物理化学学报 >> 2021, Vol. 37 >> Issue (9): 2010048.doi: 10.3866/PKU.WHXB202010048
所属专题: 燃料电池
收稿日期:
2020-10-22
录用日期:
2020-11-16
发布日期:
2020-11-25
通讯作者:
胡劲松
E-mail:hujs@iccas.ac.cn
作者简介:
Jin-Song Hu received his Ph.D. degree in Physical Chemistry at the Institute of Chemistry, Chinese Academy of Sciences (ICCAS) in 2005. After that, he joined in ICCAS as an assistant professor and then was promoted as an associated professor in 2007. In 2008–2011, he worked in the research group of Charles M. Lieber at Harvard University. Then, he joined in ICCAS as a Full Professor. His current research interests focus on the development of non-precious electrocatalysts for electrochemical energy conversion and low-cost thin film solar cells
基金资助:
Liang Ding1,2, Tang Tang1,2, Jin-Song Hu1,2,*()
Received:
2020-10-22
Accepted:
2020-11-16
Published:
2020-11-25
Contact:
Jin-Song Hu
E-mail:hujs@iccas.ac.cn
About author:
Jin-Song Hu, Email: hujs@iccas.ac.cn; Tel.: +86-10-82613929Supported by:
摘要:
质子交换膜燃料电池(PEMFC)可以直接将储存在氢中的化学能无污染地转化为电能,是实现碳减排和碳中和的关键新能源技术。目前的PEMFC技术,尤其是在发生氧还原反应的阴极,还严重依赖铂基贵金属催化剂,导致了燃料电池高昂的成本,限制了其大规模应用。因此,人们对于研究基于低成本非贵金属催化剂的PEMFC展现出了极大的兴趣。自从采用金属-氮-碳结构催化剂作为贵金属催化剂的替代品以来,非铂基PEMFC取得了很多突破,但是当前其在活性和稳定性的表现仍不能令人满意。本文总结了基于金属-氮-碳催化剂的PEMFC性能与活性位点、催化剂结构和催化层结构之间的关系,揭示了催化剂结构对于PEMFC中物质传输的重要作用。另外,为了满足实际需求,本文也总结并讨论了PEMFC可能的失活机理,包括脱金属作用,氮物种的质子化,碳载体腐蚀和孔道水淹等,以及目前发展的可能的解决方案。基于这些认识,本文最后介绍了在提升金属-氮-碳基PEMFC的活性和稳定性方面的最新进展与策略。
MSC2000:
丁亮, 唐堂, 胡劲松. 基于金属-氮-碳结构催化剂的质子交换膜燃料电池研究进展[J]. 物理化学学报, 2021, 37(9): 2010048.
Liang Ding, Tang Tang, Jin-Song Hu. Recent Progress in Proton-Exchange Membrane Fuel Cells Based on Metal-Nitrogen-Carbon Catalysts[J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010048.
Table 1
Comparison of different types of fuel cell and their fundamental information."
Type of fuel cell | Operation temperature/℃ | General power density/(mW·cm-2) | System lifetime/h | Start-up time |
PEMFC | 50–80 | 350 | 2500 | Seconds |
PAFC | 160–220 | 200 | > 40000 * | Few minutes |
MCFC | 600–700 | 100 | > 40000 * | Few minutes |
SOFC | 800–1000 | 240 | > 40000 * | Few minutes |
AFC | 60–90 | 100–200 | 500–1000 | Seconds |
Table 2
Recent progress on PGM-free PEMFCs."
Catalysts | Operation condition | Operation temperature/K | Catalyst loading/(mg cm-2) | Pmax/(mW·cm-2) | Current density at 0.8 V/(mA·cm-2) |
Co-N-C@F127 | 100 kPa H2-O2 | 353 | 4 | 870 | 30 at 0.8 V * |
(CM+PANI)-Fe-C | 200 kPa H2-O2 | 353 | 4.0 | 940 | 240 at 0.8 V * |
SA-Fe/NG | 250 kPa H2-O2 | 353 | 2 | 823 | 200 at 0.8 V * |
Fe/N/C-SCN | 200 kPa H2-O2 | 353 | 4.0 | 1030 | 310 at 0.8 V * |
ZIF'-FA-CNT-p | 100 kPa H2-O2 | 353 | 4.5 | 820 | 250 at 0.8 V |
20Co-NC-1100 | 206.8 kPa H2-O2 | 353 | 4.0 | 560 | 50 at 0.8 V |
Fe/TPTZ/ZIF-8 | 100 kPa H2-O2 | 353 | 4 | 770 * | 240 at 0.8 V * |
PANI-FeCo-C | 280 kPa H2-O2 | 353 | 4 | 550 | > 100 at 0.8 V * |
PFeTTPP-1000 | 150 kPa H2-O2 | 353 | 4.1 | 730 | 100 at 0.8 V * |
CNT/PC | 100 kPa H2-O2 | 353 | 3.05 | 580 | 160 at 0.8 V * |
C-FeZIF-1.44-950 | 206.8 kPa H2-O2 | 353 | 1 | 775 | 210 at 0.8 V |
TPI@Z8(SiO2)-650-C | 250 kPa H2-O2 | 353 | 2.7 | 1180 | 560 at 0.8 V * |
Fe/N/CF | 150 kPa H2-O2 | 353 | 2.0 | 900 | 250 at 0.8 V |
(Fe, Co)/N-C | 100 kPa H2-O2 | 353 | 0.77 | 850 | 50 at 0.8 V |
C-FeHZ8@g-C3N4-950 | 206.8 kPa H2-O2 | 353 | 4 | 628 | 133 at 0.8 V * |
(CM+PANI)-Fe-C | 100 kPa H2-air | 353 | 4 | 420 | 90 at 0.8 V |
20Co-NC-1100 | 206.8 kPa H2-air | 353 | 4 | 280 | 40 at 0.8 V |
Fe/TPTZ/ZIF-8 | 100 kPa H2-air | 353 | 4 | 300 | 125 at 0.8 V * |
FePhen@MOF-ArNH3 | 250 kPa H2-air | 353 | 3 | 380 | > 100 at 0.8 V * |
Fe-N-C-Phen-PANI | 137.9 kPa H2-air | 353 | 4 | 380 | 120 at 0.8 V |
Fe-MBZ | 400 kPa H2-air | 353 | 4 | 335 | 77 at 0.8 V |
Fig 5
(a) Scheme for pore-edge Fe-N4 sites model; (b) PEMFC performance in H2-air condition The peak power density was 0.43 W·cm-2; (c, d) correlation between the mass activity and Fe (D1) or Fe (D3) contents without (c) or with (d) correction of surface area. (a, b) Reproduced with permission 28. Copyright 2019, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (c, d) Reproduced with permission 62. Copyright 2014, American Chemical Society."
