物理化学学报 >> 2021, Vol. 37 >> Issue (6): 2009080.doi: 10.3866/PKU.WHXB202009080

所属专题: 先进光催化剂设计与制备

论文 上一篇    下一篇

反蛋白石结构的g-C3N4可控合成及其优异的光催化产氢性能

陈一文1, 李铃铃2, 徐全龙3,*(), Tina Düren4, 范佳杰1,4,*(), 马德琨5,*()   

  1. 1 郑州大学,材料科学与工程学院,郑州 450002
    2 广东工业大学,材料与能源学院,广州 510006
    3 温州大学,化学与材料工程学院,浙江省碳材料重点实验室,浙江 温州 325027
    4 Centre for Advanced Separations Engineering, Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK
    5 绍兴文理学院,浙江省精细化学品传统工艺替代技术研究重点实验室,浙江 绍兴 312000
  • 收稿日期:2020-09-25 录用日期:2020-10-16 发布日期:2020-10-22
  • 通讯作者: 徐全龙,范佳杰,马德琨 E-mail:xuql@wzu.edu.cn;fanjiajie@zzu.edu.cn;dkma@wzu.edu.cn
  • 作者简介:第一联系人:

    These authors contribute equally.

  • 基金资助:
    国家自然科学基金(21905209);国家自然科学基金(21673160);国家自然科学基金(52073263);浙江省自然科学基金(LR16B010002);国家留学基金(201907045030)

Controllable Synthesis of g-C3N4 Inverse Opal Photocatalysts for Superior Hydrogen Evolution

Yiwen Chen1, Lingling Li2, Quanlong Xu3,*(), Düren Tina4, Jiajie Fan1,4,*(), Dekun Ma5,*()   

  1. 1 School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China
    2 School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
    3 Key laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang Province, China
    4 Centre for Advanced Separations Engineering, Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK
    5 Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, Zhejiang Province, China
  • Received:2020-09-25 Accepted:2020-10-16 Published:2020-10-22
  • Contact: Quanlong Xu,Jiajie Fan,Dekun Ma E-mail:xuql@wzu.edu.cn;fanjiajie@zzu.edu.cn;dkma@wzu.edu.cn
  • About author:Dekun Ma, Email: dkma@wzu.edu.cn
    Jiajie Fan, Email: fanjiajie@zzu.edu.cn
    Quanlong Xu, Email: xuql@wzu.edu.cn; Tel.: +86-15271854312 (Q.X.)
  • Supported by:
    the Foundation of National Nature Science Foundation of China(21905209);the Foundation of National Nature Science Foundation of China(21673160);the Foundation of National Nature Science Foundation of China(52073263);Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars(LR16B010002);China Scholarship Council(201907045030)

摘要:

日渐严重的能源短缺和环境失衡问题已经阻碍了人类社会的进一步和长远可持续发展。能够将太阳能转化为可储存化学能的半导体基光催化技术被广泛的理解为一种经济和清洁的解决方式,比如光催化分解水。虽然被认为是有前途的光催化剂,g-C3N4低的比表面积极大地限制了其光催化性能。大孔-介孔结构可以为物质的传输和光的充分利用提供有效通道,从而提高光催化反应效率。本文中,具有反蛋白石(IO)结构的g-C3N4合理地通过紧密堆积的SiO2作为模板来制备得到。并且显示出超高比表面积(450.2 m2·g-1),表现出更好的光催化产氢速率(21.22 μmol·h-1),约为体相g-C3N4 (3.65 μmol·h-1)的六倍。相对于体相g-C3N4,IO g-C3N4表现了更好的可见光吸收能力, 这得益于3D多孔结构的多重光散射效应。同时,较低的荧光强度、更长的荧光寿命、更小的Nyquist半圆环和更强的光电流响应协同地抑制了光生载流子的复合,降低了界面电荷传输的电阻,促进了光生电子的形成。此外,氮空位的存在能够增强局部电子密度,氮气吸-脱附测试揭示了IO g-C3N4中存在丰富的中孔和大孔,高比表面积暴露更多的活性边界和催化中心。正如光学性质、电子顺磁共振和电化学表征结果所揭示的那样,那些有利因素,包括增强的光利用率、提高的光生电荷的分离、延长的荧光寿命都赋予具有反蛋白石结构的IO g-C3N4优越的光催化性能。这项工作为结构设计和光催化性能调制做出了重要贡献。

关键词: g-C3N4, 反蛋白(IO), 光催化, 产氢

Abstract:

The growing frustration from facing energy shortages and unbalanced environmental issues has obstructed the long-term development of human society. Semiconductor-based photocatalysis, such as water splitting, transfers solar energy to storable chemical energy and is widely considered an economic and clean solution. Although regarded as a promising photocatalyst, the low specific surface area of g-C3N4 crucially restrains its photocatalytic performance. The macro-mesoporous architecture provides effective channels for mass transfer and full-light utilization and improved the efficiency of the photocatalytic reaction. Herein, g-C3N4 with an inverse opal (IO) structure was rationally fabricated using a well-packed SiO2 template, which displayed an ultrahigh surface area (450.2 m2·g-1) and exhibited a higher photocatalytic H2 evolution rate (21.22 μmol·h-1), almost six times higher than that of bulk g-C3N4 (3.65 μmol·h-1). The IO g-C3N4 demonstrates better light absorption capacity than bulk g-C3N4, primarily in the visible spectra range, owing to the multiple light scattering effect of the three-dimensional (3D) porous structure. Meanwhile, a lower PL intensity, longer emission lifetime, smaller Nyquist semicircle, and stronger photocurrent response (which synergistically give rise to the suppressed recombination of charge carriers) decrease the interfacial charge transfer resistance and boost the formation of photogenerated electron-hole pairs. Moreover, the existing N vacancies intensify the local electron density, helping increase the number of photoexcitons. The N2 adsorption-desorption test revealed the existence of ample mesopores and macropores and high specific surface area in IO g-C3N4, which exposes more active edges and catalytic sites. Optical behavior, electron paramagnetic resonance, and electrochemical characterization results revealed positive factors, including enhanced light utilization, improved photogenerated charge separation, prolonged lifetime, and fortified IO g-C3N4 with excellent photocatalytic performance. This work provides an important contribution to the structural design and property modulation of photocatalysts.

Key words: g-C3N4, Inverse opal (IO), Photocatalysis, H2 evolution

MSC2000: 

  • O643