所属专题: 烯碳纤维与智能织物
夏洲1, 邵元龙1,2
收稿日期:
2021-03-22
修回日期:
2021-04-22
录用日期:
2021-04-23
发布日期:
2021-04-29
通讯作者:
邵元龙
E-mail:ylshao@suda.edu.cn
基金资助:
Zhou Xia1, Yuanlong Shao1,2
Received:
2021-03-22
Revised:
2021-04-22
Accepted:
2021-04-23
Published:
2021-04-29
Contact:
Yuanlong Shao
E-mail:ylshao@suda.edu.cn
Supported by:
摘要: 石墨烯纤维是由石墨烯片层通过组装过程形成的宏观一维材料。其具有较好的耐热性、导热性、导电性以及轻质高强等优点,是实现高品质、功能化纤维的重要突破口。石墨烯纤维在超轻导线、可穿戴储能、传感、生物电极等领域具有广阔应用前景。目前,湿法纺制技术是石墨烯纤维的最主要制备手段,与现有的化学纤维制备过程兼容,是最有望实现规模化制备高品质石墨烯纤维的技术。本文首先介绍了湿法纺制石墨烯纤维工艺中的关键步骤,重点讨论了制备技术与石墨烯纤维结构之间的关系。论述了提升纤维性能的相关策略,总结了石墨烯纤维在功能/智能纤维领域应用。并对提升石墨烯纤维性能的关键问题进行总结阐述,展望了石墨烯纤维的发展前景。
MSC2000:
夏洲, 邵元龙. 湿法纺制石墨烯纤维:工艺、结构、性能与智能应用[J]. 物理化学学报, 2103046.
Zhou Xia, Yuanlong Shao. Wet Spinning Assembled Graphene Fiber: Processing, Structure, Property, and Smart Applications[J]. Acta Phys. -Chim. Sin., 2103046.
(1) Geim A. K.; Novoselov K.S. Nat. Mater.; 2007, 6, 183. doi: 10.1038/nmat1849 (2) Xu, Z.; Gao, C. Mater. Today 2015, 18, 480. doi: 10.1016/j.mattod.2015.06.009 (3) Meng, F.; Lu, W.; Li, Q.; Byun, J. H.; Oh, Y.; Chou, T. W. Adv Mater. 2015, 27, 5113. doi: 10.1002/adma.201501126 (4) Xu, Z.;Gao, C. Acc. Chem. Res. 2014, 47, 1267. doi: 10.1021/ar4002813 (5) Cheng, H.; Hu, C.; Zhao, Y.; Qu, L. NPG Asia Mater. 2014, 6, e113. doi: 10.1038/am.2014.48 (6) Li, Q. W.; Li, Y.; Zhang, X. F.; Chikkannanavar, S. B.; Zhao, Y. H.; Dangelewicz, A. M.; Zhu, Y. T. Adv. Mater. 2007, 19, 3358. doi: 10.1002/adma.200602966 (7) Zhu, M. F. Application of carbon-based fibers in wearable energy storage devices, Energy Frontier Forum, Shanghai, March 30, 2020. [朱美芳. 碳基纤维在可穿戴能源储存器件中的应用, 能源前沿论坛; 上海: 2020年3月30日]. (8) Jeffries, R. Nature 1971, 232, 304. doi: 10.1038/232304a0 (9) Ko, T. H.; Huang, L. C. J. Appl. Polymer Sci. 1998, 70, 2409. doi: 10.1002/(SICI)1097-4628(19981219)70:12<2409::AID-APP13>3.3.CO;2-S (10) Diefendorf, R. J. ACS Symp. Ser. 976, 21, 315. doi: 10.1021/bk-1976-0021.ch022 (11) Yang, J. L. Acta Phys. -Chim. Sin. 2019, 35, 1043. [杨金龙. 物理化学学报, 2019, 35,1043.] doi: 10.3866/PKU.WHXB201903011 (12) Cheng, H. M. Acta Phys. -Chim. Sin. 2020, 36, 1909042. [成会明. 物理化学学报, 2020, 36,1909042.] doi: 10.3866/PKU.WHXB201909042 (13) Ago, H.; Imamoto, K.; Ishigami, N.; Ohdo, R.; Ikeda, K. I.; Tsuji, M. Appl. Phys. Lett. 2007, 90, 123112. doi: 10.1063/1.2715031 (14) Wang, K. X.; Shi, L. R.; Wang, M. Z.; Yang. H.; Liu. Z. F.; Peng. H. L. Acta Phys. -Chim. Sin. 2019, 35, 1112. [王可心, 史刘嵘, 王铭展, 杨皓, 刘忠范, 彭海琳. 