Fig 7
(a) Synthetic process of TPI@Z8(SiO2)-650-C; (b) schematic illustration of active sites on TPB in TPI@Z8(SiO2)-650-C; (c) comparison of pore size distributions in TPI@Z8(SiO2)-650-C and TPI@Z8-650-C; (d) polarization curves of H2-O2 fuel cells with TPI@Z8(SiO2)-650-C in different loadings, showing the current density at 0.9 V and the volumetric activity at 0.8 V (the Ohmic has been corrected). Reproduced with permission 39. Copyright 2018, Springer Nature."
Fig 8
(a, b) SEM images and (c) pore size distribution and pore volume of PANI-Fe-C and (CM+PANI)-Fe-C; (d) polarization and power density curves of MEAs prepared by Pt/C and (CM + PANI)-Fe-C with different Nafion contents. Reproduced with permission 29. Copyright 2017, American Association for the Advancement of Science."
Fig 9
(a, b) SEM images of C-ZIF-8-950 (a) and C-FeZIF-1.44-950 (b); (c) LSV curves at 0.1 mol·L-1 HClO4; (d) polarization and power density curves of MEAs prepared with C-FeZIF-1.44-950 and Pt/C in H2-air PEMFC tests. Reproduced with permission 38. Copyright 2019, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim."
Fig 11
(a) SEM images of MEA with GDL and catalyst layers; (b) iR-free polarization curves measured in H2-air fuel cells for the MEAs with various amounts of ionomers; (c) plots of CCL ionic conductance (black line) and cell performance (red line) as a function of relative humidity; (d) power density curves of fuel cells with various amounts of ionomers in H2-air. (a, b) Reproduced with permission 78. Copyright 2017, IOP Publishing Ltd. (c) Reproduced with permission 80. Copyright 2017, Elsevier. (d) Reproduced with permission 81. Copyright 2018, American Association for the Advancement of Science."
Fig 12
(a) Nano-CT images of ionomer distribution in CCLs with various catalyst particle sizes; (b) schematic illustration of catalyst aggregates; (c) EIS plots for CCL with various catalyst particle sizes; (d, e) polarization curves of MEAs prepared with catalysts in various particle sizes; (f) polarization curve of MEA fabricated with the catalyst in 100 nm, measured in the H2-O2 fuel cell. Reproduced with permission 83. Copyright 2020, American Chemical Society."
Fig 14
(a, b, c) Schematic illustration of various catalysts; (d) polarization curves at H2-O2 condition. Solid line: initial curves; dashed line: after first 50 h test; (e) current density curves in the stability tests at H2-O2 condition. Reproduced with permission 92. Copyright 2016, American Chemical Society."
Fig 15
(a) Schematic illustration of the protonation process; (b) current density changes in stability test at H2-air condition; (c) comparison of N 1s XPS spectra of NMCC-800 and NMCC-1000; (d) schematic illustration of anion-binding effects. (a, b, c) Reproduced with permission 93. Copyright 2009, IOP Publishing Ltd. (d) Reproduced with permission 94. Copyright 2011, American Chemical Society."
Fig 16
(a) Schematic illustration of the carbon corrosion; (b) polarization curve in H2-air fuel cell with the catalysts on different carbon supports; (c) current density curves of various catalysts in 500 h stability test in H2-air fuel cell; (d) schematic illustration of the growth process of Fe-N-CNT-2; (e) polarization and power density curve, and (f) current density curves in the stability test for Fe-N-CNT-2 and Fe-ZIF in H2-O2 fuel cell test. (a) Reproduced with permission 96, Copyright 2014, Royal Society of Chemistry; (b, c) Reproduced with permission 102, Copyright 2013, Royal Society of Chemistry; (d, e, f) Reproduced with permission 103, Copyright 2019, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim."
Fig 18
(a) Schematic comparison for hydrophilic and hydrophobic catalysts against water flooding and carbon corrosion; (b, c) stability comparison of Fe/N/C (black) and Fe/N/C-F (purple) in the H2-O2 fuel cell tests at 0.5 V (b) and 0.6 V (c). Reproduced with permission 98, Copyright 2018, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim."
