ; Zhang X. -L. ; Gao F. -Y. ; Zheng Y. -R. ; Niu Z. -Z. ; Yu X. ; Liu R. ; Wu Z. -Z. ; Qin S. ; Chi L. -P. ; et al J. Am. Chem. Soc. 2020, 142, 6400.
doi: 10.1021/jacs.0c01699 |
48 |
Zhu Q. ; Sun X. ; Yang D. ; Ma J. ; Kang X. ; Zheng L. ; Zhang J. ; Wu Z. ; Han B. Nat. Commun. 2019, 10, 3851.
doi: 10.1038/s41467-019-11599-7 |
49 |
Zhang W. ; Huang C. ; Xiao Q. ; Yu L. ; Shuai L. ; An P. ; Zhang J. ; Qiu M. ; Ren Z. ; Yu Y. J. Am. Chem. Soc. 2020, 142, 11417.
doi: 10.1021/jacs.0c01562 |
50 |
Tan X. ; Yu C. ; Zhao C. ; Huang H. ; Yao X. ; Han X. ; Guo W. ; Cui S. ; Huang H. ; Qiu J. ACS Appl. Mater. Interfaces 2019, 11, 9904.
doi: 10.1021/acsami.8b19111 |
51 |
Irfan Malik M. ; Malaibari Z. O. ; Atieh M. ; Abussaud B. Chem. Eng. Sci. 2016, 152, 468.
doi: 10.1016/j.ces.2016.06.035 |
52 |
Gao D. ; Zhang Y. ; Zhou Z. ; Cai F. ; Zhao X. ; Huang W. ; Li Y. ; Zhu J. ; Liu P. ; Yang F. ; et al J. Am. Chem. Soc. 2017, 139, 5652.
doi: 10.1021/jacs.7b00102 |
53 |
Lee C. W. ; Shin S. -J. ; Jung H. ; Nguyen D. L. T. ; Lee S. Y. ; Lee W. H. ; Won D. H. ; Kim M. G. ; Oh H. -S. ; Jang T. ; et al ACS Energy Letters 2019, 4, 2241.
doi: 10.1021/acsenergylett.9b01721 |
54 | Chu S. L. ; Li X. ; Robertson A. W. ; Sun Z. Y. Acta Phys. -Chim. Sin. 2021, 37, 2009023. |
楚森林; 李欣; Alex W. Robertson; 孙振宇. 物理化学学报, 2021, 37, 2009023.
doi: 10.3866/PKU.WHXB202009023 |
|
55 |
Lee S. ; Park G. ; Lee J. ACS Catal. 2017, 7, 8594.
doi: 10.1021/acscatal.7b02822 |
56 |
He J. ; Dettelbach K. E. ; Salvatore D. A. ; Li T. ; Berlinguette C. P. Angew. Chem. Int. Ed. 2017, 56, 6068.
doi: 10.1002/anie.201612038 |
57 |
Li Y. ; Chu S. ; Shen H. ; Xia Q. ; Robertson A. W. ; Masa J. ; Siddiqui U. ; Sun Z. ACS Sustainable Chem. Eng. 2020, 8, 4948.
doi: 10.1021/acssuschemeng.0c00800 |
58 |
Ren D. ; Ang B. S. -H. ; Yeo B. S. ACS Catal. 2016, 6, 8239.
doi: 10.1021/acscatal.6b02162 |
59 |
Chen K. ; Zhang X. ; Williams T. ; Bourgeois L. ; MacFarlane D. R. Electrochim. Acta 2017, 239, 84.
doi: 10.1016/j.electacta.2017.04.019 |
60 |
An X. ; Li S. ; Yoshida A. ; Yu T. ; Wang Z. ; Hao X. ; Abudula A. ; Guan G. ACS Appl. Mater. Interfaces 2019, 11, 42114.
doi: 10.1021/acsami.9b13270 |
61 |
Larrazábal G. O. ; Martín A. J. ; Mitchell S. ; Hauert R. ; Pérez-Ramírez J. ACS Catal. 2016, 6, 6265.
doi: 10.1021/acscatal.6b02067 |
62 |
Yang H. -P. ; Yue Y. -N. ; Qin S. ; Wang H. ; Lu J. -X. Green Chem. 2016, 18, 3216.
doi: 10.1039/C6GC00091F |
63 |
Rasul S. ; Anjum D. H. ; Jedidi A. ; Minenkov Y. ; Cavallo L. ; Takanabe K. Angew. Chem. Int. Ed. 2015, 54, 2146.
