物理化学学报 >> 2021, Vol. 37 >> Issue (6): 2011033.doi: 10.3866/PKU.WHXB202011033
所属专题: 先进光催化剂设计与制备
王则鉴1,2, 洪佳佳1,2, Ng Sue-Faye3, 刘雯1,2, 黄俊杰1,2, 陈鹏飞1,2,4, Ong Wee-Jun2,3,5,*()
收稿日期:
2020-11-10
录用日期:
2020-12-08
发布日期:
2020-12-21
通讯作者:
Ong Wee-Jun
E-mail:weejun.ong@xmu.edu.my; ongweejun@gmail.com
作者简介:
Wee-Jun Ong received his B.Eng. and Ph.D. in chemical engineering from Monash University. He is an Associate Professor in School of Energy and Chemical Engineering at Xiamen University Malaysia. Previously, he was a staff scientist at Agency for Science, Technology and Research (A*STAR), Singapore from 2016 to 2018. In 2019, he was a visiting scientist in Professor Xinliang Feng’s group at Technische Universität Dresden, Germany. In 2019, he was a visiting professor at Lawrence Berkeley National Laboratory, USA. His research interests include the design of nanomaterials for photocatalytic, photoelectrocatalytic, and electrochemical H2O splitting, CO2 reduction, and N2 fixation. He received Global Highly Cited Researcher from Clarivate Analytics for a consecutive 2 years (2019–2020). For more details, refer to https://sites.google.com/site/ wjongresearch/ and https://www.x-mol.com/groups/wee-jun_ong.
基金资助:
Zejian Wang1,2, Jiajia Hong1,2, Sue-Faye Ng3, Wen Liu1,2, Junjie Huang1,2, Pengfei Chen1,2,4, Wee-Jun Ong2,3,5,*()
Received:
2020-11-10
Accepted:
2020-12-08
Published:
2020-12-21
Contact:
Wee-Jun Ong
E-mail:weejun.ong@xmu.edu.my; ongweejun@gmail.com
About author:
Wee-Jun Ong, Email: weejun.ong@xmu.edu.my; ongweejun@gmail.comSupported by:
摘要:
在寻求可再生能源供应及解决环境问题的迫切需求下,光电、光催化、电催化等领域中多种技术被开发以解决这一迫切问题。其中,光催化技术因其可将清洁太阳能转化为化学燃料的优越能力而备受关注。在层出不穷的光催化材料中,具有阳离子可替代性的钙钛矿氧化物(ABO3)在电子信息、太阳能电池和光催化等领域具有极大的潜力。由于这类材料具有活性高、成本低、稳定性好、结构易调控等独特性能,钙钛矿氧化物光催化剂在水分解、二氧化碳还原转化、固氮等方面取得了广泛的应用。本文综述了光催化的结构与合成方法,重点介绍了光催化的应用,最后展望了光催化的未来发展前景。
MSC2000:
王则鉴, 洪佳佳, Ng Sue-Faye, 刘雯, 黄俊杰, 陈鹏飞, Ong Wee-Jun. 氧化物钙钛矿的光催化研究进展:CO2还原、水裂解、固氮[J]. 物理化学学报, 2021, 37(6): 2011033.
Zejian Wang, Jiajia Hong, Sue-Faye Ng, Wen Liu, Junjie Huang, Pengfei Chen, Wee-Jun Ong. Recent Progress of Perovskite Oxide in Emerging Photocatalysis Landscape: Water Splitting, CO2 Reduction, and N2 Fixation[J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2011033.
Fig 5
Schematic for bandgap engineering of semiconductors. The band structure and optical absorption curves of (a) an intrinsic semiconductor, (b) doping-induced intraband energy states, (c) doping-induced band gap narrowing and (d) degenerate doping-induced LSPR 137. Reproduced with permission from Royal Society of Chemistry."
Fig 7
(a) Schematic representation of LaFeO3 preparation 152. Reproduced with permission from Elsevier. (b) Schematic process for the preparation of PFN powders 153. Reproduced with permission from Elsevier. (c) Proposed synthesis process of SrFe0.5Ta0.5O3 nanoparticles via the low-temperature solvothermal method 154. Reproduced with permission from Elsevier."
Table 1
Summary of perovskite oxide based materials for photocatalytic CO2 conversion."
Photocatalyst | Light | Reaction conditions | Cocatalyst (%, w) | Main product(s) | Product evolution | Ref. |
SrTiO3 | λ > 400 nm | CO2 + H2O | Rh, Au | CO, H2 | 369.2 μmol?g?1?h?1 | |
69.4 μmol?g?1?h?1 | ||||||
NaTaO3 | 300 W UV-enhanced Xe lamp | CO2 + H2O + H2 | Pt (0.5) | CO | 139.1 μmol?g?1?h?1 | |
NaTaO3 | 300 W UV-enhanced Xe lamp | CO2 + H2O + H2 | Ru (0.5) | CO, CH4 | 51.8 μmol?g?1?h?1 | |
NaNbO3 | UV (λ < 365 nm) | CO2 : H2O = 7.25 | CO | 11.5 μmol?g?1?h?1 | ||
KTaO3 | 300 W Xenon arc lamp | CO2 + H2O | Pt (0.5) | H2, CO, O2 | 3780.92 × 10?6 g?1?h?1, 0.00 × 10?6 g?1?h?1, | |
2038.80 × 10?6 g?1?h?1 | ||||||
KTaO3 | 300 W Xenon arc lamp | CO2 + H2O | Ag (0.01) | H2, CO, O2 | 1134.38 × 10?6 g?1?h?1, 152.62 × 10?6 g?1?h?1, | |
499.98 × 10?6 g?1?h?1 | ||||||
CsPbBr3 quantum dot | 300 W Xe lamp | CO2 + H2O | CO, CH4 | 4.3 μmol?g?1?h?1, 1.5 μmol?g?1?h?1 | ||
BaCeO3 | 300 W Xe lamp | CO2 + H2O | Ag (0.3) | CH4 | 0.55 μmol?g?1?h?1 | |
LiTaO3 | 200 W Hg-Xe lamp | CO2 + H2 | CO | 0.42 μmol?g?1?h?1 |
Table 2
Electrochemical reactions involved in CO2 reduction with water and their corresponding reduction potential E0 106."
Entry | Equation | Product | E0(V) vs. NHE at pH 7 |
1 | CO2 + e? → ?CO2? | Carbonate anion radical | ?1.90 |
2 | CO2 + 2H+ + 2e? → HCOOH | Formic acid | ?0.61 |
3 | CO2 + 2H+ + 2e? → CO + H2O | Carbon monoxide | ?0.53 |
4 | CO2 + 4H+ + 4e? → HCHO + H2O | Formaldehyde | ?0.48 |
5 | CO2 + 6H+ + 6e? → CH3OH + H2O | Methanol | ?0.38 |
6 | CO2 + 8H+ + 8e? → CH4 + H2O | Methane | ?0.24 |
Fig 8
(a) Band structures for a selection of perovskite oxides and oxynitrides and the corresponding redox potentials involved in photocatalytic CO2 reduction 169. Reproduced with permission from American Chemical Society. (b) Mechanism illustration of the photocatalytic CO2 reduction process 191. Reproduced with permission from Elsevier."
Fig 9
(a) The FTIR spectra of gaseous feed, and products of CO2 + CH4 photocatalysis after 4 h visible irradiation on BZ11 (the powders containing BiFeO3 : ZnO with 1 : 1) sample. (b) The possible reaction mechanism of C1 products from CO2 reduction 52. Reproduced with permission from Elsevier."
Fig 11
(a) Ag2CrO4/Ag/BiFeO3@RGO heterojunction showing movement of charge carriers; Photocatalytic CO2 reduction under visible light. (b) Yield of CH4. (c) Yield of CO. The band energy schematic diagram of BiFeO3 and ZnO 203. Reproduced with permission from Elsevier. (d) Before contact, and (e) after making p-n heterojunction along with the mechanism of visible light induced photoreduction of CO2 52. Reproduced with permission from Elsevier."
Table 3
Summary of perovskite oxide based materials for photocatalytic water splitting."
Photocatalyst | Light Source | Reaction conditions | Cocatalyst/% (w) | Activities (μmol?g?1?h?1) | Ref. | |
H2 Evolution | O2 Evolution | |||||
SrTiO3 | UV | 1/2.4 vol% methanol | Pt (0.05) | 370 | ||
SrTiO3 | Vis | 15% diethanolamine aqueous solution +0.5 mmol?L?1 Eosin Y | Pt (0.05) | 90 | ||
NaTaO3 | λ > 270 nm | Pure water (AgNO3 or CH3OH) | NiO (0.05) | 2180 (16800 in 10 vol% CH3OH) | 1100 (860 in 0.05 mol?L?1 AgNO3) | |
NaTaO3 (monoclinic) | 400 W high-pressure mercury lamp | Pure water | 2050 | 900 | ||
NaTaO3 | UV | 5 vol% methanol | 36750 | |||
NaTaO3 | UV (λ > 200 nm) | Doubly distilled water | NiO (0.4) | 1100 | 500 | |
NaNbO3(cubic) | λ > 300 nm | 220 mL distilled water + 50 mL CH3OH | Pt (0.5, 1.0, 1.5) | 127.7, 156.1, 97.3 | ||
NaNbO3 | UV | 5 vol% methanol | 950 | |||
SrSnO3 (nano) | UV | Distilled water | NiOx (1) | 235.6 | ||
KNbO3 | UV | 5 vol% methanol | 100 | |||
KTaO3 | UV | 5 vol% methanol | 1040 | |||
CaTiO3 | UV | Aqueous methanol solutions (volume ratio 1/20) | NiOx | 670.1 (325.4) | ||
g-C3N4/SrTa2O6 | 300 W Xenon lamp | Deionized water containing 5% of triethanolamine | Pt | 137000 of g-C3N4 (811700 of SrTa2O6) | ||
HCa2Nb3O10/Ru complex-CH3 | 300 W Xenon lamp | 100 mL of 10 mmol?L?1 EDTA | Pt | 2400 | ||
BaZrO3/BaTaO2N | 300 W Xenon lamp | 100 mL of 1.0 mmol?L?1 NaI | Pt | 430 | 950 | |
Graphene/YInO3 | 300 W Xenon arc lamp | 100 mL solution containing 0.0025 mol Na2S and 0.0025mol Na2SO3 | 400.4 |
Fig 17
The morphology engineering strategy for SrTiO3 nanocrystals. (a-c) The morphology of 6-facet SrTiO3 nanocrystals. (d) The structure of the (001) facet of SrTiO3. (e) The schematic description of changing SrTiO3 nanocrystals from 6-facet to 18-facet. (f-h) The morphology of 18-facet SrTiO3 nanocrystals. (ⅰ) The structure of the (001) facet of SrTiO3 246. Reproduced with permission from Royal Society of Chemistry."
Fig 18
(a) H2 (●) and O2 (○) evolution from bulk NiOSrTiO3 (solid line), 30 nm NiOSrTiO3 (dashed line), and 6.5 nm NiOSrTiO3 (dotted line) in 50 mL of water at pH = 7 under full spectrum irradiation (~26.3 mmol?L?1?cm-2 in the UV from 250 to 380 nm) 247. Reproduced with permission from American Chemical Society. (b) Crystal structures of layered perovskites 248. Reproduced with permission from Elsevier. (c) Time course of hydrogen evolution over (●) Rh(0.03)-doped Ca-Nb-O sheets, (■) Rh(0.03)-doped KCa2Nb3O10, and (▲) Rh(1.0 wt%)-loaded Ca-Nb-O sheet. (d) Crystal structure of Rh-doped calcium niobate nanosheet prepared by exfoliation of layered KCa2Nb3-xRhxO10?δ and photocatalytic reaction model in water/methanol system 116. Reproduced with permission from American Chemical Society. (e) Possible charge transfer in the CN/KCTO 2D-2D heterojunction photocatalysts and the corresponding mechanism for their excellent photocatalytic activity 249. Reproduced with permission from Royal Society of Chemistry."