1 |
Debe M. K. Nature 2012, 486, 43.
doi: 10.1038/nature11115 |
2 |
Wang Y. ; Chen K. S. ; Mishler J. ; Cho S. C. ; Adroher X. C. Appl. Energy 2011, 88, 981.
doi: 10.1016/j.apenergy.2010.09.030 |
3 |
Chen Z. W. ; Higgins D. ; Yu A. P. ; Zhang L. ; Zhang J. J. Energy Environ. Sci. 2011, 4, 3167.
doi: 10.1039/C0EE00558D |
4 |
Peighambardoust S. J. ; Rowshanzamir S. ; Amjadi M. Int. J. Hydrogen Energy 2010, 35, 9349.
doi: 10.1016/j.ijhydene.2010.05.017 |
5 |
Pachauri R. K. ; Chauhan Y. K. Renew. Sustain. Energy Rev. 2015, 43, 1301.
doi: 10.1016/j.rser.2014.11.098 |
6 |
Garland N. L. ; Papageorgopoulos D. C. ; Stanford J. M. Energy Procedia 2012, 28, 2.
doi: 10.1016/j.egypro.2012.08.034 |
7 |
Mustain W. E. ; Chatenet M. ; Page M. ; Kim Y. S. Energy Environ. Sci. 2020, 13, 2805.
doi: 10.1039/D0EE01133A |
8 |
Winter M. ; Brodd R. J. Chem. Rev. 2004, 104, 4245.
doi: 10.1021/cr020730k |
9 |
Cano Z. P. ; Banham D. ; Ye S. Y. ; Hintennach A. ; Lu J. ; Fowler M. ; Chen Z. Nat. Energy 2018, 3, 279.
doi: 10.1038/s41560-018-0108-1 |
10 |
Staffell I. ; Scamman D. ; Velazquez-Abad A. ; Balcombe P. ; Dodds P. E. ; Ekins P. ; Shah N. ; Ward K. R. Energy Environ. Sci. 2019, 12, 463.
doi: 10.1039/C8EE01157E |
11 |
Shin D. W. ; Guiver M. D. ; Lee Y. M. Chem. Rev. 2017, 117, 4759.
doi: 10.1021/acs.chemrev.6b00586 |
12 | Zhang M. ; Li J. J. ; Pan M. ; Xu D. S. Acta Phys. -Chim. Sin. 2011, 27, 1685. |
张敏; 李经建; 潘牧; 徐东升; 物理化学学报, 2011, 27, 1685.
doi: 10.3866/PKU.WHXB20110726 |
|
13 | Tang X. L. ; Zhang S. H. ; Yu J. ; Lü C. X. ; Chi Y. Q. ; Sun J. W. ; Song Y. ; Yuan D. ; Ma Z. L. ; Zhang L. X. Acta Phys. -Chim. Sin. 2020, 36, 1906070. |
唐小龙; 张盛辉; 于婧; 吕春晓; 迟雨晴; 孙君伟; 宋誉; 袁丁; 马兆立; 张立学; 物理化学学报, 2020, 36, 1906070.
doi: 10.3866/PKU.WHXB201906070 |
|
14 |
Jaouen F. ; Jones D. ; Coutard N. ; Artero V. ; Strasser P. ; Kucernak A. Johnson Matthey Technol. Rev. 2018, 62, 231.
doi: 10.1595/205651318X696828 |
15 | Wang J. ; Ding W. ; Wei Z. D. Acta Phys. -Chim. Sin. 2021, 37, 2009094. |
王健; 丁炜; 魏子栋; 物理化学学报, 2021, 37, 2009094.
doi: 10.3866/PKU.WHXB202009094 |
|
16 |
Tang T. ; Jiang W. J. ; Liu X. Z. ; Deng J. ; Niu S. ; Wang B. ; Jin S. F. ; Zhang Q. ; Gu L. ; Hu J. S. ; et al J. Am. Chem. Soc. 2020, 142, 7116.
doi: 10.1021/jacs.0c01349 |
17 |
Tang T. ; Ding L. ; Jiang Z. ; Hu J. S. ; Wan L. J. Sci. China Chem. 2020, 63, 665.
doi: 10.1007/s11426-020-9835-8 |
18 |
Jiang W. J. ; Hu W. L. ; Zhang Q. H. ; Zhao T. T. ; Luo H. ; Zhang X. ; Gu L. ; Hu J. S. ; Wan L. J. Chem. Commun. 2018, 54, 1307.
doi: 10.1039/C7CC08149A |
19 |
Zhang Y. ; Jiang W. J. ; Guo L. ; Zhang X. ; Hu J. S. ; Wei Z. ; Wan L. J. ACS Appl. Mat. Interfaces 2015, 7, 11508.
doi: 10.1021/acsami.5b02467 |
20 |
Xu X. L. ; Xia Z. X. ; Zhang X. M. ; Sun R. L. ; Sun X. J. ; Li H. Q. ; Wu C. C. ; Wang J. H. ; Wang S. L. ; Sun G. Q. Appl. Catal. B 2019, 259, 118042.
doi: 10.1016/j.apcatb.2019.118042 |
21 |
Banham D. ; Ye S. Y. ACS Energy Lett. 2017, 2, 629.
doi: 10.1021/acsenergylett.6b00644 |
22 |
Reshetenko T. ; Serov A. ; Artyushkova K. ; Matanovic I. ; Sarah S. ; Atanassov P. J. Power Sources 2016, 324, 556.