物理化学学报, 2019, 35, 1112.] doi: 10.3866/PKU.WHXB201805032 (15) Zhang, S. C.; Zhang, N.; Zhang, J. Acta Phys. -Chim. Sin. 2020, 36, 1907021. [张树辰, 张娜, 张锦. 物理化学学报, 2020, 36, 1907021.] doi: 10.3866/PKU.WHXB201907021 (16) Cheng, H. M.; Li, F.; Su, G.; Pan, H. Y.; He, L. L.; Sun, X.; Dresselhaus, M. S. Appl. Phy. Lett. 1998, 72; 3282. doi: 10.1063/1.121624 (17) Wu, A. S.; Chou, T. W. Mater. Today 2012, 15, 302.. doi: 10.1016/s1369-7021(12)70135 (18) Xia, K. L; Jian, M. Q.; Zhang, Y. Y. Acta Phys. -Chim. Sin. 2016, 32, 2427. [夏凯伦, 蹇木强, 张莹莹. 物理化学学报, 2016, 32, 2427.] doi: 10.3866/PKU.WHXB201607261 (19) Zhang, M.; Atkinson, K. R.; Baughman, R. H. Science 2004, 306, 1358. doi: 10.1126/science.1104276 (20) Wang, H. M.; He, M. S.; Zhang, Y. Y. Acta Phys. -Chim. Sin. 2019, 35, 1207. [王灏珉, 何茂帅, 张莹莹. 物理化学学报, 2019, 35, 1207.] doi: 10.3866/PKU.WHXB201811011 (21) Vigolo, B.; Penicaud, A.; Coulon, C.; Sauder, C.; Pailler, R.; Journet, C.; Poulin, P. Science 2000, 290, 1331. doi: 10.1126/science.290.5495.1331 (22) Jiang, K. L.; Li, Q. Q.; Fan, S. S. Nature 2002, 419, 801. doi: 10.1038/419801a (23) Ericson, L. M.; Fan, H.; Peng, H.; Davis, V. A.; Zhou, W.; Sulpizio, J.; Smalley, R. E. Science 2004, 305, 1447. doi: 10.1126/science.1101398 (24) Behabtu, N.; Young, C. C.; Tsentalovich, D. E.; Kleinerman, O.; Wang, X.; Ma, A. W.; Pasquali, M. Science 2013, 339, 182. doi: 10.1126/science.1228061 (25) Bai, Y.; Zhang, R.; Ye, X.; Zhu, Z.; Xie, H.; Shen, B.; Cai, D.; Liu, B.; Zhang, C.; Jia, Z.; et al. Nat. Nanotechnol. 2018, 13, 589. doi: 10.1038/s41565-018-0141-z (26) Zhang X. H.; Lu W. B.;Zhou G.H.; Li Q. W. Adv. Mater. 2020, 32, 1902028. doi: 10.1002/adma.201902028 (27) Xu, Z.; Gao, C. Nat. Commun. 2011, 2, 571. doi: 10.1038/ncomms1583 (28) Xu, Z.; Sun, H.; Zhao, X.; Gao, C. Adv. Mater. 2013, 25, 188. doi: 10.1002/adma.201203448 (29) Xiang, C.; Young, C. C.; Wang, X.; Yan, Z.; Hwang, C. C.; Cerioti, G.; Tour, J. M. Adv. Mater. 2013, 25, 4592. doi: 10.1002/adma.201301065 (30) Jalili; R.; Aboutalebi, S. H.; Esrafilzadeh, D.; Shepherd, R. L.; Chen, J.; Aminorroaya-Yamini, S.; Wallace, G. G. Adv. Funct. Mater. 