Table 4
Summary of perovskite oxide based materials for photocatalytic N2 fixation."
Photocatalyst | Light source | Reaction conditions | Sacrificial agent | NH3 production rate | Ref. |
CeO2-BiFeO3 | UV-Vis | Deionized water + nitrogen (Acidic medium nitrogen) | none | 117.77 μmol?g?1?h?1 (129.16 μmol?g?1?h?1 (pH = 4)) | |
TiO2/SrTiO3/g-C3N4 | 300-W Xe lamp | 10-vol% methanol + nitrogen (100 mL?min?1) | ethanol | 2192.0 μmol?L?1?g?1?h?1 | |
Ag-KNbO3 | 300 W Xe lamp | 5 vol% ethanol | ethanol | 385.0 μmol?L?1?g?1?h?1 | |
LaCoO3:Er3+/ATP | Visible | Water + nitrogen (2 L?min?1) | ethanol | 71.5 μmol?g?1?h?1 | |
Bi-Bi2WO6 | Simulated solar light | Water + nitrogen | none | 86.0 μmol?g?1?h?1 | |
c-PAN-Bi2WO6 | Simulated solar light | Water + nitrogen | none | 160.0 μmol?g?1?h?1 |
Fig 21
(a) Schematic illustration of the formation mechanism of Or-Bi/Bi2WO6 275. Reproduced with permission from Royal Society of Chemistry. (b) Possible mechanisms in Ag/KNbO3 composite under simulated sunlight and visible light 274. Reproduced with permission from American Chemical Society. (c) The photocatalytic mechanism of TiO2/SrTiO3/g-C3N4 heterojunctions under simulated sunlight irradiation. (d) The amount of nitrogen fixation per gram of sample under simulated sunlight irradiation 121. Reproduced with permission from Royal Society of Chemistry. (e) Charge transfer mechanism through the p-n junction in the MCeO2-BiFeO3 composite 273. Reproduced with permission from American Chemical Society. (f) Schematic illustration of the design and preparation of the as-fabricated BP hybrid photocatalyst 276. Reproduced with permission from American Chemical Society."
Fig 25
BET surface area plots for (a) g-C3N4, (b) CaTiO3 and (c) CTCN heterojunction. (d) Mechanism of degradation of pollutants under sunlight irradiation using the CTCN heterojunction photocatalyst. (e) Degradation percentage plots of RhB with sunlight irradiation after 120 min of irradiation 24. Reproduced with permission from Beilstein-Institut Zur Forderung der Chemischen Wissenschaften."
Fig 29
Total density of states (a) and projected density of states (b) for C-doped, Si-doped, N-doped, P-doped, S-doped and Se-doped systems. The vertical dashed line represents the top of the valence band of the bulk BaTiO3 as the reference level 315. Reproduced with permission from Elsevier."
1 | Han B. Acta Phys. -Chim. Sin. 2018, 34, 837. |
韩布兴; 物理化学学报, 2018, 34, 837.
doi: 10.3866/PKU.WHXB201803211 |
|
2 |
Peng J. H. ; Chen X. Z. ; Ong W. J. ; Zhao X. J. ; Li N. Chem 2019, 5, 18.
doi: 10.1016/j.chempr.2018.08.037 |
3 |
Ong W. J. ; Tan L. L. ; Ng Y. H. ; Yong S. T. ; Chai S. P. Chem. Rev. 2016, 116, 7159.
doi: 10.1021/acs.chemrev.6b00075 |
4 |
Ong W. J. ; Tan L. L. ; Chai S. P. ; Yong S. T. ; Mohamed A. R. ChemSusChem 2014, 7, 690.
doi: 10.1002/cssc.201300924 |
5 |
Ong W. J. ; Tan L. L. ; Chai S. P. ; Yong S. T. ; Mohamed A. R. Nanoscale 2014, 6, 1946.
doi: 10.1039/c3nr04655a |
6 |
Ong W. -J. ; Shak K. P. Y. Sol. RRL 2020, 4, 8.
doi: 10.1002/solr.202000132 |
7 |
Lin G. A. ; Xu X. X. ACS Sustain. Chem. Eng. 2020, 8, 9641.
doi: 10.1021/acssuschemeng.0c00302 |
8 |
Wang Y. W. ; Wei S. H. ; Xu X. X. Appl. Catal. B-Environ. 2020, 263, 118315.
doi: 10.1016/j.apcatb.2019.118315 |
9 |
Chen P. F. ; Ong W. J. ; Shi Z. H. ; Zhao X. J. ; Li N. Adv. Funct. Mater. 2020, 30, 27.
doi: 10.1002/adfm.201909667 |
10 |
Ong W. J. Front. Mater. 2017, 4, 10.
doi: 10.3389/fmats.2017.00011 |
11 |
Ren Y. J. ; Zeng D. Q. ; Ong W. J. Chin. J. Catal. 2019, 40, 289.
doi: 10.1016/s1872-2067(19)63293-6 |
12 |
Chen P. F. ; Li N. ; Chen X. Z. ; Ong W. J. ; Zhao X. J. 2D Mater. 2018, 5, 21.
doi: 10.1088/2053-1583/aa8d37 |
13 |
Kumar A. ; Kumar A. ; Krishnan V. ACS Catal. 2020, 10, 10253.
doi: 10.1021/acscatal.0c02947 |
14 |
Phuan Y. W. ; Ong W. -J. ; Chong M. N. ; Ocon J. D. J. Phototchem. Photobiol. C 2017, 33, 54.
doi: 10.1016/j.jphotochemrev.2017.10.001 |
15 |
Huang B. ; Zhou N. G. ; Chen X. Z. ; Ong W. J. ; Li N. Chem. -Eur. J. 2018, 24, 18479.
doi: 10.1002/chem.201804686 |
16 |
Xu Q. ; Li W. J. ; Ding L. ; Yang W. J. ; Xiao H. H. ; Ong W. J. Nanoscale 2019, 11, 1475.
doi: 10.1039/c8nr08738e |
17 |
Chen X. ; Ong W. -J. ; Kong Z. ; Zhao X. ; Li N. Sci. Bull. 2020, 65, 45.
doi: 10.1016/j.scib.2019.10.016 |
18 |
Chen X. ; Ong W. -J. ; Zhao X. ; Zhang P. ; Li N.. J. Energ. Chem. 2020,
doi: 10.1016/j.jechem.2020.10.043 |
19 |
Ong W. -J. ; Maeda K. Sol. RRL 2020, 4, 2000354.
doi: 10.1002/solr.202000354 |
20 |
Yang Z. ; Qi Y. ; Wang F. ; Han Z. ; Jiang Y. ; Han H. ; Liu J. ; Zhang X. ; Ong W. J. J. Mater. Chem. A 2020,
doi: 10.1039/d0ta08781e |
21 |
Yao M. ; Shi Z. ; Zhang P. ; Ong W. -J. ; Jiang J. ; Ching W. -Y. ; Li N. ACS Appl. Nano Mater. 2020, 3, 9870.
doi: 10.1021/acsanm.0c01922 |
22 |
Chen C. C. ; Ma W. H. ; Zhao J. C. Chem. Soc. Rev. 2010, 39, 4206.
doi: 10.1039/b921692h |
23 |
Shi W. L. ; Shu K. K. ; Huang X. L. ; Ren H. J. ; Li M. Y. ; Chen F. Y. ; Guo F. J. Chem. Technol. Biotechnol. 2020, 95, 1476.
doi: 10.1002/jctb.6338 |
24 |
Kumar A. ; Schuerings C. ; Kumar S. ; Kumar A. ; Krishnan V. Beilstein J. Nanotechnol. 2018, 9, 671.
doi: 10.3762/bjnano.9.62 |
25 |
Das N. ; Kandimalla S. Int. J. Environ. Sci. Technol. 2017, 14, 1559.
doi: 10.1007/s13762-016-1233-7 |
26 |
Zhao F. F. ; Yin D. G. ; Khaing K. K. ; Liu B. Q. ; Chen T. ; Deng L. L. ; Li L. Q. ; Guo X. D. ; Wang J. ; Xiao S. T. ; et al Inorg. Chem. 2020, 59, 7027.
doi: 10.1021/acs.inorgchem.0c00514 |
27 |
Sun Y. K. ; Zhu Q. ; Bai B. ; Li Y. L. ; He C. Chem. Eng. J. 2020, 390, 14.
doi: 10.1016/j.cej.2020.124518 |
28 |
Wang W. ; Tade M. O. ; Shao Z. P. Chem. Soc. Rev. 2015, 44, 5371.
doi: 10.1039/c5cs00113g |
29 | Chen R. ; Li D. ; Fang Z. ; Huang Y. ; Luo B. ; Shi W. Acta Phys. -Chim. Sin. 2020, 36, 1903047. |
陈锐杰; 李娣; 方振远; 黄元勇; 罗必富; 施伟东; 物理化学学报, 2020, 36, 1903047.
doi: 10.3866/PKU.WHXB201903047 |
|
30 | Pan J. ; Shen S. ; Zhou W. ; Tang J. ; Ding H. ; Wang J. ; Chen L. ; Au C. -T. ; Yin S. -F. Acta Phys. -Chim. Sin. 2020, 36, 1905068. |
潘金波; 申升; 周威; 唐杰; 丁洪志; 王进博; 陈浪; 区泽堂; 尹双凤; 物理化学学报, 2020, 36, 1905068.
doi: 10.3866/PKU.WHXB201905068 |
|
31 | Sun S. ; Zhang X. ; Liu X. ; Pan L. ; Zhang X. ; Zou J. Acta Phys. -Chim. Sin. 2020, 36, 1905007. |
孙尚聪; 张旭雅; 刘显龙; 潘伦; 张香文; 邹吉军; 物理化学学报, 2020, 36, 1905007.
doi: 10.3866/PKU.WHXB201905007 |
|
32 |
Maeda K. ; Domen K. J. Phys. Chem. C 2007, 111, 7851.
doi: 10.1021/jp070911w |
33 |
Yu J. ; Xu X. J. Energ. Chem. 2020, 51, 30.
doi: 10.1016/j.jechem.2020.03.025 |
34 |
Wu S. J. ; Sun J. G. ; Li Q. ; Hood Z. D. ; Yang S. ; Su T. M. ; Peng R. ; Wu Z. ; Sun W. W. ; Kent P. R. C. ; et al ACS Appl. Mater. Inter. 2020, 12, 20067.
doi: 10.1021/acsami.0c01802 |
35 |
Guo Y. Z. ; Chang B. B. ; Wen T. ; Zhang S. R. ; Zeng M. ; Hu N. T. ; Su Y. J. ; Yan Z. ; Yang B. C. J. Colloid Interface Sci. 2020, 567, 213.
doi: 10.1016/j.jcis.2020.01.090 |
36 |
Wang H. ; Luo S. G. ; Song Y. J. ; Shi Y. Z. ; Wang Z. W. ; Guo B. B. ; Wu L. Appl. Surf. Sci. 2020, 511, 145501.
doi: 10.1016/j.apsusc.2020.145501 |
37 |
Cui X. F. ; Zhou Y. ; Wu J. ; Ling S. ; Zhao L. J. ; Zhang J. L. ; Wang J. W. ; Qin W. ; Zhang Y. G. Nanotechnology 2020, 31, 18.