doi: 10.1016/j.jpowsour.2016.05.090 |
23 |
Feng Y. J. ; Gago A. ; Timperman L. ; Alonso-Vante N. Electrochim. Acta 2011, 56, 1009.
doi: 10.1016/j.electacta.2010.09.085 |
24 |
Jasinski R. Nature 1964, 201, 1212.
doi: 10.1038/2011212a0 |
25 |
Proietti E. ; Jaouen F. ; Lefèvre M. ; Larouche N. ; Tian J. ; Herranz J. ; Dodelet J. P. Nat. Commun. 2011, 2, 416.
doi: 10.1038/ncomms1427 |
26 |
Li J. Z. ; Chen M. J. ; Cullen D. A. ; Hwang S. ; Wang M. ; Li B. Y. ; Liu K. X. ; Karakalos S. ; Lucero M. ; Zhang H. G. ; et al Nat. Catal. 2018, 1, 935.
doi: 10.1038/s41929-018-0164-8 |
27 |
He Y. H. ; Hwang S. ; Cullen D. A. ; Uddin M. A. ; Langhorst L. ; Li B. Y. ; Karakalos S. ; Kropf A. J. ; Wegener E. C. ; Sokolowski J. ; et al Energy Environ. Sci. 2019, 12, 250.
doi: 10.1039/C8EE02694G |
28 |
Fu X. G. ; Li N. ; Ren B. H. ; Jiang G. P. ; Liu Y. R. ; Hassan F. M. ; Su D. ; Zhu J. B. ; Yang L. ; Bai Z. Y. ; et al Adv. Energy Mater. 2019, 9, 1803737.
doi: 10.1002/aenm.201803737 |
29 |
Chung H. T. ; Cullen D. A. ; Higgins D. ; Sneed B. T. ; Holby E. F. ; More K. L. ; Zelenay P. Science 2017, 357, 479.
doi: 10.1126/science.aan2255 |
30 |
Yang L. ; Cheng D. J. ; Xu H. X. ; Zeng X. F. ; Wan X. ; Shui J. J. ; Xiang Z. H. ; Cao D. P. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 6626.
doi: 10.1073/pnas.1800771115 |
31 |
Wang Y. C. ; Lai Y. J. ; Song L. ; Zhou Z. Y. ; Liu J. G. ; Wang Q. ; Yang X. D. ; Chen C. ; Shi W. ; Zheng Y. P. ; et al Angew. Chem. Int. Ed. 2015, 54, 9907.
doi: 10.1002/anie.201503159 |
32 |
Zhang C. ; Wang Y. C. ; An B. ; Huang R. Y. ; Wang C. ; Zhou Z. Y. ; Lin W. B. Adv. Mater. 2017, 29, 1604556.
doi: 10.1002/adma.201604556 |
33 |
Wang X. X. ; Cullen D. A. ; Pan Y. ; Hwang S. ; Wang M. Y. ; Feng Z. X. ; Wang J. Y. ; Engelhard M. H. ; Zhang H. G. ; He Y. H. ; et al Adv. Mater. 2018, 30, 1706758.
doi: 10.1002/adma.201706758 |
34 |
Tian J. ; Morozan A. ; Sougrati M. T. ; Lefèvre M. ; Chenitz R. ; Dodelet J. P. ; Jones D. ; Jaouen F. Angew. Chem. Int. Ed. 2013, 52, 6867.
doi: 10.1002/anie.201303025 |
35 |
Wu G. ; More K. L. ; Johnston C. M. ; Zelenay P. Science 2011, 332, 443.
doi: 10.1126/science.1200832 |
36 |
Yuan S. W. ; Shui J. L. ; Grabstanowicz L. ; Chen C. ; Commet S. ; Reprogle B. ; Xu T. ; Yu L. P. ; Liu D. J. Angew. Chem. Int. Ed. 2013, 52, 8349.
doi: 10.1002/anie.201302924 |
37 |
Sa Y. J. ; Seo D. J. ; Woo J. ; Lim J. T. ; Cheon J. Y. ; Yang S. Y. ; Lee J. M. ; Kang D. ; Shin T. J. ; Shin H. S. ; et al J. Am. Chem. Soc. 2016, 138, 15046.
doi: 10.1021/jacs.6b09470 |
38 |
Deng Y. J. ; Chi B. ; Li J. ; Wang G. H. ; Zheng L. ; Shi X. D. ; Cui Z. M. ; Du L. ; Liao S. J. ; Zang K. T. ; et al Adv. Energy Mater. 2019, 9, 1802856.
doi: 10.1002/aenm.201802856 |
39 |
Wan X. ; Liu X. F. ; Li Y. C. ; Yu R. H. ; Zheng L. R. ; Yan W. S. ; Wang H. ; Xu M. ; Shui J. L. Nat. Catal. 2019, 2, 259.
doi: 10.1038/s41929-019-0237-3 |
40 |
Shui J. L. ; Chen C. ; Grabstanowicz L. ; Zhao D. ; Liu D. J. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 10629.
doi: 10.1073/pnas.1507159112 |
41 |
Wang J. ; Huang Z. Q. ; Liu W. ; Chang C. R. ; Tang H. L. ; Li Z. J. ; Chen W. X. ; Jia C. J. ; Yao T. ; Wei S. Q. ; et al J. Am. Chem. Soc. 2017, 139, 17281.
doi: 10.1021/jacs.7b10385 |
42 |
Deng Y. J. ; Chi B. ; Tian X. L. ; Cui Z. M. ; Liu E. ; Jia Q. Y. ; Fan W. J. ; Wang G. H. ; Dang D. ; Li M. S. ; et al J. Mater. Chem. A 2019, 7, 5020.