2013, 23, 5345. doi: 10.1002/adfm.201300765 (31) Xin, G. Q.; Yao, T. K.; Sun, H. T.; Scott, S. M.; Shao, D. L; Wang, G. K.; Lian, J. Science 2015, 349, 1083. doi: 10.1126/science.aaa6502 (32) Xin, G. Q.; Zhu, W. G.; Deng, Y. X.; Cheng, J.; Zhagn, L. T.; Chung, A. J.; De, S.; Lian, J. Nat. Nanotechnol. 2019, 14, 168. doi: 10.1038/s41565-018-0330-9 (33) Xu, Z.; Liu, Y.; Zhao, X.; Peng, L.; Sun, H.; Xu, Y.; Gao, C. Adv. Mater. 2016, 28, 6449. doi: 10.1002/adma.201506426 (34) Li, P.; Liu, Y.; Shi, S.; Xu, Z.; Ma, W.; Wang, Z.; Gao, C. Adv. Funct. Mater. 2020, 30, 52, 2006584. doi: 10.1002/adfm.202006584 (35) Huang, G.; Hou, C.; Shao, Y.; Wang, H.; Zhang, Q.; Li, Y.; Zhu, M. Sci. Rep. 2014, 4, 4248. doi:10.1038/srep04248 (36) Tian, Q.; Xu, Z.; Liu, Y.; Fang, B.; Peng, L.; Xi, J.; Gao, C.; Nanoscale 2017, 9, 12335. doi: 10.1039/c7nr03895j (37) Feng, L.; Chang, Y.; Zhong, J.; Jia, D. C. Sci. Rep. 2018, 8, 10803. doi: 10.1038/s41598-018-29157-4 (38) Xiang, C. S.; Behabtu, N.; Liu, Y. D.; Chae, H. G.; Young, C. C.; Genorio, B.; Tsentalovich, D. E.; Zhang, C. G.; Kosynkin, D. V.; Lomeda, J. R.; et al. ACS Nano 2013, 7, 1628. doi: 10.1021/nn305506s (39) Jang, Y.; Carretero, G. J.; Choi, A.; Kim, W. J.; Kozlov, E. M.; Kim, T.; Kang, T. J.; Beak, S. J.; Kim, D. W.; Peak, Y. W. Nanotechnology 2012, 23, 235601. doi: 10.1088/0957-4484/23/23/235601 (40) Dong, Z.; Jiang, C.; Cheng, H.; Zhao, Y.; Shi, G.; Jiang, L.; Qu, L. Adv. Mater. 2012, 24, 1856. doi: 10.1002/adma.201200170 (41) Meng, Y.; Zhao, Y.; Hu, C.; Cheng, H.; Hu, Y.; Zhang, Z.; Qu, L. Adv. Mater. 2013, 25; 2326. doi: 10.1002/adma.201300132 (42) Hu, C.; Zhao, Y.; Cheng, H.; Wang, Y.; Dong, Z.; Jiang, C.; Qu, L. Nano Lett. 2012, 12, 5879. doi: 10.1021/nl303243h (43) Rodolfo, C. S.; Aaron, M. G.; Hyung-ick, K.; Hong-kyu, J.; Ferdinando, T.; Sofia, V. D.; Lakshmy, P. R.; Ana, L. E.; Nestor, P. L.; Jonghwan, S.; et al. ACS Nano 2014, 8, 5959. doi: 10.1021/nn501098d (44) Wang, R.; Xu, Z.; Zhuang, J.; Liu, Z.; Peng, L.; Li, Z.; Gao, C. Adv. Electron. Mater. 2017, 3, 1600425. doi: 10.1002/aelm.201600425 (45) Carretero, G. J.; Castillo, M. E.; Dias, L. M.; Acik, M.; Rogers, D. M. Sovich, J.; Baughman, R. H. Adv. Mater. 