doi: 10.1088/1361-6528/ab6ab3 |
38 |
Zhou Y. ; Wang W. J. ; Zhang C. ; Huang D. L. ; Lai C. ; Cheng M. ; Qin L. ; Yang Y. ; Zhou C. Y. ; Li B. S. ; et al Adv. Colloid Interface Sci. 2020, 279, 24.
doi: 10.1016/j.cis.2020.102144 |
39 |
Kong D. Z. ; Yin D. ; Zhang D. F. ; Yuan F. Y. ; Song B. X. ; Yao S. J. ; Yin J. ; Geng Y. L. ; Pu X. P. Nanotechnology 2020, 31, 12.
doi: 10.1088/1361-6528/ab8850 |
40 |
Zhu S. M. ; Qian X. J. ; Lan D. P. ; Yu Z. Y. ; Wang X. X. ; Su W. Y. Appl. Catal. B-Environ. 2020, 269, 118806.
doi: 10.1016/j.apcatb.2020.118806 |
41 |
He Y. Q. ; Zhang F. L. ; Ma B. ; Xu N. ; Binnah L. ; Yao B. H. ; Yang Q. ; Liu D. J. ; Ma Z. Y. Appl. Surf. Sci. 2020, 517, 146187.
doi: 10.1016/j.apsusc.2020.146187 |
42 |
Lu Z. Q. ; Zeng D. Q. ; Zheng H. F. ; Liu Q. Q. ; Gao X. Y. ; He X. L. ; Wei L. ; Ong W. J. J. Mater. Sci. 2020, 55, 13114.
doi: 10.1007/s10853-020-04945-4 |
43 |
Pi Y. H. ; Feng X. Y. ; Song Y. ; Xu Z. W. ; Li Z. ; Lin W. B. J. Am. Chem. Soc. 2020, 142, 10302.
doi: 10.1021/jacs.0c03906 |
44 |
Ma Y. W. ; Hai G. T. ; Atinafu D. G. ; Dong W. J. ; Li R. J. ; Hou C. M. ; Wang G. J. Colloid Interface Sci. 2020, 569, 89.
doi: 10.1016/j.jcis.2020.02.071 |
45 |
Chen W. ; Liu M. ; Li X. Y. ; Mao L. Q. Appl. Surf. Sci. 2020, 512, 145782.
doi: 10.1016/j.apsusc.2020.145782 |
46 |
Zhang Q. L. ; Chen P. F. ; Chen L. ; Wu M. F. ; Dai X. Q. ; Xing P. X. ; Lin H. J. ; Zhao L. H. ; He Y. M. J. Colloid Interface Sci. 2020, 568, 117.
doi: 10.1016/j.jcis.2020.02.054 |
47 |
Ong W. J. ; Putri L. K. ; Mohamed A. R. Chem. -Eur. J. 2020, 26, 40.
doi: 10.1002/chem.202000708 |
48 | Cui X. ; Shi F. Acta Phys. -Chim. Sin. 2021, 37, 2006080. |
崔新江; 石峰; 物理化学学报, 2021, 37, 2006080.
doi: 10.3866/PKU.WHXB202006080 |
|
49 | Zhou W. ; Guo J. -K. ; Shen S. ; Pan J. ; Tang J. ; Chen L. ; Au C. -T. ; Yin S. -F Acta Phys. -Chim. Sin. 2020, 36, 1906048. |
周威; 郭君康; 申升; 潘金波; 唐杰; 陈浪; 区泽堂; 尹双凤; 物理化学学报, 2020, 36, 1906048.
doi: 10.3866/PKU.WHXB201906048 |
|
50 |
Zhang W. ; Mohamed A. R. ; Ong W. -J. Angew. Chem. -Int. Edit. 2020, 59, 2.
doi: 10.1002/anie.201914925 |
51 |
Ong W. J. ; Putri L. K. ; Tan Y. C. ; Tan L. L. ; Li N. ; Ng Y. H. ; Wen X. M. ; Chai S. P. Nano Res. 2017, 10, 1673.
doi: 10.1007/s12274-016-1391-4 |
52 |
Karamian E. ; Sharifnia S. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 2018, 238, 142.
doi: 10.1016/j.mseb.2018.12.023 |
53 |
Xu F. ; Meng K. ; Cheng B. ; Wang S. ; Xu J. ; Yu J. Nat. Commun. 2020, 11, 4613.
doi: 10.1038/s41467-020-18350-7 |
54 |
Zeng S. ; Kar P. ; Thakur U. K. ; Shankar K. Nanotechnology 2018, 29, 22.
doi: 10.1088/1361-6528/aa9fb1 |
55 |
Wu X. X. ; Wang C. J. ; Wei Y. C. ; Xiong J. ; Zhao Y. L. ; Zhao Z. ; Liu J. ; Li J. M. J. Catal. 2019, 377, 309.
doi: 10.1016/j.jcat.2019.07.037 |
56 |
Padervand M. ; Rhimi B. ; Wang C. J. Alloy. Compd. 2021, 852, 25.
doi: 10.1016/j.jallcom.2020.156955 |
57 |
Zhu S. ; Chen X. F. ; Li Z. C. ; Ye X. Y. ; Liu Y. ; Chen Y. ; Yang L. ; Chen M. ; Zhang D. Q. ; Li G. S. ; et al Appl. Catal. B-Environ. 2020, 264, 118515.
doi: 10.1016/j.apcatb.2019.118515 |
58 |
Wang B. ; Yang S. Z. ; Chen H. L. ; Gao Q. ; Weng Y. X. ; Zhu W. S. ; Liu G. P. ; Zhang Y. ; Ye Y. Z. ; Zhu H. Y. ; et al Appl. Catal. B-Environ. 2020, 277, 119170.
doi: 10.1016/j.apcatb.2020.119170 |
59 |
Wang X. D. ; He J. ; Li J. Y. ; Lu G. ; Dong F. ; Majima T. ; Zhu M. S. Appl. Catal. B-Environ. 2020, 277, 119230.
doi: 10.1016/j.apcatb.2020.119230 |
60 |
Su K. ; Dong G. -X. ; Zhang W. ; Liu Z. -L. ; Zhang M. ; Lu T. -B. ACS Appl. Mater. Inter. 2020, 12, 50464.
doi: 10.1021/acsami.0c14826 |
61 |
He B. -C. ; Zhang C. ; Luo P. -P. ; Li Y. ; Lu T. -B. Green Chem. 2020, 22, 7552.
doi: 10.1039/d0gc02836c |
62 |
Dong H. ; Zhang X. ; Lu Y. ; Yang Y. ; Zhang Y. P. ; Tang H. L. ; Zhang F. M. ; Yang Z. D. ; Sun X. J. ; Feng Y. J. Appl. Catal. B-Environ. 2020, 276, 119173.
doi: 10.1016/j.apcatb.2020.119173 |
63 |
Wang Z. ; Chen Y. ; Zhang L. ; Cheng B. ; Yu J. ; Fan J. J. Mater. Sci. Technol. 2020, 56, 143.
doi: 10.1016/j.jmst.2020.02.062 |
64 |
Varaki M. S. ; Jafari A. ; Abrishami M. E. J. Laser Appl. 2020, 32, 4205.
doi: 10.2351/1.5129147 |
65 |
Guo H. ; Ding J. ; Wan S. ; Wang Y. ; Zhong Q. Appl. Surf. Sci. 2020, 528, 146943.
doi: 10.1016/j.apsusc.2020.146943 |
66 |
Zhang M. ; Xu Y. ; Zhang W. ; Su K. ; Feng Y. -X. ; Mu Y. -F. ; Lu T. -B. Chem. -Eur. J. 2020,
doi: 10.1002/chem.202004682 |
67 |
Huang B. ; Li N. ; Ong W. J. ; Zhou N. G. J. Mater. Chem. A 2019, 7, 27620.
doi: 10.1039/c9ta09776g |
68 |
Chen X. Z. ; Li N. ; Kong Z. Z. ; Ong W. J. ; Zhao X. J. Mater. Horizons 2018, 5, 9.
doi: 10.1039/c7mh00557a |
69 |
Rong X. S. ; Liu S. ; Xie M. Z. ; Liu Z. G. ; Wu Z. R. ; Zhou X. T. ; Qiu X. C. ; Wei J. Mater. Res. Bull. 2020, 127, 6.
doi: 10.1016/j.materresbull.2020.110853 |
70 |
Li X. H. ; He P. ; Wang T. ; Zhang X. W. ; Chen W. L. ; Li Y. G. ChemSusChem 2020, 13, 2769.
doi: 10.1002/cssc.202000328 |
71 |
Bian S. ; Wen M. ; Wang J. H. ; Yang N. ; Chu P. K. ; Yu X. F. J. Phys. Chem. Lett. 2020, 11, 1052.
doi: 10.1021/acs.jpclett.9b03507 |
72 |
Liao Y. ; Lin J. N. ; Cui B. H. ; Xie G. ; Hu S. J. Photochem. Photobiol. A-Chem. 2020, 387, 7.
doi: 10.1016/j.jphotochem.2019.112100 |
73 |
Wu D. P. ; Wang R. ; Yang C. ; An Y. P. ; Lu H. ; Wang H. J. ; Cao K. ; Gao Z. Y. ; Zhang W. C. ; Xu F. ; et al J. Colloid Interface Sci. 2019, 556, 111.
doi: 10.1016/j.jcis.2019.08.048 |
74 |
Xu H. C. ; Wang Y. ; Dong X. L. ; Zheng N. ; Ma H. C. ; Zhang X. F. Appl. Catal. B-Environ. 2019, 257, 117932.
doi: 10.1016/j.apcatb.2019.117932 |
75 |
Nazemi M. ; El-Sayed M. A. Nano Energy 2019, 63, 8.
doi: 10.1016/j.nanoen.2019.103886 |
76 |
Li X. Z. ; He C. L. ; Zuo S. X. ; Yan X. Y. ; Dai D. Y. ; Zhang Y. ; Yao C. Sol. Energy 2019, 191, 251.
doi: 10.1016/j.solener.2019.08.063 |
77 |
Gao X. M. ; Shang Y. Y. ; Gao K. L. ; Fu F. Nanomaterials 2019, 9, 13.
doi: 10.3390/nano9050781 |
78 |
Sultana S. ; Mansingh S. ; Parida K. M. J. Mater. Chem. A 2019, 7, 9145.
doi: 10.1039/c8ta11437d |
79 |
Zhao Y. ; Zhao Y. ; Shi R. ; Wang B. ; Waterhouse G. I. N. ; Wu L. -Z. ; Tung C. -H. ; Zhang T. Adv. Mater. 2019, 31, 48.
doi: 10.1002/adma.201806482 |
80 |
Zeng L. ; Zhe F. ; Wang Y. ; Zhang Q. ; Zhao X. ; Hu X. ; Wu Y. ; He Y. J. Colloid Interface Sci. 2019, 539, 563.
doi: 10.1016/j.jcis.2018.12.101 |
81 |
Gao X. -M. ; Shang Y. -Y. ; Liu L. -B. ; Gao K. -L. ; Shang Y. -Y. ; Liu L. -B. ; Gao K. -L. Chin. J. Inorg. Chem. 2019, 35, 580.
doi: 10.11862/cjic.2019.092 |
82 |
Comer B. M. ; Liu Y. -H. ; Dixit M. B. ; Hatzell K. B. ; Ye Y. ; Crumlin E. J. ; Hatzell M. C. ; Medford A. J. J. Am. Chem. Soc. 2018, 140, 15157.