doi: 10.1039/C8TA11785C |
43 |
Strickland K. ; Miner E. ; Jia Q. Y. ; Tylus U. ; Ramaswamy N. ; Liang W. T. ; Sougrati M. T. ; Jaouen F. ; Mukerjee S. Nat. Commun. 2015, 6, 7343.
doi: 10.1038/ncomms8343 |
44 |
Fu X. G. ; Zamani P. ; Choi J. Y. ; Hassan F. M. ; Jiang G. P. ; Higgins D. C. ; Zhang Y. N. ; Hoque M. A. ; Chen Z. W. Adv. Mater. 2017, 29, 1604456.
doi: 10.1002/adma.201604456 |
45 |
Zamani P. ; Higgins D. C. ; Hassan F. M. ; Fu X. G. ; Choi J. Y. ; Hoque M. A. ; Jiang G. P. ; Chen Z. W. Nano Energy 2016, 26, 267.
doi: 10.1016/j.nanoen.2016.05.035 |
46 |
Mamtani K. ; Jain D. ; Zemlyanov D. ; Celik G. ; Luthman J. ; Renkes G. ; Co A. C. ; Ozkan U. S. ACS Catal. 2016, 6, 7249.
doi: 10.1021/acscatal.6b01786 |
47 |
Jiang W. J. ; Gu L. ; Li L. ; Zhang Y. ; Zhang X. ; Zhang L. J. ; Wang J. Q. ; Hu J. S. ; Wei Z. D. ; Wan L. J. J. Am. Chem. Soc. 2016, 138, 3570.
doi: 10.1021/jacs.6b00757 |
48 |
Litster S. ; McLean G. J. Power Sources 2004, 130, 61.
doi: 10.1016/j.jpowsour.2003.12.055 |
49 |
Owejan J. P. ; Owejan J. E. ; Gu W. B. J. Electrochem. Soc. 2013, 160, F824.
doi: 10.1149/2.072308jes |
50 |
Stariha S. ; Artyushkova K. ; Workman M. J. ; Serov A. ; McKinney S. ; Halevi B. ; Atanassov P. J. Power Sources 2016, 326, 43.
doi: 10.1016/j.jpowsour.2016.06.098 |
51 |
Banham D. ; Ye S. Y. ; Pei K. ; Ozaki J. i. ; Kishimoto T. ; Imashiro Y. J. Power Sources 2015, 285, 334.
doi: 10.1016/j.jpowsour.2015.03.047 |
52 |
Shao Y. Y. ; Dodelet J. P. ; Wu G. ; Zelenay P. Adv. Mater. 2019, 31, 1807615.
doi: 10.1002/adma.201807615 |
53 |
Thompson S. T. ; Papageorgopoulos D. Nat. Catal. 2019, 2, 558.
doi: 10.1038/s41929-019-0291-x |
54 |
Gasteiger H. A. ; Marković N. M. Science 2009, 324, 48.
doi: 10.1126/science.1172083 |
55 |
Martinez U. ; Komini Babu S. ; Holby E. F. ; Chung H. T. ; Yin X. ; Zelenay P. Adv. Mater. 2019, 31, 1806545.
doi: 10.1002/adma.201806545 |
56 |
Li J. K. ; Ghoshal S. ; Liang W. T. ; Sougrati M. T. ; Jaouen F. ; Halevi B. ; McKinney S. ; McCool G. ; Ma C. R. ; Yuan X. X. ; et al Energy Environ. Sci. 2016, 9, 2418.
doi: 10.1039/C6EE01160H |
57 |
Workman M. J. ; Serov A. ; Tsui L. k. ; Atanassov P. ; Artyushkova K. ACS Energy Lett. 2017, 2, 1489.
doi: 10.1021/acsenergylett.7b00391 |
58 | Yang X. D. ; Chen C. ; Zhou Z. Y. ; Sun S. G. Acta Phys. -Chim. Sin. 2019, 35, 472. |
杨晓冬; 陈驰; 周志有; 孙世刚; 物理化学学报, 2019, 35, 472.
doi: 10.3866/PKU.WHXB201806131 |
|
59 |
Li Z. ; Wei L. ; Jiang W. J. ; Hu Z. ; Luo H. ; Zhao W. ; Xu T. ; Wu W. ; Wu M. ; Hu J. S. Appl. Catal., B 2019, 251, 240.
doi: 10.1016/j.apcatb.2019.03.046 |
60 |
Xiao M. L. ; Chen Y. T. ; Zhu J. B. ; Zhang H. ; Zhao X. ; Gao L. Q. ; Wang X. ; Zhao J. ; Ge J. J. ; Jiang Z. ; et al J. Am. Chem. Soc. 2019, 141
doi: 10.1021/jacs.9b08362 |
61 |
Kramm U. I. ; Herranz J. ; Larouche N. ; Arruda T. M. ; Lefèvre M. ; Jaouen F. ; Bogdanoff P. ; Fiechter S. ; Abs-Wurmbach I. ; Mukerjee S. ; et al Phys. Chem. Chem. Phys. 2012, 14, 11673.
doi: 10.1039/C2CP41957B |
62 |
Kramm U. I. ; Lefèvre M. ; Larouche N. ; Schmeisser D. ; Dodelet J. P. J. Am. Chem. Soc. 2014, 136, 978.