doi: 10.1002/anie.201410233 |
64 |
Yang D. ; Zhu Q. ; Sun X. ; Chen C. ; Lu L. ; Guo W. ; Liu Z. ; Han B. Green Chem. 2018, 20, 3705.
doi: 10.1039/C8GC01552J |
65 |
Peña M. A. ; Fierro J. L. G. Chem. Rev. 2001, 101, 1981.
doi: 10.1021/cr980129f |
66 |
Lu J. ; Zhu C. ; Pan C. ; Lin W. ; Lemmon J. P. ; Chen F. ; Li C. ; Xie K. Sci. Adv. 2018, 4, eaar5100.
doi: 10.1126/sciadv.aar5100 |
67 |
Chen S. ; Su Y. ; Deng P. ; Qi R. ; Zhu J. ; Chen J. ; Wang Z. ; Zhou L. ; Guo X. ; Xia B. Y. ACS Catal. 2020, 10, 4640.
doi: 10.1021/acscatal.0c00847 |
68 |
Nur Hossain M. ; Chen S. ; Chen A. Appl. Catal. B 2019, 259, 118096.
doi: 10.1016/j.apcatb.2019.118096 |
69 |
Pang Y. ; Burdyny T. ; Dinh C. -T. ; Kibria M. G. ; Fan J. Z. ; Liu M. ; Sargent E. H. ; Sinton D. Green Chem. 2017, 19, 4023.
doi: 10.1039/C7GC01677H |
70 |
Wu M. ; Zhu C. ; Wang K. ; Li G. ; Dong X. ; Song Y. ; Xue J. ; Chen W. ; Wei W. ; Sun Y. ACS Appl. Mater. Interfaces 2020, 12, 11562.
doi: 10.1021/acsami.9b21153 |
71 |
Kim J. ; Choi W. ; Park J. W. ; Kim C. ; Kim M. ; Song H. J. Am. Chem. Soc. 2019, 141, 6986.
doi: 10.1021/jacs.9b00911 |
72 |
Jitaru M. ; Lowy D. A. ; Toma M. ; Toma B. C. ; Oniciu L. J. Appl. Electrochem. 1997, 27, 875.
doi: 10.1023/A:1018441316386 |
73 |
Chen Y. ; Kanan M. W. J. Am. Chem. Soc. 2012, 134, 1986.
doi: 10.1021/ja2108799 |
74 |
Wu J. ; Risalvato F. G. ; Ma S. ; Zhou X. -D. J. Mater. Chem. A 2014, 2, 1647.
doi: 10.1039/C3TA13544F |
75 |
An X. ; Li S. ; Yoshida A. ; Wang Z. ; Hao X. ; Abudula A. ; Guan G. ACS Sustainable Chem. Eng. 2019, 7, 9360.
doi: 10.1021/acssuschemeng.9b00515 |
76 |
Zhang Q. ; Zhang Y. ; Mao J. ; Liu J. ; Zhou Y. ; Guay D. ; Qiao J. ChemSusChem 2019, 12, 1443.
doi: 10.1002/cssc.201802725 |
77 |
Cui C. ; Han J. ; Zhu X. ; Liu X. ; Wang H. ; Mei D. ; Ge Q. J. Catal. 2016, 343, 257.
doi: 10.1016/j.jcat.2015.12.001 |
78 |
Deng W. ; Zhang L. ; Li L. ; Chen S. ; Hu C. ; Zhao Z. -J. ; Wang T. ; Gong J. J. Am. Chem. Soc. 2019, 141, 2911.
doi: 10.1021/jacs.8b13786 |
79 |
Zhang W. ; Qin Q. ; Dai L. ; Qin R. ; Zhao X. ; Chen X. ; Ou D. ; Chen J. ; Chuong T. T. ; Wu B. ; Zheng N. Angew. Chem. Int. Ed. 2018, 57, 9475.
doi: 10.1002/anie.201804142 |
80 |
Lee S. ; Ju H. ; Machunda R. ; Uhm S. ; Lee J. K. ; Lee H. J. ; Lee J. J. Mater. Chem. A 2015, 3, 3029.
doi: 10.1039/C4TA03893B |
81 |
Gao D. ; Zhou H. ; Wang J. ; Miao S. ; Yang F. ; Wang G. ; Wang J. ; Bao X. J. Am. Chem. Soc. 2015, 137, 4288.
doi: 10.1021/jacs.5b00046 |
82 |
Zhu W. ; Zhang Y. -J. ; Zhang H. ; Lv H. ; Li Q. ; Michalsky R. ; Peterson A. A. ; Sun S. J. Am. Chem. Soc. 2014, 136, 16132.