doi: 10.1021/jacs.8b08464 |
83 |
Chen X. ; Li N. ; Kong Z. ; Ong W. -J. ; Zhao X. Mater. Horizons 2018, 5, 9.
doi: 10.1039/c7mh00557a |
84 |
Hirakawa H. ; Hashimoto M. ; Shiraishi Y. ; Hirai T. J. Am. Chem. Soc. 2017, 139, 10929.
doi: 10.1021/jacs.7b06634 |
85 |
Dong G. ; Ho W. ; Wang C. J. Mater. Chem. A 2015, 3, 23435.
doi: 10.1039/c5ta06540b |
86 |
Feng Y. ; Zhang Z. ; Zhao K. ; Lin S. ; Li H. ; Gao X. J. Colloid Interface Sci. 2021, 583, 499.
doi: 10.1016/j.jcis.2020.09.089 |
87 |
Li H. ; Gao Q. ; Wang G. ; Han B. ; Xia K. ; Zhou C. Appl. Surf. Sci. 2021, 536, 147787.
doi: 10.1016/j.apsusc.2020.147787 |
88 |
Mkhalid I. A. ; Shawky A. J. Alloy. Compd. 2021, 853, 5.
doi: 10.1016/j.jallcom.2020.157040 |
89 |
Han J. ; Deng Y. ; Li N. ; Chen D. ; Xu Q. ; Li H. ; He J. ; Lu J. J. Colloid Interface Sci. 2021, 582, 1021.
doi: 10.1016/j.jcis.2020.09.013 |
90 |
Sahu R. S. ; Shih Y. -H. ; Chen W. -L. J. Hazard. Mater. 2021, 402, 123509.
doi: 10.1016/j.jhazmat.2020.123509 |
91 |
Liu X. T. ; Gu S. N. ; Zhao Y. J. ; Zhou G. W. ; Li W. J. J. Mater. Sci. Technol. 2020, 56, 45.
doi: 10.1016/j.jmst.2020.04.023 |
92 |
Lin B. ; Chen Z. ; Shui L. ; Zhou G. ; Wang X. Nanotechnology 2020, 32, 4.
doi: 10.1088/1361-6528/abc113 |
93 |
Fattahi A. ; Arlos M. J. ; Bragg L. M. ; Kowalczyk S. ; Liang R. ; Schneider O. M. ; Zhou N. ; Servos M. R. Sci. Total. Environ. 2021, 752, 142000.
doi: 10.1016/j.scitotenv.2020.142000 |
94 |
Fujishima A. ; Honda K. Nature 1972, 238, 37.
doi: 10.1038/238037a0 |
95 |
Liu H. ; Chen Y. J. ; Li H. L. ; Jiang H. Y. ; Tian G. H. J. Colloid Interface Sci. 2020, 575, 158.
doi: 10.1016/j.jcis.2020.04.094 |
96 |
Wu M. -H. ; Li L. ; Liu N. ; Wang D. -J. ; Xue Y. -C. ; Tang L. Process Saf. Environ. 2018, 118, 40.
doi: 10.1016/j.psep.2018.06.025 |
97 |
Fang G. ; Li M. ; Shen H. ; Yang S. ; Israr J. Mat. Sci. Semicon. Proc. 2021, 121, 1053.
doi: 10.1016/j.mssp.2020.105374 |
98 |
Hunge Y. M. ; Yadav A. A. ; Khan S. ; Takagi K. ; Suzuki N. ; Teshima K. ; Terashima C. ; Fujishima A. J. Colloid Interface Sci. 2021, 582, 1058.
doi: 10.1016/j.jcis.2020.08.102 |
99 |
Zhang G. ; Liu G. ; Wang L. Z. ; Irvine J. T. S. Chem. Soc. Rev. 2016, 45, 5951.
doi: 10.1039/c5cs00769k |
100 |
Cui E. ; Hou G. ; Wang Z. ; Sun Q. a. ; Wu Y. ; Wan J. ; Zhang F. ; Chen X. ; Wu Y. Appl. Surf. Sci. 2020, 531, 147324.
doi: 10.1016/j.apsusc.2020.147324 |
101 |
Lin X. H. ; Gao Y. L. ; Jiang M. ; Zhang Y. F. ; Hou Y. D. ; Dai W. X. ; Wang S. B. ; Ding Z. X. Appl. Catal. B-Environ. 2018, 224, 1009.
doi: 10.1016/j.apcatb.2017.11.035 |
102 |
Xu J. L. ; Sun C. F. ; Wang Z. Y. ; Hou Y. D. ; Ding Z. X. ; Wang S. B. Chem. -Eur. J. 2018, 24, 18512.
doi: 10.1002/chem.201802920 |
103 |
Qin J. N. ; Lin L. H. ; Wang X. C. Chem. Commun. 2018, 54, 2272.
doi: 10.1039/c7cc07954k |
104 |
Sudrajat H. ; Fadlallah M. M. ; Tao S. ; Kitta M. ; Ichikuni N. ; Onishi H. Phys. Chem. Chem. Phys. 2020, 22, 19178.
doi: 10.1039/d0cp02822c |
105 | Linsebigler, A. L.; Lu, G.; T., J.; Yates, J. Chem. Rev. 1995, 95, 735. doi:10. 1021/cr00035a013 |
106 |
Shi R. ; Waterhouse G. I. N. ; Zhang T. R. Sol. RRL 2017, 1, 17.
doi: 10.1002/solr.201700126 |
107 |
Pena M. A. ; Fierro J. L. G. Chem. Rev. 2001, 101, 1981.
doi: 10.1021/cr980129f |
108 |
Grabowska E. Appl. Catal. B-Environ. 2016, 186, 97.
doi: 10.1016/j.apcatb.2015.12.035 |
109 |
Zhang T. T. ; Zhao K. ; Yu J. G. ; Jin J. ; Qi Y. ; Li H. Q. ; Hou X. J. ; Liu G. Nanoscale 2013, 5, 8375.
doi: 10.1039/c3nr02356g |
110 |
Hu C. -C. ; Teng H. Appl. Catal. A Gen. 2007, 331, 44.
doi: 10.1016/j.apcata.2007.07.024 |
111 |
Zhang W. F. ; Tang J. W. ; Ye J. H. Chem. Phys. Lett. 2006, 418, 174.
doi: 10.1016/j.cplett.2005.10.122 |
112 |
Kanhere P. ; Chen Z. Molecules 2014, 19, 19995.
doi: 10.3390/molecules191219995 |
113 |
Feng Y. N. ; Wang H. C. ; Shen Y. ; Lin Y. H. ; Nan C. W. Int. J. Appl. Ceram. Technol. 2014, 11, 676.
doi: 10.1111/ijac.12205 |
114 |
Kato H. ; Asakura K. ; Kudo A. J. Am. Chem. Soc. 2003, 125, 3082.
doi: 10.1021/ja027751g |
115 |
Mora-Hernandez J. M. ; Huerta-Flores A. M. ; Torres-Martínez L. M. J. CO2 Util. 2018, 27, 179.
doi: 10.1016/j.jcou.2018.07.014 |
116 |
Okamoto Y. ; Ida S. ; Hyodo J. ; Hagiwara H. ; Ishihara T. J. Am. Chem. Soc. 2011, 133, 18034.
doi: 10.1021/ja207103j |
117 |
Puhan A. ; Bhushan B. ; Satpathy S. ; Meena S. S. ; Nayak A. K. ; Rout D. Appl. Surf. Sci. 2019, 493, 593.
doi: 10.1016/j.apsusc.2019.07.002 |
118 |
Zhong Y. ; Wang R. ; Wang X. ; Lin Z. ; Jiang G. ; Yang M. ; Xu D. Front. Chem. 2020, 8, 660.
doi: 10.3389/fchem.2020.00660 |
119 |
Zhao N. ; Hu Y. ; Du J. ; Liu G. ; Dong B. ; Yang Y. ; Peng J. ; Li J. ; Zhai M. Appl. Surf. Sci. 2020, 530, 147247.
doi: 10.1016/j.apsusc.2020.147247 |
120 |
Zhao H. ; Jiang Z. ; Xiao K. ; Sun H. ; Chan H. S. ; Tsang T. H. ; Yang S. ; Wong P. K. Appl. Catal. B-Environ. 2021, 280, 119456.
doi: 10.1016/j.apcatb.2020.119456 |
121 |
Tao R. ; Li X. H. ; Li X. W. ; Shao C. L. ; Liu Y. C. Nanoscale 2020, 12, 8320.
doi: 10.1039/d0nr00219d |
122 |
Zhang B. ; Shi H. X. ; Hu X. Y. ; Wang Y. S. ; Liu E. Z. ; Fan J. J. Phys. D-Appl. Phys. 2020, 53, 12.
doi: 10.1088/1361-6463/ab7563 |
123 |
Wang Y. L. ; Zheng M. Y. ; Zhao H. K. ; Qin H. ; Fan W. L. ; Zhao X. Phys. Chem. Chem. Phys. 2020, 22, 10265.
doi: 10.1039/d0cp01308k |
124 |
Dai K. ; Hu T. P. ; Zhang J. F. ; Lu L. H. Appl. Surf. Sci. 2020, 512, 144783.
doi: 10.1016/j.apsusc.2019.144783 |
125 |
Hu J. D. ; Chen C. ; Zheng Y. ; Zhang G. P. ; Guo C. X. ; Li C. M. Small 2020, 16, 10.
doi: 10.1002/smll.202002988 |
126 |
Si H. Y. ; Deng Q. X. ; Yin C. ; Zhou J. X. ; Zhang S. Q. ; Zhang Y. X. ; Liu Z. C. ; Zhang J. B. ; Zhang J. ; Kong J. J. Alloy. Compd. 2020, 833, 7.
doi: 10.1016/j.jallcom.2020.155054 |
127 |
Li P. ; Zhang M. ; Li X. ; Wang C. ; Wang R. ; Wang B. ; Yan H. J. Mater. Sci. 2020, 55, 15930.
doi: 10.1007/s10853-020-05123-2 |
128 |
Ali M. ; Zhou F. L. ; Chen K. ; Kotzur C. ; Xiao C. L. ; Bourgeois L. ; Zhang X. Y. ; MacFarlane D. R. Nat. Commun. 2016, 7, 5.
doi: 10.1038/ncomms11335 |
129 |
Hwang H. J. ; Towata A. ; Awano M. ; Maeda K. Scr. Mater. 2001, 44, 2173.
doi: 10.1016/s1359-6462(01)00904-6 |
130 |
Zhang D. ; Tang Y. ; Qiu X. ; Yin J. ; Su C. ; Pu X. J. Alloy. Compd. 2020, 845, 155.
doi: 10.1016/j.jallcom.2020.155569 |
131 |
Movahed S. K. ; Najinasab A. ; Nikbakht R. ; Dabiri M. J. Photochem. Photobiol. A-Chem. 2020, 401, 112.
doi: 10.1016/j.jphotochem.2020.112763 |
132 |
Etacheri V. ; Di Valentin C. ; Schneider J. ; Bahnemann D. ; Pillai S. C. J. Photochem. Photobiol. C-Photochem. Rev. 2015, 25, 1.
doi: 10.1016/j.jphotochemrev.2015.08.003 |
133 |
Bai S. ; Zhang N. ; Gao C. ; Xiong Y. J. Nano Energy 2018, 53, 296.
doi: 10.1016/j.nanoen.2018.08.058 |
134 |
Wang Z. ; Li C. ; Domen K. Chem. Soc. Rev. 2019, 48, 2109.