doi: 10.1021/ja410076f |
63 |
Jaouen F. ; Lefèvre M. ; Dodelet J. P. ; Cai M. J. Phys. Chem. B 2006, 110, 5553.
doi: 10.1021/jp057135h |
64 |
Lefèvre M. ; Proietti E. ; Jaouen F. ; Dodelet J. P. Science 2009, 324, 71.
doi: 10.1126/science.1170051 |
65 |
Zhao L. ; Zhang Y. ; Huang L. B. ; Liu X. Z. ; Zhang Q. H. ; He C. ; Wu Z. Y. ; Zhang L. J. ; Wu J. P. ; Yang W. L. ; et al Nat. Commun. 2019, 10, 1278.
doi: 10.1038/s41467-019-09290-y |
66 |
Qu Y. T. ; Wang L. G. ; Li Z. J. ; Li P. ; Zhang Q. H. ; Lin Y. ; Zhou F. Y. ; Wang H. J. ; Yang Z. K. ; Hu Y. D. ; et al Adv. Mater. 2019, 31, 1904496.
doi: 10.1002/adma.201904496 |
67 |
Zion N. ; Cullen D. A. ; Zelenay P. ; Elbaz L. Angew. Chem. Int. Ed. 2020, 59, 2483.
doi: 10.1002/anie.201913521 |
68 |
Zhang Y. ; Ma Y. L. ; Chen Y. Y. ; Zhao L. ; Huang L. B. ; Luo H. ; Jiang W. J. ; Zhang X. ; Niu S. ; Gao D. J. ; et al ACS Appl. Mat. Interfaces 2017, 9, 36857.
doi: 10.1021/acsami.7b11748 |
69 |
Lee S. H. ; Kim J. ; Chung D. Y. ; Yoo J. M. ; Lee H. S. ; Kim M. J. ; Mun B. S. ; Kwon S. G. ; Sung Y. E. ; Hyeon T. J. Am. Chem. Soc. 2019, 141, 2035.
doi: 10.1021/jacs.8b11129 |
70 |
Gupta S. ; Tryk D. ; Bae I. ; Aldred W. ; Yeager E. J. Appl. Electrochem. 1989, 19, 19.
doi: 10.1007/BF01039385 |
71 |
Rojas-Carbonell S. ; Artyushkova K. ; Serov A. ; Santoro C. ; Matanovic I. ; Atanassov P. ACS Catal. 2018, 8, 3041.
doi: 10.1021/acscatal.7b03991 |
72 |
Li Z. ; Sun H. ; Wei L. ; Jiang W. J. ; Wu M. ; Hu J. S. ACS Appl. Mat. Interfaces 2017, 9, 5272.
doi: 10.1021/acsami.6b15154 |
73 |
Amiinu I. S. ; Liu X. ; Pu Z. ; Li W. ; Li Q. ; Zhang J. ; Tang H. ; Zhang H. ; Mu S. Adv. Funct. Mater. 2018, 28, 1704638.
doi: 10.1002/adfm.201704638 |
74 |
Luo H. ; Jiang W. J. ; Niu S. ; Zhang X. ; Zhang Y. ; Yuan L. P. ; He C. ; Hu J. S. Small 2020, 16, 2001171.
doi: 10.1002/smll.202001171 |
75 |
He Y. H. ; Guo H. ; Hwang S. ; Yang X. X. ; He Z. Z. ; Braaten J. ; Karakalos S. ; Shan W. T. ; Wang M. Y. ; Zhou H. ; et al Adv. Mater. 2020, 32, 2003577.
doi: 10.1002/adma.202003577 |
76 |
Banham D. ; Choi J. Y. ; Kishimoto T. ; Ye S. Y. Adv. Mater. 2019, 31, 1804846.
doi: 10.1002/adma.201804846 |
77 |
Stariha S. ; Artyushkova K. ; Serov A. ; Atanassov P. Int. J. Hydrogen Energy 2015, 40, 14676.
doi: 10.1016/j.ijhydene.2015.05.185 |
78 |
Yin X. ; Lin L. ; Chung H. T. ; Babu S. K. ; Martinez U. ; Purdy G. M. ; Zelenay P. ECS Trans. 2017, 77, 1273.
doi: 10.1149/07711.1273ecst |
79 |
Malko D. ; Lopes T. ; Ticianelli E. A. ; Kucernak A. J. Power Sources 2016, 323, 189.
doi: 10.1016/j.jpowsour.2016.05.035 |
80 |
Banham D. ; Kishimoto T. ; Sato T. ; Kobayashi Y. ; Narizuka K. ; Ozaki J. i. ; Zhou Y. J. ; Marquez E. ; Bai K. ; Ye S. Y. J. Power Sources 2017, 344, 39.
doi: 10.1016/j.jpowsour.2017.01.086 |
81 |
Banham D. ; Kishimoto T. ; Zhou Y. J. ; Sato T. ; Bai K. ; Ozaki J. i. ; Imashiro Y. ; Ye S. Y. Sci. Adv. 2018, 4, eaar7180.
doi: 10.1126/sciadv.aar7180 |
82 |
Komini Babu S. ; Chung H. T. ; Zelenay P. ; Litster S. ACS Appl. Mat. Interfaces 2016, 8, 32764.
doi: 10.1021/acsami.6b08844 |
83 |
Uddin A. ; Dunsmore L. ; Zhang H. G. ; Hu L. M. ; Wu G. ; Litster S. ACS Appl. Mat. Interfaces 2020, 12, 2216.