doi: 10.1021/ja5095099 |
83 |
Li Q. ; Fu J. ; Zhu W. ; Chen Z. ; Shen B. ; Wu L. ; Xi Z. ; Wang T. ; Lu G. ; Zhu J. -J. ; Sun S. J. Am. Chem. Soc. 2017, 139, 4290.
doi: 10.1021/jacs.7b00261 |
84 |
Huo S. ; Weng Z. ; Wu Z. ; Zhong Y. ; Wu Y. ; Fang J. ; Wang H. ACS Appl. Mater. Interfaces 2017, 9, 28519.
doi: 10.1021/acsami.7b07707 |
85 |
Cheng Y. ; Hou P. ; Pan H. ; Shi H. ; Kang P. Appl. Catal. B 2020, 272, 118954.
doi: 10.1016/j.apcatb.2020.118954 |
86 |
Wang K. ; Liu D. ; Deng P. ; Liu L. ; Lu S. ; Sun Z. ; Ma Y. ; Wang Y. ; Li M. ; Xia B. Y. ; et al Nano Energy 2019, 64, 103954.
doi: 10.1016/j.nanoen.2019.103954 |
87 |
Fan L. ; Xia Z. ; Xu M. ; Lu Y. ; Li Z. Adv. Funct. Mater. 2018, 28, 1706289.
doi: 10.1002/adfm.201706289 |
88 |
Liu S. ; Xiao J. ; Lu X. F. ; Wang J. ; Wang X. ; Lou X. W. Angew. Chem. Int. Ed. 2019, 58, 8499.
doi: 10.1002/anie.201903613 |
89 |
Li F. ; Chen L. ; Knowles G. P. ; MacFarlane D. R. ; Zhang J. Angew. Chem. Int. Ed. 2017, 56, 505.
doi: 10.1002/anie.201608279 |
90 |
Xie X. ; Li Y. ; Liu Z. -Q. ; Haruta M. ; Shen W. Nature 2009, 458, 746.
doi: 10.1038/nature07877 |
91 |
Roy S. C. ; Varghese O. K. ; Paulose M. ; Grimes C. A. ACS Nano 2010, 4, 1259.
doi: 10.1021/nn9015423 |
92 |
Sun Y. ; Gao S. ; Lei F. ; Liu J. ; Liang L. ; Xie Y. Chem. Sci. 2014, 5, 3976.
doi: 10.1039/C4SC00565A |
93 |
Huang X. ; Cao T. ; Liu M. ; Zhao G. J. Phys. Chem. C 2013, 117, 26432.
doi: 10.1021/jp408630s |
94 |
Gao S. ; Lin Y. ; Jiao X. ; Sun Y. ; Luo Q. ; Zhang W. ; Li D. ; Yang J. ; Xie Y. Nature 2016, 529, 68.
doi: 10.1038/nature16455 |
95 |
Gao S. ; Jiao X. ; Sun Z. ; Zhang W. ; Sun Y. ; Wang C. ; Hu Q. ; Zu X. ; Yang F. ; Yang S. ; et al Angew. Chem. Int. Ed. 2016, 55, 698.
doi: 10.1002/anie.201509800 |
96 |
Yang H. ; Han N. ; Deng J. ; Wu J. ; Wang Y. ; Hu Y. ; Ding P. ; Li Y. ; Li Y. ; Lu J. Adv. Energy Mater. 2018, 8, 1801536.
doi: 10.1002/aenm.201801536 |
97 |
Han N. ; Wang Y. ; Yang H. ; Deng J. ; Wu J. ; Li Y. ; Li Y. Nat. Commun. 2018, 9, 1.
doi: 10.1038/s41467-018-03712-z |
98 |
Lee C. W. ; Hong J. S. ; Yang K. D. ; Jin K. ; Lee J. H. ; Ahn H. -Y. ; Seo H. ; Sung N. -E. ; Nam K. T. ACS Catal. 2018, 8, 931.
doi: 10.1021/acscatal.7b03242 |
99 |
Koh J. H. ; Won D. H. ; Eom T. ; Kim N. -K. ; Jung K. D. ; Kim H. ; Hwang Y. J. ; Min B. K. ACS Catal. 2017, 7, 5071.
doi: 10.1021/acscatal.7b00707 |
100 |
Kim S. ; Dong W. J. ; Gim S. ; Sohn W. ; Park J. Y. ; Yoo C. J. ; Jang H. W. ; Lee J. -L. Nano Energy 2017, 39, 44.