doi: 10.1039/c8cs00542g |
135 |
Liu G. ; Yang H. G. ; Pan J. ; Yang Y. Q. ; Lu G. Q. ; Cheng H. M. Chem. Rev. 2014, 114, 9559.
doi: 10.1021/cr400621z |
136 |
Takata T. ; Pan C. S. ; Nakabayashi M. ; Shibata N. ; Domen K. J. Am. Chem. Soc. 2015, 137, 9627.
doi: 10.1021/jacs.5b04107 |
137 |
Gao M. M. ; Zhu L. L. ; Peh C. K. ; Ho G. W. Energy Environ. Sci. 2019, 12, 841.
doi: 10.1039/c8ee01146j |
138 |
Li J. T. ; Wu N. Q. Catal. Sci. Technol. 2015, 5, 1360.
doi: 10.1039/c4cy00974f |
139 |
Jiang H. ; Kumada N. ; Yonesaki Y. ; Takei T. ; Kinomura N. J. Ceram. Soc. Jpn. 2009, 117, 214.
doi: 10.2109/jcersj2.117.214 |
140 | Xue L. H. ; Zhang Y. L. ; Li Q. ; Guo Q. Y. ; Liu R. J. Inorg. Mater. 2004, 19, 566. |
141 |
Wang K. J. ; Zhong P. ; Zhu J. J. Catal. Lett. 2009, 131, 672.
doi: 10.1007/s10562-009-9999-6 |
142 |
Lee C. W. ; Kim D. W. ; Cho I. S. ; Park S. ; Shin S. S. ; Seo S. W. ; Hong K. S. Int. J. Hydrog. Energy 2012, 37, 10557.
doi: 10.1016/j.ijhydene.2012.04.063 |
143 |
Liu J. ; Chen G. ; Li Z. ; Zhang Z. Int. J. Hydrog. Energy 2007, 32, 2269.
doi: 10.1016/j.ijhydene.2006.10.005 |
144 |
Lv T. ; Wu M. H. ; Guo M. X. ; Liu Q. ; Jia L. S. Chem. Eng. J. 2019, 356, 580.
doi: 10.1016/j.cej.2018.09.031 |
145 |
Shi J. ; Liu G. ; Wang N. ; Li C. J. Mater. Chem. 2012, 22, 18808.
doi: 10.1039/c2jm33470d |
146 |
Zhang H. G. ; Li X. Z. ; Su H. ; Chen X. F. ; Zuo S. X. ; Yan X. Y. ; Liu W. J. ; Yao C. J. Sol-Gel Sci. Technol. 2019, 92, 154.
doi: 10.1007/s10971-019-05071-7 |
147 |
Hu C. -C. ; Teng H. Appl. Catal. A-Gen. 2007, 331, 44.
doi: 10.1016/j.apcata.2007.07.024 |
148 |
Durai L. ; Badhulika S. IEEE Sens. J. 2020, 20, 13212.
doi: 10.1109/jsen.2020.3005352 |
149 |
Lozano-Sanchez L. M. ; Lee S. -W. ; Sekino T. ; Rodriguez-Gonzalez V. Crystengcomm 2013, 15, 2359.
doi: 10.1039/c3ce27040h |
150 |
Yamaguchi Y. ; Hamamoto K. ; Hamao N. ; Shimada H. ; Sumi H. ; Nomura K. ; Fujishiro Y. Ceram. Int. 2019, 45, 24936.
doi: 10.1016/j.ceramint.2019.08.205 |
151 |
Li P. ; Chen X. ; Li Y. ; Schwank J. W. Catal. Today 2020,
doi: 10.1016/j.cattod.2020.03.012 |
152 |
Parida K. M. ; Reddy K. H. ; Martha S. ; Das D. P. ; Biswal N. Int. J. Hydrog. Energy 2010, 35, 12161.
doi: 10.1016/j.ijhydene.2010.08.029 |
153 |
Tang J. ; Zhu M. ; Zhong T. ; Hou Y. ; Wang H. ; Yan H. Mater. Chem. Phys. 2007, 101, 475.
doi: 10.1016/j.matchemphys.2006.08.006 |
154 |
Cui E. T. ; Hou G. H. ; Wang Z. C. ; Sun Q. A. ; Wu Y. L. ; Wan J. ; Zhang F. ; Chen X. H. ; Wu Y. Q. Appl. Surf. Sci. 2020, 531, 12.
doi: 10.1016/j.apsusc.2020.147324 |
155 |
Liu Z. K. ; Qi Y. J. ; Lu C. J. J. Mater. Sci. -Mater. Electron. 2010, 21, 380.
doi: 10.1007/s10854-009-9928-x |
156 |
Zhuang S. X. ; Huang C. H. ; Huang K. L. ; Hu X. ; Tu F. Y. ; Huang H. X. Electrochem. Commun. 2011, 13, 321.
doi: 10.1016/j.elecom.2011.01.014 |
157 |
Walton R. I. Chem. -Eur. J. 2020, 26, 9041.
doi: 10.1002/chem.202000707 |
158 |
Rajbhar M. K. ; Das P. ; Satpati B. ; Moller W. ; Ramgir N. ; Chatterjee S. Appl. Surf. Sci. 2020, 527, 146683.
doi: 10.1016/j.apsusc.2020.146683 |
159 |
Singh J. ; Rogge I. ; Goutam U. K. ; Kumar A. Ionics 2020, 26, 5143.
doi: 10.1007/s11581-020-03644-z |
160 |
Kumar V. ; Kumar R. ; Shukla D. K. ; Gautam S. ; Chae K. H. ; Kumar R. J. Appl. Phys. 2013, 114, 6.
doi: 10.1063/1.4818448 |
161 |
Gosavi P. V. ; Biniwale R. B. Mater. Chem. Phys. 2010, 119, 324.
doi: 10.1016/j.matchemphys.2009.09.005 |
162 |
Sun J. C. ; Zhao Z. ; Li Y. Z. ; Yu X. H. ; Zhao L. L. ; Li J. M. ; Wei Y. C. ; Liu J. J. Rare Earth. 2020, 38, 584.
doi: 10.1016/j.jre.2019.05.014 |
163 |
Tabish A. ; Varghese A. M. ; Wahab M. A. ; Karanikolos G. N. Catalysts 2020, 10, 30.
doi: 10.3390/catal10010095 |
164 |
Tahir M. ; Tahir B. Chem. Eng. J. 2020, 400, 125.
doi: 10.1016/j.cej.2020.125868 |
165 |
Truc N. T. T. ; Pham T. D. ; Nguyen M. V. ; Thuan D. V. ; Trung D. Q. ; Thao P. ; Trang H. T. ; Nguyen V. N. ; Tran D. T. ; Minh D. N. ; et al J. Alloy. Compd. 2020, 842, 8.
doi: 10.1016/j.jallcom.2020.155860 |
166 |
Sun W. ; Meng X. ; Xu C. ; Yang J. ; Liang X. ; Dong Y. ; Dong C. ; Ding Y. Chin. J. Catal. 2020, 41, 1826.
doi: 10.1016/s1872-2067(20)63646-4 |
167 |
Mardani A. ; Streimikiene D. ; Cavallaro F. ; Loganathan N. ; Khoshnoudi M. Sci. Total Environ. 2019, 649, 31.
doi: 10.1016/j.scitotenv.2018.08.229 |
168 |
Stolarczyk J. K. ; Bhattacharyya S. ; Polavarapu L. ; Feldmann J. ACS Catal. 2018, 8, 3602.
doi: 10.1021/acscatal.8b00791 |
169 |
Alvarez A. ; Bansode A. ; Urakawa A. ; Bavykina A. V. ; Wezendonk T. A. ; Makkee M. ; Gascon J. ; Kapteijn F. Chem. Rev. 2017, 117, 9804.
doi: 10.1021/acs.chemrev.6b00816 |
170 |
Fresno F. ; Jana P. ; Renones P. ; Coronado J. M. ; Serrano D. P. ; de la Pena O'Shea V. A. Photochem. Photobiol. Sci. 2017, 16, 17.
doi: 10.1039/c6pp00235h |
171 |
Yang Y. ; Zhang D. ; Fan J. ; Liao Y. ; Xiang Q. Sol. RRL 2020,
doi: 10.1002/solr.202000351 |
172 |
Kou J. H. ; Gao J. ; Li Z. S. ; Yu H. ; Zhou Y. ; Zou Z. G. Catal. Lett. 2015, 145, 640.
doi: 10.1007/s10562-014-1415-1 |
173 |
Hu Z. ; Liu W. ACS Appl. Mater. Inter. 2020, 12, 51366.
doi: 10.1021/acsami.0c13323 |
174 | Ning H. ; Wang W. ; Mao Q. ; Zheng S. ; Yang Z. ; Zhao Q. ; Wu M. Acta Phys. -Chim. Sin. 2018, 34, 938. |
宁汇; 王文行; 毛勤虎; 郑诗瑞; 杨中学; 赵青山; 吴明铂; 物理化学学报, 2018, 34, 938.
doi: 10.3866/PKU.WHXB201801263 |
|
175 | Gao Y. ; Liu S. ; Zhao Z. ; Tao H. ; Sun Z. Acta Phys. -Chim. Sin. 2018, 34, 858. |
高云楠; 刘世桢; 赵振清; 陶亨聪; 孙振宇; 物理化学学报, 2018, 34, 858.
doi: 10.3866/PKU.WHXB201802061 |
|
176 | Zhou Z. ; Xia S. ; He L. Acta Phys. -Chim. Sin. 2018, 34, 838. |
周智华; 夏书梅; 何良年; 物理化学学报, 2018, 34, 838.
doi: 10.3866/PKU.WHXB201712271 |
|
177 | Liu T. ; Li J. ; Liu W. ; Zhu Y. ; Lu X. Acta Phys. -Chim. Sin. 2018, 34, 1097. |
刘甜; 黎军; 刘维佳; 朱育丹; 陆小华; 物理化学学报, 2018, 34, 1097.
doi: 10.3866/PKU.WHXB201712131 |
|
178 |
Jiao X. C. ; Chen Z. W. ; Li X. D. ; Sun Y. F. ; Gao S. ; Yan W. S. ; Wang C. M. ; Zhang Q. ; Lin Y. ; Luo Y. ; et al J. Am. Chem. Soc. 2017, 139, 7586.
doi: 10.1021/jacs.7b02290 |
179 |
Li P. ; Ouyang S. ; Xi G. ; Kako T. ; Ye J. J. Phys. Chem. C 2012, 116, 7621.
doi: 10.1021/jp210106b |
180 |
Huo Y. ; Zhang J. ; Wang Z. ; Dai K. ; Pan C. ; Liang C. J. Colloid Interface Sci. 2020,
doi: 10.1016/j.jcis.2020.10.048 |
181 |
Sun J. W. ; Bian J. ; Li J. D. ; Zhang Z. Q. ; Li Z. J. ; Qu Y. ; Bai L. L. ; Yang Z. D. ; Jing L. Q. Appl. Catal. B-Environ. 2020, 277, 119199.
doi: 10.1016/j.apcatb.2020.119199 |
182 |
Ma Y. ; Du J. ; Fang Y. ; Wang X. ChemSusChem 2020,
doi: 10.1002/cssc.202002656 |
183 |
Xu L. J. ; Ha M. N. ; Guo Q. S. ; Wang L. C. ; Ren Y. N. ; Sha N. ; Zhao Z. RSC Adv. 2017, 7, 45949.
doi: 10.1039/c7ra04879c |
184 |
Teramura K. ; Okuoka S. -I. ; Tsuneoka H. ; Shishido T. ; Tanaka T. Appl. Catal. B-Environ. 2010, 96, 565.