doi: 10.1021/acsami.9b13945 |
84 |
Liu J. J. ; Talarposhti M. R. ; Asset T. ; Sabarirajan D. C. ; Parkinson D. Y. ; Atanassov P. ; Zenyuk I. V. ACS Appl. Energy Mater. 2019, 2, 3542.
doi: 10.1021/acsaem.9b00292 |
85 |
Osmieri L. ; Wang G. X. ; Cetinbas F. C. ; Khandavalli S. ; Park J. ; Medina S. ; Mauger S. A. ; Ulsh M. ; Pylypenko S. ; Myers D. J. ; et al Nano Energy 2020, 75, 104943.
doi: 10.1016/j.nanoen.2020.104943 |
86 |
Osmieri L. ; Mauger S. ; Ulsh M. ; Neyerlin K. C. ; Bender G. J. Power Sources 2020, 452, 227829.
doi: 10.1016/j.jpowsour.2020.227829 |
87 |
He Y. H. ; Liu S. W. ; Priest C. ; Shi Q. R. ; Wu G. Chem. Soc. Rev. 2020, 49, 3484.
doi: 10.1039/C9CS00903E |
88 |
Chenitz R. ; Kramm U. I. ; Lefèvre M. ; Glibin V. ; Zhang G. X. ; Sun S. H. ; Dodelet J. P. Energy Environ. Sci. 2018, 11, 365.
doi: 10.1039/C7EE02302B |
89 |
Zhang H. G. ; Hwang S. ; Wang M. Y. ; Feng Z. X. ; Karakalos S. ; Luo L. L. ; Qiao Z. ; Xie X. H. ; Wang C. M. ; Su D. ; et al J. Am. Chem. Soc. 2017, 139, 14143.
doi: 10.1021/jacs.7b06514 |
90 |
Zitolo A. ; Goellner V. ; Armel V. ; Sougrati M. T. ; Mineva T. ; Stievano L. ; Fonda E. ; Jaouen F. Nat. Mater. 2015, 14, 937.
doi: 10.1038/nmat4367 |
91 |
Makharia R. ; Mathias M. F. ; Baker D. R. J. Electrochem. Soc. 2005, 152, 189.
doi: 10.1149/1.1888367 |
92 |
Choi C. H. ; Baldizzone C. ; Polymeros G. ; Pizzutilo E. ; Kasian O. ; Schuppert A. K. ; Ranjbar Sahraie N. ; Sougrati M. T. ; Mayrhofer K. J. J. ; Jaouen F. ACS Catal. 2016, 6, 3136.
doi: 10.1021/acscatal.6b00643 |
93 |
Liu G. ; Li X. G. ; Popov B. ECS Trans. 2009, 25, 1251.
doi: 10.1149/1.3210680 |
94 |
Herranz J. ; Jaouen F. ; Lefèvre M. ; Kramm U. I. ; Proietti E. ; Dodelet J. P. ; Bogdanoff P. ; Fiechter S. ; Abs-Wurmbach I. ; Bertrand P. ; et al J. Phys. Chem. C 2011, 115, 16087.
doi: 10.1021/jp2042526 |
95 |
Strmcnik D. ; Escudero-Escribano M. ; Kodama K. ; Stamenkovic V. R. ; Cuesta A. ; Marković N. M. Nat. Chem. 2010, 2, 880.
doi: 10.1038/nchem.771 |
96 |
Goellner V. ; Baldizzone C. ; Schuppert A. ; Sougrati M. T. ; Mayrhofer K. ; Jaouen F. Phys. Chem. Chem. Phys. 2014, 16, 18454.
doi: 10.1039/C4CP02882A |
97 |
Meyers J. P. ; Darling R. M. J. Electrochem. Soc. 2006, 153, A1432.
doi: 10.1149/1.2203811 |
98 |
Wang Y. C. ; Zhu P. F. ; Yang H. ; Huang L. ; Wu Q. H. ; Rauf M. ; Zhang J. Y. ; Dong J. ; Wang K. ; Zhou Z. Y. ; et al ChemElectroChem 2018, 5, 1914.
doi: 10.1002/celc.201700939 |
99 |
Choi C. H. ; Baldizzone C. ; Grote J. P. ; Schuppert A. K. ; Jaouen F. ; Mayrhofer K. J. J. Angew. Chem. Int. Ed. 2015, 54, 12753.
doi: 10.1002/anie.201504903 |
100 |
Schulenburg H. ; Stankov S. ; Schünemann V. ; Radnik J. ; Dorbandt I. ; Fiechter S. ; Bogdanoff P. ; Tributsch H. J. Phys. Chem. B 2003, 107, 9034.
doi: 10.1021/jp030349j |
101 |
Choi C. H. ; Lim H. K. ; Chung M. W. ; Chon G. ; Ranjbar Sahraie N. ; Altin A. ; Sougrati M. T. ; Stievano L. ; Oh H. S. ; Park E. S. ; et al Energy Environ. Sci. 2018, 11, 3176.
doi: 10.1039/C8EE01855C |
102 |
Wu G. ; More K. L. ; Xu P. ; Wang H. ; Ferrandon M. ; Kropf A. J. ; Myers D. J. ; Ma S. G. ; Johnston C. M. ; Zelenay P. Chem. Commun. 2013, 49, 3291.
doi: 10.1039/C3CC39121C |
103 |
Xia D. S. ; Yang X. ; Xie L. ; Wei Y. P. ; Jiang W. L. ; Dou M. ; Li X. N. ; Li J. ; Gan L. ; Kang F. Y. Adv. Funct. Mater. 2019, 29, 1906174.