doi: 10.1016/j.nanoen.2017.05.065 |
101 |
Gong Q. ; Ding P. ; Xu M. ; Zhu X. ; Wang M. ; Deng J. ; Ma Q. ; Han N. ; Zhu Y. ; Lu J. ; et al Nat. Commun. 2019, 10, 2807.
doi: 10.1038/s41467-019-10819-4 |
102 |
Deng P. ; Wang H. ; Qi R. ; Zhu J. ; Chen S. ; Yang F. ; Zhou L. ; Qi K. ; Liu H. ; Xia B. Y. ACS Catal. 2020, 10, 743.
doi: 10.1021/acscatal.9b04043 |
103 |
Deng P. ; Yang F. ; Wang Z. ; Chen S. ; Zhou Y. ; Zaman S. ; Xia B. Y. Angew. Chem., Int. Ed. 2020, 59, 10807.
doi: 10.1002/anie.202000657 |
104 |
Chen Z. ; Mou K. ; Wang X. ; Liu L. Angew. Chem. Int. Ed. 2018, 57, 12790.
doi: 10.1002/anie.201807643 |
105 |
Li T. ; Wei H. ; Liu T. ; Zheng G. ; Liu S. ; Luo J. -L. ACS Appl. Mater. Interfaces 2019, 11, 22346.
doi: 10.1021/acsami.9b04580 |
106 |
Rabiee A. ; Nematollahi D. Mater. Chem. Phys. 2017, 193, 109.
doi: 10.1016/j.matchemphys.2017.02.016 |
107 |
Xia Z. ; Freeman M. ; Zhang D. ; Yang B. ; Lei L. ; Li Z. ; Hou Y. ChemElectroChem 2018, 5, 253.
doi: 10.1002/celc.201700935 |
108 |
Sun X. ; Lu L. ; Zhu Q. ; Wu C. ; Yang D. ; Chen C. ; Han B. Angew. Chem. Int. Ed. 2018, 57, 2427.
doi: 10.1002/anie.201712221 |
109 |
Chu S. ; Hong S. ; Masa J. ; Li X. ; Sun Z. Chem. Commun. 2019, 55, 12380.
doi: 10.1039/C9CC05435A |
110 |
White J. L. ; Bocarsly A. B. J. Electrochem. Soc. 2016, 163, H410.
doi: 10.1149/2.0681606jes |
111 |
Mou K. ; Chen Z. ; Yao S. ; Liu L. Electrochim. Acta 2018, 289, 65.
doi: 10.1016/j.electacta.2018.09.026 |
112 |
Won D. H. ; Shin H. ; Koh J. ; Chung J. ; Lee H. S. ; Kim H. ; Woo S. I. Angew. Chem. Int. Ed. 2016, 55, 9297.
doi: 10.1002/anie.201602888 |
113 |
Rosen J. ; Hutchings G. S. ; Lu Q. ; Forest R. V. ; Moore A. ; Jiao F. ACS Catal. 2015, 5, 4586.
doi: 10.1021/acscatal.5b00922 |
114 |
Quan F. ; Zhong D. ; Song H. ; Jia F. ; Zhang L. J. Mater. Chem. A 2015, 3, 16409.
doi: 10.1039/C5TA04102C |
115 |
Nguyen D. L. T. ; Jee M. S. ; Won D. H. ; Jung H. ; Oh H. -S. ; Min B. K. ; Hwang Y. J. ACS Sustainable Chem. Eng. 2017, 5, 11377.
doi: 10.1021/acssuschemeng.7b02460 |
116 |
Jeon H. S. ; Sinev I. ; Scholten F. ; Divins N. J. ; Zegkinoglou I. ; Pielsticker L. ; Cuenya B. R. J. Am. Chem. Soc. 2018, 140, 9383.
doi: 10.1021/jacs.8b05258 |
117 |
Geng Z. ; Kong X. ; Chen W. ; Su H. ; Liu Y. ; Cai F. ; Wang G. ; Zeng J. Angew. Chem. Int. Ed. 2018, 57, 6054.
doi: 10.1002/anie.201711255 |
118 |
Bachiller-Baeza B. ; Rodriguez-Ramos I. ; Guerrero-Ruiz A. Langmuir 1998, 14, 3556.
doi: 10.1021/la970856q |
119 |
Miao Z. ; Hu P. ; Nie C. ; Xie H. ; Fu W. ; Li Q. J. Energy Chem. 2019, 38, 114.
doi: 10.1016/j.jechem.2019.01.010 |
120 |
Sekimoto T. ; Deguchi M. ; Yotsuhashi S. ; Yamada Y. ; Masui T. ; Kuramata A. ; Yamakoshi S. Electrochem. Commun. 2014, 43, 95.