doi: 10.1016/j.apcatb.2010.03.021 |
185 |
Wang J. ; Huang C. ; Chen X. ; Zhang H. ; Li Z. ; Zou Z. Appl. Surf. Sci. 2015, 358, 463.
doi: 10.1016/j.apsusc.2015.08.063 |
186 |
Hou J. ; Cao S. ; Wu Y. ; Gao Z. ; Liang F. ; Sun Y. ; Lin Z. ; Sun L. Chem. -Eur. J. 2017, 23, 9481.
doi: 10.1002/chem.201702237 |
187 |
Li K. ; Handoko A. D. ; Khraisheh M. ; Tang J. Nanoscale 2014, 6, 9767.
doi: 10.1039/c4nr01490a |
188 |
Li D. ; Ouyang S. ; Xu H. ; Lu D. ; Zhao M. ; Zhang X. ; Ye J. Chem. Commun. 2016, 52, 5989.
doi: 10.1039/c6cc00836d |
189 |
Li M. ; Li P. ; Chang K. ; Wang T. ; Liu L. ; Kang Q. ; Ouyang S. ; Ye J. Chem. Commun. 2015, 51, 7645.
doi: 10.1039/c5cc01124h |
190 |
Xie K. ; Umezawa N. ; Zhang N. ; Reunchan P. ; Zhang Y. J. ; Ye J. H. Energy Environ. Sci. 2011, 4, 4211.
doi: 10.1039/c1ee01594j |
191 |
Sun Z. X. ; Wang H. Q. ; Wu Z. B. A. ; Wang L. Z. Catal. Today 2018, 300, 160.
doi: 10.1016/j.cattod.2017.05.033 |
192 |
Xia Y. ; Yu J. G. Chem 2020, 6, 1039.
doi: 10.1016/j.chempr.2020.02.015 |
193 |
Yoshitomi F. ; Sekizawa K. ; Maeda K. ; Ishitani O. ACS Appl. Mater. Inter. 2015, 7, 13092.
doi: 10.1021/acsami.5b03509 |
194 |
Yazdanpour N. ; Sharifnia S. Sol. Energy Mater. Sol. Cells 2013, 118, 1.
doi: 10.1016/j.solmat.2013.07.051 |
195 |
Yarahmadi A. ; Sharifnia S. Dyes Pigment 2014, 107, 140.
doi: 10.1016/j.dyepig.2014.03.035 |
196 |
Karamian E. ; Sharifnia S. J. CO2 Util. 2016, 16, 194.
doi: 10.1016/j.jcou.2016.07.004 |
197 |
Kwak B. S. ; Kang M. Appl. Surf. Sci. 2015, 337, 138.
doi: 10.1016/j.apsusc.2015.02.078 |
198 |
Zhou H. ; Guo J. J. ; Li P. ; Fan T. X. ; Zhang D. ; Ye J. H. Sci. Rep. 2013, 3, 9.
doi: 10.1038/srep01667 |
199 |
Choi Y. I. ; Yang J. H. ; Park S. J. ; Sohn Y. Catalysts 2020, 10, 1116.
doi: 10.3390/catal10101116 |
200 |
Wu H. -K. ; Li Y. -H. ; Qi M. -Y. ; Lin Q. ; Xu Y. -J. Appl. Catal. B-Environ. 2020, 278, 119267.
doi: 10.1016/j.apcatb.2020.119267 |
201 |
Wang R. N. ; Ni S. ; Liu G. ; Xu X. X. Appl. Catal. B-Environ. 2018, 225, 139.
doi: 10.1016/j.apcatb.2017.11.061 |
202 |
Wang H. C. ; Lin Y. H. ; Feng Y. N. ; Shen Y. J. Electroceram. 2013, 31, 271.
doi: 10.1007/s10832-013-9818-8 |
203 |
Kumar A. ; Sharma G. ; Naushad M. ; Ahamad T. ; Veses R. C. ; Stadler F. J. Chem. Eng. J. 2019, 370, 148.
doi: 10.1016/j.cej.2019.03.196 |
204 |
Li J. ; Li H. ; Zhan G. ; Zhang L. Account Chem. Res. 2017, 50, 112.
doi: 10.1021/acs.accounts.6b00523 |
205 | Cao D. ; An H. ; Yan X. ; Zhao Y. ; Yang G. ; Mei H. Acta Phys. -Chim. Sin. 2020, 36, 1051. |
曹丹; 安华; 严孝清; 赵宇鑫; 杨贵东; 梅辉; 物理化学学报, 2020, 36, 1051.
doi: 10.3866/PKU.WHXB201901051 |
|
206 |
Jiang C. L. ; Wang H. ; Wang Y. Q. ; Ji H. B. Appl. Catal. B-Environ. 2020, 277, 119235.
doi: 10.1016/j.apcatb.2020.119235 |
207 |
Nie Y. -C. ; Yu F. ; Wang L. -C. ; Xing Q. -J. ; Liu X. ; Pei Y. ; Zou J. -P. ; Dai W. -L. ; Li Y. ; Suib S. L. Appl. Catal. B-Environ. 2018, 227, 312.
doi: 10.1016/j.apcatb.2018.01.033 |
208 |
Indra A. ; Beltran-Suito R. ; Muller M. ; Sivasankaran R. P. ; Schwarze M. ; Acharjya A. ; Pradhan B. ; Hofkens J. ; Bruckner A. ; Thomas A. ; et al ChemSusChem 2020,
doi: 10.1002/cssc.202002500 |
209 |
Tasleem S. ; Tahir M. ; Zakaria Z. Y. J. Alloy. Compd. 2020, 842, 18.
doi: 10.1016/j.jallcom.2020.155752 |
210 |
Manchala S. ; Gandamalla A. ; Vempuluru N. R. ; Muthukonda Venkatakrishnan S. ; Shanker V. J. Colloid Interface Sci. 2021, 583, 255.
doi: 10.1016/j.jcis.2020.08.125 |
211 |
Ali S. ; Humayun M. ; Pi W. B. ; Yuan Y. ; Wang M. ; Khan A. ; Yue P. ; Shu L. ; Zheng Z. P. ; Fu Q. Y. ; et al J. Hazard. Mater. 2020, 397, 11.
doi: 10.1016/j.jhazmat.2020.122708 |
212 |
Maeda K. ; Domen K. J. Phys. Chem. Lett. 2010, 1, 2655.
doi: 10.1021/jz1007966 |
213 |
Yang J. H. ; Park S. J. ; Rhee C. K. ; Sohn Y. Nanomaterials 2020, 10, 1909.
doi: 10.3390/nano10101909 |
214 |
Wang J. ; Sun Y. ; Fu L. ; Sun Z. ; Ou M. ; Zhao S. ; Chen Y. ; Yu F. ; Wu Y. Nanoscale 2020, 12, 22030.
doi: 10.1039/d0nr05141a |
215 |
Bicakova O. ; Straka P. Int. J. Hydrog. Energy 2012, 37, 11563.
doi: 10.1016/j.ijhydene.2012.05.047 |
216 | Wang L. ; Zhu C. ; Yin L. ; Huang W. Acta Phys. -Chim. Sin. 2020, 36, 1907001. |
王梁; 朱澄鹭; 殷丽莎; 黄维; 物理化学学报, 2020, 36, 1907001.
doi: 10.3866/PKU.WHXB201907001 |
|
217 |
Nicoletti G. ; Arcuri N. ; Nicoletti G. ; Bruno R. Energy Conv. Manag. 2015, 89, 205.
doi: 10.1016/j.enconman.2014.09.057 |
218 |
He M. C. ; Wang N. N. ; Long X. J. ; Zhang C. J. ; Ma C. L. ; Zhong Q. Y. ; Wang A. H. ; Wang Y. ; Pervaiz A. ; Shan J. J. Environ. Sci. 2019, 75, 14.
doi: 10.1016/j.jes.2018.05.023 |
219 |
Furlan C. ; Mortarino C. Renew. Sust. Energ. Rev. 2018, 81, 1879.
doi: 10.1016/j.rser.2017.05.284 |
220 | Huang J. ; Du J. ; Du H. ; Xu G. ; Yuan Y. Acta Phys. -Chim. Sin. 2020, 36, 1905056. |
黄娟娟; 杜建梅; 杜海威; 徐更生; 袁玉鹏; 物理化学学报, 2020, 36, 1905056.
doi: 10.3866/PKU.WHXB201905056 |
|
221 |
Xing J. ; Fang W. Q. ; Zhao H. J. ; Yang H. G. Chem. -Asian J. 2012, 7, 642.
doi: 10.1002/asia.201100772 |
222 | Zhang R. ; Wang C. ; Chen H. ; Zhao H. ; Liu J. ; Li Y. ; Su B. Acta Phys. -Chim. Sin. 2020, 36, 1803014. |
张若兰; 王超; 陈浩; 赵恒; 刘婧; 李昱; 苏宝连; 物理化学学报, 2020, 36, 1803014.
doi: 10.3866/PKU.WHXB201803014 |
|
223 | Sun W. ; Lin J. ; Liang X. ; Yang J. ; Ma B. ; Ding Y. Acta Phys. -Chim. Sin. 2020, 36, 1905025. |
孙万军; 林军奇; 梁向明; 杨峻懿; 马宝春; 丁勇; 物理化学学报, 2020, 36, 1905025.
doi: 10.3866/PKU.WHXB201905025 |
|
224 |
Tee S. Y. ; Win K. Y. ; Teo W. S. ; Koh L. D. ; Liu S. H. ; Teng C. P. ; Han M. Y. Adv. Sci. 2017, 4, 24.
doi: 10.1002/advs.201600337 |
225 |
Zhang S. ; Chen S. ; Liu D. ; Zhang J. ; Peng T. Appl. Surf. Sci. 2020, 529, 147013.
doi: 10.1016/j.apsusc.2020.147013 |
226 |
Liu Y. ; Li Y. -H. ; Li X. ; Zhang Q. ; Yu H. ; Peng X. ; Peng F. ACS Nano 2020, 14, 14181.
doi: 10.1021/acsnano.0c07089 |
227 |
Jiang X. -H. ; Zhang L. -S. ; Liu H. -Y. ; Wu D. -S. ; Wu F. -Y. ; Tian L. ; Liu L. -L. ; Zou J. -P. ; Luo S. -L. ; Chen B. -B. Angew. Chem. -Int. Edit. 2020,
doi: 10.1002/anie.202011495 |
228 |
Zhang M. ; Yao J. ; Arif M. ; Qiu B. ; Yin H. ; Liu X. ; Chen S. -M. Appl. Surf. Sci. 2020, 526, 145749.
doi: 10.1016/j.apsusc.2020.145749 |
229 |
Sun Q. ; Yu Z. ; Jiang R. ; Hou Y. ; Sun L. ; Qian L. ; Li F. ; Li M. ; Ran Q. ; Zhang H. Nanoscale 2020, 12, 19203.
doi: 10.1039/d0nr05268j |
230 |
Liang Q. ; Zhang C. J. ; Xu S. ; Zhou M. ; Zhou Y. T. ; Li Z. Y. J. Colloid Interface Sci. 2020, 577, 1.
doi: 10.1016/j.jcis.2020.05.053 |
231 |
Cho J. ; Suwandaratne N. S. ; Razek S. ; Choi Y. -H. ; Piper L. F. J. ; Watson D. F. ; Banerjee S. ACS Appl. Mater. Inter. 2020, 12, 43728.