doi: 10.1002/adfm.201906174 |
104 |
Zhang Z. P. ; Sun J. T. ; Wang F. ; Dai L. M. Angew. Chem. Int. Ed. 2018, 57, 9038.
doi: 10.1002/anie.201804958 |
105 |
Wei H. W. ; Su X. G. ; Liu J. G. ; Tian J. ; Wang Z. W. ; Sun K. ; Rui Z. Y. ; Yang W. W. ; Zou Z. G. Electrochem. Commun. 2018, 88, 19.
doi: 10.1016/j.elecom.2018.01.011 |
106 |
Zhang G. X. ; Chenitz R. ; Lefèvre M. ; Sun S. H. ; Dodelet J. P. Nano Energy 2016, 29, 111.
doi: 10.1016/j.nanoen.2016.02.038 |
107 |
Choi J. Y. ; Yang L. J. ; Kishimoto T. ; Fu X. G. ; Ye S. Y. ; Chen Z. W. ; Banham D. Energy Environ. Sci. 2017, 10, 296.
doi: 10.1039/C6EE03005J |
108 |
Mittermeier T. ; Weiß A. ; Hasché F. ; Hübner G. ; Gasteiger H. A. J. Electrochem. Soc. 2016, 164, F127.
doi: 10.1149/2.1061702jes |
109 |
Yang L. J. ; Larouche N. ; Chenitz R. ; Zhang G. ; Lefèvre M. ; Dodelet J. P. Electrochim. Acta 2015, 159, 184.
doi: 10.1016/j.electacta.2015.01.201 |
[1] | 李晓慧, 李晓东, 孙全虎, 何建江, 杨泽, 肖金冲, 黄长水. 石墨炔衍生物的合成与应用[J]. 物理化学学报, 2023, 39(1): 2206029 -0 . |
[2] | 吴明亮, 章烨晖, 付战照, 吕之阳, 李强, 王金兰. 原子尺度钴基氮碳催化剂对析氧反应的构效关系的研究[J]. 物理化学学报, 2023, 39(1): 2207007 -0 . |
[3] | 马明军, 冯志超, 张小委, 孙超越, 王海青, 周伟家, 刘宏. 基于微生物作为智能模板的电催化剂制备与应用研究进展[J]. 物理化学学报, 2022, 38(6): 2106003 - . |
[4] | 宋雨珂, 谢文富, 邵明飞. 一体化电极电催化二氧化碳还原研究进展[J]. 物理化学学报, 2022, 38(6): 2101028 - . |
[5] | 孙轲, 赵永青, 殷杰, 靳晶, 刘翰文, 席聘贤. 有机配体表面改性NiCo2O4纳米线用于水全分解[J]. 物理化学学报, 2022, 38(6): 2107005 - . |
[6] | 叶成玉, 郁晓菲, 李文翠, 贺雷, 郝广平, 陆安慧. 磷化镍@镍-氮-碳双功能催化剂电还原CO2-H2O制合成气[J]. 物理化学学报, 2022, 38(4): 2004054 - . |
[7] | 韩爱娣, 闫晓晖, 陈俊任, 程晓静, 章俊良. 分散溶剂对PEMFC催化层中超薄Nafion离聚物质子传导的影响[J]. 物理化学学报, 2022, 38(3): 1912052 - . |
[8] | 杜亚东, 孟祥桐, 汪珍, 赵鑫, 邱介山. 石墨烯基二氧化碳电化学还原催化剂的研究进展[J]. 物理化学学报, 2022, 38(2): 2101009 - . |
[9] | 黄小雄, 马英杰, 智林杰. 超薄氮掺杂碳纳米片负载单原子镍用于高效电催化还原二氧化碳[J]. 物理化学学报, 2022, 38(2): 2011050 - . |
[10] | 杨艳, 何博文, 马华隆, 杨森, 任州宏, 秦天, 卢发贵, 任力闻, 张熠霄, 王天富, 刘晰, 陈立桅. PtRuAgCoNi高熵合金纳米颗粒高效电催化氧化5-羟甲基糠醛[J]. 物理化学学报, 2022, 38(12): 2201050 - . |
[11] | 陈宇新, 王丽君, 姚志波, 郝磊端, 谭心怡, Masa Justus, Robertson Alex W., 孙振宇. 单原子配位结构及与载体相互作用的调控用于二氧化碳电催化还原[J]. 物理化学学报, 2022, 38(11): 2207024 -0 . |
[12] | 石永霞, 侯曼, 李俊俊, 李丽, 张志成. 铜基串联催化剂电催化CO2还原的研究进展[J]. 物理化学学报, 2022, 38(11): 2206020 - . |
[13] | 李峥嵘, 申涛, 胡冶州, 陈科, 陆贇, 王得丽. 有序金属间化合物电催化剂在燃料电池中的应用进展[J]. 物理化学学报, 2021, 37(9): 2010029 - . |
[14] | 王健, 丁炜, 魏子栋. 超低铂用量质子交换膜燃料电池[J]. 物理化学学报, 2021, 37(9): 2009094 - . |
[15] | 薛延荣, 王兴栋, 张向前, 方锦杰, 许志远, 张宇烽, 刘雪瑞, 刘梦园, 朱威, 庄仲滨. 具有经济性的碱性膜燃料电池氢气氧化反应催化剂[J]. 物理化学学报, 2021, 37(9): 2009103 - . |
|