doi: 10.1016/j.elecom.2014.03.023 |
121 |
Tsuneoka H. ; Teramura K. ; Shishido T. ; Tanaka T. J. Phys. Chem. C 2010, 114, 8892.
doi: 10.1021/jp910835k |
122 |
Yuliati L. ; Itoh H. ; Yoshida H. Chem. Phys. Lett. 2008, 452, 178.
doi: 10.1016/j.cplett.2007.12.051 |
123 |
Spataru N. ; Tokuhiro K. ; Terashima C. ; Rao T. N. ; Fujishima A. J. Appl. Electrochem. 2003, 33, 1205.
doi: 10.1023/B:JACH.0000003866.85015.b6 |
124 |
Karamad M. ; Hansen H. A. ; Rossmeisl J. ; Nørskov J. K. ACS Catal. 2015, 5, 4075.
doi: 10.1021/cs501542n |
125 |
Lum Y. ; Ager J. W. Angew. Chem. Int. Ed. 2018, 57, 551.
doi: 10.1002/anie.201710590 |
[1] | 闫大强, 张林, 陈祖鹏, 肖卫平, 杨小飞. 镍基金属有机框架衍生的双功能电催化剂用于析氢和析氧反应[J]. 物理化学学报, 2021, 37(7): 2009054 -0 . |
[2] | 周雪梅. 二氧化钛负载单原子催化剂用于光催化反应的研究[J]. 物理化学学报, 2021, 37(6): 2008064 -0 . |
[3] | 孟怡辰, 况思宇, 刘海, 范群, 马新宾, 张生. 面向CO2电化学转化的铜基催化剂研究进展[J]. 物理化学学报, 2021, 37(5): 2006034 -0 . |
[4] | 郑超, 刘阿强, 毕成浩, 田建军. SCN掺杂提高CsPbI3胶体量子点的稳定性和光探测性能[J]. 物理化学学报, 2021, 37(4): 2007084 -0 . |
[5] | 周文韬, 陈怡华, 周欢萍. 提升基于钙钛矿的叠层太阳能电池稳定性的策略[J]. 物理化学学报, 2021, 37(4): 2009044 -0 . |
[6] | 王嘉鑫, 沈威力, 胡锦宁, 陈军, 李晓明, 曾海波. 激光作用铅卤钙钛矿的机理与应用[J]. 物理化学学报, 2021, 37(4): 2008051 -0 . |
[7] | 王甜, 张太阳, 陈悦天, 赵一新. ALD-Al2O3涂层保护的高抗湿5-氨基戊酸铰链甲胺铅溴钙钛矿薄膜[J]. 物理化学学报, 2021, 37(4): 2007021 -0 . |
[8] | 蔡明俐, 姚柳, 靳俊, 温兆银. 水溶液法原位构建ZnO亲锂层稳定锂-石榴石电解质界面[J]. 物理化学学报, 2021, 37(1): 2009006 -0 . |
[9] | 周远, 韩娜, 李彦光. 钯基纳米材料电化学还原二氧化碳研究进展[J]. 物理化学学报, 2020, 36(9): 2001041 -0 . |
[10] | 佟永丽, 戴美珍, 邢磊, 刘恒岐, 孙婉婷, 武祥. 基于NiCo2O4纳米片电极的非对称混合电容器[J]. 物理化学学报, 2020, 36(7): 1903046 -0 . |
[11] | 方波,冯立纲. 纳米颗粒结合ZIF-67衍生的PtCo-NC催化剂用于醇类燃料电氧化[J]. 物理化学学报, 2020, 36(7): 1905023 -0 . |
[12] | 乔成芳,吕磊,许文风,夏正强,周春生,陈三平,高胜利. 三维无溶剂含能Ag-MOF的制备、热分解动力学及爆炸性能[J]. 物理化学学报, 2020, 36(6): 1905085 -0 . |
[13] | 陈光海,白莹,高永晟,吴锋,吴川. 全固态钠离子电池硫系化合物电解质[J]. 物理化学学报, 2020, 36(5): 1905009 -0 . |
[14] | 孙成珍, 周润峰, 白博峰. 基于静电效应的石墨烯纳米孔选择性渗透特性[J]. 物理化学学报, 2020, 36(11): 1911044 -0 . |
[15] | 杨艳,张云,胡劲松,万立骏. 电催化CO2还原合成C2+产物的机理和材料研究进展[J]. 物理化学学报, 2020, 36(1): 1906085 -0 . |
|