doi: 10.1021/acsami.0c12583 |
232 |
Lin B. ; Chen Z. ; Song P. ; Liu H. ; Kang L. ; Di J. ; Luo X. ; Chen L. ; Xue C. ; Ma B. ; et al Small 2020, 16, 42.
doi: 10.1002/smll.202003302 |
233 |
Liu H. Y. ; Niu C. G. ; Guo H. ; Liang C. ; Huang D. W. ; Zhang L. ; Yang Y. Y. ; Li L. J. Colloid Interface Sci. 2020, 576, 264.
doi: 10.1016/j.jcis.2020.05.025 |
234 |
Chen G. ; Wang P. ; Wu Y. ; Zhang Q. ; Wu Q. ; Wang Z. ; Zheng Z. ; Liu Y. ; Dai Y. ; Huang B. Adv. Mater. 2020, 32, 2001344.
doi: 10.1002/adma.202001344 |
235 |
Wu C. B. ; Yu G. H. ; Yin Y. ; Wang Y. Z. ; Chen L. ; Han Q. ; Tang J. W. ; Wang B. Small 2020, 16, 9.
doi: 10.1002/smll.202003162 |
236 |
Zhang H. ; Chen G. ; Li Y. ; Teng Y. Int. J. Hydrog. Energy 2010, 35, 2713.
doi: 10.1016/j.ijhydene.2009.04.050 |
237 |
Adhikari S. P. ; Hood Z. D. ; Wang H. ; Peng R. ; Krall A. ; Li H. ; Chen V. W. ; More K. L. ; Wu Z. ; Geyer S. Appl. Catal. B-Environ. 2017, 217, 448.
doi: 10.1016/j.apcatb.2017.05.092 |
238 |
Maeda K. ; Lu D. ; Domen K. ACS Catal. 2013, 3, 1026.
doi: 10.1021/cs400156m |
239 |
Ding J. ; Yan W. ; Xie W. ; Sun S. ; Bao J. ; Gao C. Nanoscale 2014, 6, 2299.
doi: 10.1039/c3nr05984g |
240 |
Nuraje N. ; Dang X. ; Qi J. ; Allen M. A. ; Lei Y. ; Belcher A. M. Adv. Mater. 2012, 24, 2885.
doi: 10.1002/adma.201200114 |
241 |
Li Y. ; Tsang S. C. E. Mater. Today Sustain. 2020, 9, 100032.
doi: 10.1016/j.mtsust.2020.100032 |
242 |
Jafari T. ; Moharreri E. ; Amin A. S. ; Miao R. ; Song W. Q. ; Suib S. L. Molecules 2016, 21, 29.
doi: 10.3390/molecules21070900 |
243 |
Zhang H. J. ; Chen G. ; Li X. Solid State Ionics 2009, 180, 1599.
doi: 10.1016/j.ssi.2009.10.005 |
244 |
Yang Y. -H. ; Chen Q. -Y. ; Yin Z. -L. ; Li J. Appl. Surf. Sci. 2009, 255, 8419.
doi: 10.1016/j.apsusc.2009.05.146 |
245 |
Ham Y. ; Hisatomi T. ; Goto Y. ; Moriya Y. ; Sakata Y. ; Yamakata A. ; Kubota J. ; Domen K. J. Mater. Chem. A 2016, 4, 3027.
doi: 10.1039/c5ta04843e |
246 |
Mu L. C. ; Zhao Y. ; Li A. L. ; Wang S. Y. ; Wang Z. L. ; Yang J. X. ; Wang Y. ; Liu T. F. ; Chen R. T. ; Zhu J. ; et al Energy Environ. Sci. 2016, 9, 2463.
doi: 10.1039/c6ee00526h |
247 |
Townsend T. K. ; Browning N. D. ; Osterloh F. E. ACS Nano 2012, 6, 7420.
doi: 10.1021/nn302647u |
248 |
Hu Y. C. ; Mao L. H. ; Guan X. J. ; Tucker K. A. ; Xie H. L. ; Wu X. S. ; Shi J. W. Renew. Sust. Energ. Rev. 2020, 119, 28.
doi: 10.1016/j.rser.2019.109527 |
249 |
Jiang D. L. ; Ma W. X. ; Yao Y. J. ; Xiao P. ; Wen B. W. ; Li D. ; Chen M. Catal. Sci. Technol. 2018, 8, 3767.
doi: 10.1039/c8cy00930a |
250 |
Mao L. L. ; Stoumpos C. C. ; Kanatzidis M. G. J. Am. Chem. Soc. 2019, 141, 1171.
doi: 10.1021/jacs.8b10851 |
251 |
Li Y. X. ; Chen G. ; Zhou C. ; Li Z. H. Catal. Lett. 2008, 123, 80.
doi: 10.1007/s10562-008-9397-5 |
252 |
Li Y. ; Wu J. ; Huang Y. ; Huang M. J. Alloy. Compd. 2008, 453, 437.
doi: 10.1016/j.jallcom.2006.11.201 |
253 |
Huang Y. ; Li J. ; Wei Y. ; Li Y. ; Lin J. ; Wu J. J. Hazard. Mater. 2009, 166, 103.
doi: 10.1016/j.jhazmat.2008.11.040 |
254 |
Ida S. ; Okamoto Y. ; Matsuka M. ; Hagiwara H. ; Ishihara T. J. Am. Chem. Soc. 2012, 134, 15773.
doi: 10.1021/ja3043678 |
255 |
Ida S. ; Okamoto Y. ; Hagiwara H. ; Ishihara T. Catalysts 2013, 3, 1.
doi: 10.3390/catal3010001 |
256 |
Hu Y. C. ; Li G. S. ; Zong S. C. ; Shi J. W. ; Guo L. J. Catal. Today 2018, 315, 117.
doi: 10.1016/j.cattod.2018.03.037 |
257 |
Hildebrandt N. C. ; Soldat J. ; Marschall R. Small 2015, 11, 2051.
doi: 10.1002/smll.201402679 |
258 |
Oshima T. ; Lu D. L. ; Ishitani O. ; Maeda K. Angew. Chem. -Int. Edit. 2015, 54, 2698.
doi: 10.1002/anie.201411494 |
259 |
Ebina Y. ; Sasaki T. ; Harada M. ; Watanabe M. Chem. Mat. 2002, 14, 4390.
doi: 10.1021/cm020622e |
260 |
Maeda K. ; Eguchi M. ; Lee S. H. A. ; Youngblood W. J. ; Hata H. ; Mallouk T. E. J. Phys. Chem. C 2009, 113, 7962.
doi: 10.1021/jp900842e |
261 |
Tasleem S. ; Tahir M. Int. J. Hydrog. Energy 2020, 45, 19078.
doi: 10.1016/j.ijhydene.2020.05.090 |
262 |
Li H. ; Shang J. ; Ai Z. H. ; Zhang L. Z. J. Am. Chem. Soc. 2015, 137, 6393.
doi: 10.1021/jacs.5b03105 |
263 |
Gao X. ; Shang Y. ; Liu L. ; Fu F. J. Catal. 2019, 371, 71.
doi: 10.1016/j.jcat.2019.01.002 |
264 |
Liu H. ; Fang Z. ; Su Y. ; Suo Y. ; Huang S. ; Zhang Y. ; Ding K. Chem. -Asian J. 2018, 13, 799.
doi: 10.1002/asia.201701670 |
265 |
Li X. ; Sun X. ; Zhang L. ; Sun S. ; Wang W. J. Mater. Chem. A 2018, 6, 3005.
doi: 10.1039/c7ta09762j |
266 |
Xue X. L. ; Chen R. P. ; Yan C. Z. ; Hu Y. ; Zhang W. J. ; Yang S. Y. ; Ma L. B. ; Zhu G. Y. ; Jin Z. Nanoscale 2019, 11, 10439.
doi: 10.1039/c9nr02279a |
267 |
Li X. ; Wang W. ; Jiang D. ; Sun S. ; Zhang L. ; Sun X. Chem. -Eur. J. 2016, 22, 13819.
doi: 10.1002/chem.201603277 |
268 |
Gao X. ; An L. ; Qu D. ; Jiang W. S. ; Chai Y. X. ; Sun S. R. ; Liu X. Y. ; Sun Z. C. Sci. Bull. 2019, 64, 918.
doi: 10.1016/j.scib.2019.05.009 |
269 |
Hu X. ; Yong Y. ; Xu Y. ; Hong X. ; Weng Y. ; Wang X. ; Yao X. Appl. Surf. Sci. 2020, 531, 147348.
doi: 10.1016/j.apsusc.2020.147348 |
270 |
Bai Y. ; Ye L. ; Chen T. ; Wang L. ; Shi X. ; Zhang X. ; Chen D. ACS Appl. Mater. Inter. 2016, 8, 27661.
doi: 10.1021/acsami.6b08129 |
271 |
Hoffman B. M. ; Lukoyanov D. ; Yang Z. Y. ; Dean D. R. ; Seefeldt L. C. Chem. Rev. 2014, 114, 4041.
doi: 10.1021/cr400641x |
272 |
Giddey S. ; Badwal S. P. S. ; Kulkarni A. Int. J. Hydrog. Energy 2013, 38, 14576.
doi: 10.1016/j.ijhydene.2013.09.054 |
273 |
Schrauzer G. N. G. J. Am. Chem. Soc. 1977, 99, 7189.
doi: 10.1021/j100274a018 |
274 |
Li Q. ; Bai X. X. ; Luo J. Y. ; Li C. Y. ; Wang Z. N. ; Wu W. W. ; Liang Y. P. ; Zhao Z. H. Nanotechnology 2020, 31, 8.
doi: 10.1088/1361-6528/ab9863 |
275 |
Yang J. ; Guo Y. ; Jiang R. ; Qin F. ; Zhang H. ; Lu W. ; Wang J. ; Yu J. C. J. Am. Chem. Soc. 2018, 140, 8497.
doi: 10.1021/jacs.8b03537 |
276 |
Hao Y. ; Dong X. ; Zhai S. ; Ma H. ; Wang X. ; Zhang X. Chem. -Eur. J. 2016, 22, 18722.
doi: 10.1002/chem.201604510 |
277 |
Nguyen V.-H. ; Mousavi M. ; Ghasemi J. B. ; Le Q. V. ; Delbari S. A. ; Shahedi Asl M. ; Shokouhimehr M. ; Mohammadi M. ; Azizian-Kalandaragh Y. ; Sabahi Namini A. J. Colloid Interface Sci. 2020,
doi: 10.1016/j.jcis.2020.11.011 |
278 |
Abulizi A. ; Maimaitizi H. ; Talifu D. ; Tursun Y. Funct. Mater. Lett. 2020, 13, 20510315.
doi: 10.1142/S1793604720510315 |
279 |
Ding J. ; Zhong Q. ; Gu H. J. Alloy. Compd. 2018, 746, 147.
doi: 10.1016/j.jallcom.2018.01.362 |
280 |
Ma H. ; Shi Z. ; Li S. ; Liu N. Appl. Surf. Sci. 2016, 379, 309.
doi: 10.1016/j.apsusc.2016.04.085 |
281 |
Wang S. ; Hai X. ; Ding X. ; Chang K. ; Xiang Y. ; Meng X. ; Yang Z. ; Chen H. ; Ye J. Adv. Mater. 2017, 29, 1774.
doi: 10.1002/adma.201701774 |
282 |
Ye L. ; Han C. ; Ma Z. ; Leng Y. ; Li J. ; Ji X. ; Bi D. ; Xie H. ; Huang Z. Chem. Eng. J. 2017, 307, 311.
doi: 10.1016/j.cej.2016.08.102 |
283 |
Li Y. ; Chen X. ; Zhang M. ; Zhu Y. ; Ren W. ; Mei Z. ; Gu M. ; Pan F. Catal. Sci. Technol. 2019, 9, 803.
doi: 10.1039/c8cy02357c |
284 |
Lee J. ; Park H. ; Choi W. Environ. Sci. Technol. 2002, 36, 5462.
doi: 10.1021/es025930s |
285 |
Ge J. H. ; Zhang L. ; Xu J. ; Liu Y. J. ; Jiang D. C. ; Du P. W. Chin. Chem. Lett. 2020, 31, 792.
doi: 10.1016/j.cclet.2019.05.030 |
286 |
Sun B. ; Yang X. P. ; Zhao D. ; Zhang L. Q. Comput. Mater. Sci. 2018, 141, 133.
doi: 10.1016/j.commatsci.2017.09.013 |
287 |
Wang Z. D. ; Chu Z. ; Dong C. W. ; Wang Z. ; Yao S. Y. ; Gao H. ; Liu Z. Y. ; Liu Y. ; Yang B. ; Zhang H. ACS Appl. Nano Mater. 2020, 3, 1981.
doi: 10.1021/acsanm.0c00022 |
288 |
Thilagavathi T. ; Venugopal D. ; Marnadu R. ; Chandrasekaran J. ; Alshahrani T. ; Shkir M. J. Inorg. Organomet. Polym. Mater. 2020, 14
doi: 10.1007/s10904-020-01731-2 |
289 |
Mansingh S. ; Sultana S. ; Acharya R. ; Ghosh M. K. ; Parida K. M. Inorg. Chem. 2020, 59, 6646.
doi: 10.1021/acs.inorgchem.0c00981 |
290 |
Xing P. X. ; Wu S. J. ; Chen Y. J. ; Chen P. F. ; Hu X. ; Lin H. J. ; Zhao L. H. ; He Y. M. ACS Sustain. Chem. Eng. 2019, 7, 12408.
doi: 10.1021/acssuschemeng.9b01938 |
291 |
Zhou S. Y. ; Zhang C. M. ; Liu J. Y. ; Liao J. ; Kong Y. ; Xu Y. L. ; Chen G. Catal. Sci. Technol. 2019, 9, 5562.
doi: 10.1039/c9cy00972h |
292 |
Zhang C. M. ; Chen G. ; Lv C. ; Yao Y. ; Xu Y. L. ; Jin X. L. ; Meng Q. Q. ACS Sustain. Chem. Eng. 2018, 6, 11190.
doi: 10.1021/acssuschemeng.8b02236 |
293 |
Li R. G. Chin. J. Catal. 2018, 39, 1180.
doi: 10.1016/s1872-2067(18)63104-3 |
294 |
Shipman M. A. ; Symes M. D. Catal. Today 2017, 286, 57.
doi: 10.1016/j.cattod.2016.05.008 |
295 |
Wang M. ; Tan G. ; Dang M. ; Wang Y. ; Zhang B. ; Ren H. ; Lv L. ; Xia A. J. Colloid Interface Sci. 2021, 582, 212.
doi: 10.1016/j.jcis.2020.08.040 |
296 |
Wang J. ; Wang G. ; Cheng B. ; Yu J. ; Fan J. Chin. J. Catal. 2021, 42, 56.
doi: 10.1016/s1872-2067(20)63634-8 |
297 |
Kumar J. ; Bansal A. Water Air Soil Poll. 2013, 224, 1452.
doi: 10.1007/s11270-013-1452-1 |
298 |
Halvaeifard R. ; Sharifnia S. Korean J. Chem. Eng. 2018, 35, 770.
doi: 10.1007/s11814-017-0338-0 |
299 |
Zhang G. ; Choi W. ; Kim S. H. ; Hong S. B. J. Hazard. Mater. 2011, 188, 198.
doi: 10.1016/j.jhazmat.2011.01.105 |
300 |
Sun S. ; Wang W. ; Zeng S. ; Shang M. ; Zhang L. J. Hazard. Mater. 2010, 178, 427.
doi: 10.1016/j.jhazmat.2010.01.098 |
301 |
Pang X. ; Skillen N. ; Gunaratne N. ; Rooney D. W. ; Robertson P. K. J. J. Hazard. Mater. 2021, 402, 123461.
doi: 10.1016/j.jhazmat.2020.123461 |
302 |
Doh S. J. ; Kim C. ; Lee S. G. ; Lee S. J. ; Kim H. J. Hazard. Mater. 2008, 154, 118.
doi: 10.1016/j.jhazmat.2007.09.118 |
303 |
Chankhanittha T. ; Nanan S. J. Colloid Interface Sci. 2021, 582, 412.
doi: 10.1016/j.jcis.2020.08.061 |
304 |
Shen X. ; Zhang Y. ; Shi Z. ; Shan S. ; Liu J. ; Zhang L. J. Alloy. Compd. 2021, 851, 156743.
doi: 10.1016/j.jallcom.2020.156743 |
305 |
Alharbi N. S. ; Hu B. ; Hayat T. ; Rabah S. O. ; Alsaedi A. ; Zhuang L. ; Wang X. Front. Chem. Sci. Eng. 2020, 14, 1124.
doi: 10.1007/s11705-020-1923-z |
306 |
Shehzad N. ; Zafar M. ; Ashfaq M. ; Razzaq A. ; Akhter P. ; Ahmad N. ; Hafeez A. ; Azam K. ; Hussain M. ; Kim W. Y. Crystals 2020, 10, 923.
doi: 10.3390/cryst10100923 |
307 |
Feng L. ; Kong L. ; Ji Z. ; Wang Y. ; Shen X. ; Cheng S. ; Wu S. Nano 2017, 12, 1750013.
doi: 10.1142/s1793292017500138 |
308 |
Orge C. A. ; Soares O. S. G. P. ; Ramalho P. S. F. ; Pereira M. F. R. ; Faria J. L. Catalysts 2019, 9, 703.
doi: 10.3390/catal9090703 |
309 |
Chen D. ; Niu F. ; Qin L. ; Wang S. ; Zhang N. ; Huang Y. Sol. Energy Mater. Sol. Cells 2017, 171, 24.
doi: 10.1016/j.solmat.2017.06.021 |
310 |
Yang B. ; Bian J. ; Wang L. ; Wang J. ; Du Y. ; Wang Z. ; Wu C. ; Yang Y. Phys. Chem. Chem. Phys. 2019, 21, 11697.
doi: 10.1039/c9cp01763a |
311 |
Chantelle L. ; de Oliveira A. L. M. ; Kennedy B. J. ; Maul J. ; da Silva M. R. S. ; Duarte T. M. ; Albuquerque A. R. ; Sambrano J. R. ; Landers R. ; Siu-Li M. ; et al Inorg. Chem. 2020, 59, 7666.
doi: 10.1021/acs.inorgchem.0c00664 |
312 |
Halder S. ; Bhowmik T. K. ; Dutta A. ; Sinha T. P. Ceram. Int. 2020, 46, 21021.
doi: 10.1016/j.ceramint.2020.05.170 |
313 |
Zhang D. ; Qi J. ; Ji H. ; Li S. ; Chen L. ; Huang T. ; Xu C. ; Chen X. ; Liu W. Chem. Eng. J. 2020, 400, 125918.
doi: 10.1016/j.cej.2020.125918 |
314 |
Shtarev D. S. ; Shtareva A. V. ; Kevorkyants R. ; Rudakova A. V. ; Molokeev M. S. ; Bakiev T. V. ; Bulanin K. M. ; Ryabchuk V. K. ; Serpone N. J. Mater. Chem. C 2020, 8, 3509.
doi: 10.1039/C9TC06457E |
315 |
Wang M. M. ; Wang C. ; Liu Y. ; Zhou X. J. Solid State Chem. 2019, 280, 242.
doi: 10.1016/j.jssc.2019.121018 |
[1] | 刘珊池, 王凯, 杨梦雪, 靳治良. Mn0.2Cd0.8S@CoAl LDH S-型异质结构建及其光催化析氢性能研究[J]. 物理化学学报, 2022, 38(7): 2109023 - . |
[2] | 沈荣晨, 郝磊, 陈晴, 郑巧清, 张鹏, 李鑫. 高分散Co0.2Ni1.6Fe0.2P助催化剂改性P掺杂g-C3N4纳米片高效光催化析氢的研究[J]. 物理化学学报, 2022, 38(7): 2110014 - . |
[3] | 韩高伟, 徐飞燕, 程蓓, 李佑稷, 余家国, 张留洋. 反蛋白石结构ZnO@PDA用于增强光催化产H2O2性能[J]. 物理化学学报, 2022, 38(7): 2112037 - . |
[4] | 周亮, 李云锋, 张永康, 秋列维, 邢艳. 具有高效界面电荷转移的0D/2D Bi4V2O11/g-C3N4梯形异质结的设计合成及抗生素降解性能研究[J]. 物理化学学报, 2022, 38(7): 2112027 - . |
[5] | 王文亮, 张灏纯, 陈义钢, 史海峰. 具有光催化与光芬顿反应协同作用的2D/2D α-Fe2O3/g-C3N4 S型异质结用于高效降解四环素[J]. 物理化学学报, 2022, 38(7): 2201008 - . |
[6] | 黄悦, 梅飞飞, 张金锋, 代凯, Graham Dawson. 一维/二维W18O49/多孔g-C3N4梯形异质结构建及其光催化析氢性能研究[J]. 物理化学学报, 2022, 38(7): 2108028 - . |
[7] | 雷卓楠, 马心怡, 胡晓云, 樊君, 刘恩周. Ni2P-NiS双助剂促进g-C3N4光催化产氢动力学[J]. 物理化学学报, 2022, 38(7): 2110049 - . |
[8] | 朱弼辰, 洪小洋, 唐丽永, 刘芹芹, 唐华. 二维/一维BiOBr0.5Cl0.5/WO3 S型异质结助力光催化CO2还原[J]. 物理化学学报, 2022, 38(7): 2111008 - . |
[9] | 熊壮, 侯乙东, 员汝胜, 丁正新, 王伟俊, 汪思波. 空心NiCo2S4纳米球助催化剂担载ZnIn2S4纳米片用于可见光催化制氢[J]. 物理化学学报, 2022, 38(7): 2111021 - . |
[10] | 宋雨珂, 谢文富, 邵明飞. 一体化电极电催化二氧化碳还原研究进展[J]. 物理化学学报, 2022, 38(6): 2101028 - . |
[11] | 赵娜, 彭静, 王建平, 翟茂林. 羧酸根功能化的PVP-CdS同质结及其高效的光催化析氢性能[J]. 物理化学学报, 2022, 38(4): 2004046 - . |
[12] | 杜亚东, 孟祥桐, 汪珍, 赵鑫, 邱介山. 石墨烯基二氧化碳电化学还原催化剂的研究进展[J]. 物理化学学报, 2022, 38(2): 2101009 - . |
[13] | 黄小雄, 马英杰, 智林杰. 超薄氮掺杂碳纳米片负载单原子镍用于高效电催化还原二氧化碳[J]. 物理化学学报, 2022, 38(2): 2011050 - . |
[14] | 李红英, 龚海明, 靳治良. In2O3修饰三维纳米花MoSx构建S型异质结用于高效光催化产氢[J]. 物理化学学报, 2022, 38(12): 2201037 - . |
[15] | 何科林, 沈荣晨, 郝磊, 李佑稷, 张鹏, 江吉周, 李鑫. 纳米SiC基光催化剂研究进展[J]. 物理化学学报, 2022, 38(11): 2201021 - . |
|