2012, 24, 5695. doi: 10.1002/adma.201201602 (46) Sun, Y.; Wang, Y.; Hua, C.; Ge, Y.; Hou, S.; Shang, Y.; Cao, A. Carbon 2018, 132, 394. doi: 10.1016/j.carbon.2018.02.086 (47) Zheng, B.; Gao, W.; Liu, Y.; Wang, R.; Li, Z.; Xu, Z.; Gao, C. Carbon 2020, 158, 157. doi: 10.1016/j.carbon.2019.11.072 (48) Li, X.; Zhao, T.; Wang, K.; Yang, Y.; Wei, J.; Kang, F.; Zhu, H. Langmuir 2011, 27, 12164. doi: 10.1021/la202380g (49) Wang, H.; Wang, C.; Jian, M.; Wang, Q.; Xia, K.; Yin, Z.; Zhang, Y. Nano Res. 2018, 11, 2347. doi: 10.1007/s12274-017-1782-1 (50) Chen, T.; Dai, L. Angew. Chem. Int. Ed. 2015, 54, 14947. doi: 10.1002/anie.201507246 (51) Wang, X.; Qiu, Y.; Cao, W.; Hu, P. Chem. Mater. 2015, 27, 6969. doi: 10.1021/acs.chemmater.5b02098 (52) Chen, K.; Shi, L.; Zhang, Y.; Liu, Z. Chem. Soc. Rev. 2018, 47, 3018. doi: 10.1039/c7cs00852j (53) Zeng, J.; Ji, X.; Ma, Y.; Zhang, Z.; Wang, S.; Ren, Z.; Yu, J. Adv. Mater. 2018, 30, 1705380. doi: 10.1002/adma.201705380 (54) Chen, K.; Zhou, X.; Cheng, X.; Qiao, R.; Cheng, Y.; Liu, C.; Liu, Z. Nat. Photon. 2019, 13, 754. doi: 10.1038/s41566-019-0492-5 (55) Chen, Z.; Qi, Y.; Chen, X.; Zhang, Y.; Liu, Z. Adv. Mater. 2019, 31, e1803639. doi: 10.1002/adma.201803639 (56) Deng, B.; Liu, Z.; Peng, H. Adv. Mater. 2019, 31, 1800996. doi: 10.1002/adma.201800996 (57) Deng, B.; Xin, Z.; Xue, R.; Zhang, S.; Xu, X.; Gao, J.; Peng, H. Sci. Bull. 2019, 64, 659. doi: 10.1016/j.scib.2019.04.030 (58) Lin, L.; Peng, H.; Liu, Z. Nat. Mater. 2019, 18, 520. doi: 10.1038/s41563-019-0341-4 (59) Cui, G.; Cheng, Y.; Liu, C.; Huang, K.; Li, J.; Wang, P.; Liu, Z. ACS Nano 2020, 14, 5938. doi: 10.1021/acsnano.0c01298 (60) Cheng, Y.; Wang, K.; Qi, Y.; Liu, Z. F. Acta Phy. -Chim. Sin. 2022, 38, 2006046. [程熠, 王坤, 亓月, 刘忠范. 物理化学学报, 2022, 38, 2006046.] doi: 10.3866/PKU.WHXB202006046 (61) Suter, L. J.; Sinclair, C. R.; Coveney, V. P. Adv. Mater. 2020, 32, e2003213. doi: 10.1002/adma.202003213 (62) Xu, Z.; Zhang, Y.; Li, P. G.; Gao, C. ACS Nano 2012, 6, 7103. doi: 10.1021/nn3021772 (63) Jalili, R.; Aboutalebi, S. H.; Esrafilzadeh, D.; Konstantinov, K.; Razal, J. M.; Moulton, S. E.;Wallace, G. G.; Mater. Horiz. 2014, 1, 87. doi:10.1039/c3mh00050h (64) Chen, S.; Ma, W.; Cheng, Y.; Weng, Z.; Sun, B.; Wang, L.; Cheng, H. M.; Nano Energy 2015, 15, 642. doi: 10.1016/j.nanoen.2015.05.004 (65) Chen, L.; He, Y.; Chai, S.; Qiang, H.; Chen, F.; Fu Q. Nanoscale 2013, 5; 5809. doi: 10.1039/c3nr01083j (66) Shin, M. K.; Lee, B.; Kim, S. H.; Lee, J. A.; Spinks, G. M.; Gambhir, S.; Kim, S. J. Nat. Commun. 2012, 3, 65. doi: 10.1038/ncomms1661 (67) Ma, T.; Gao, H. L.; Cong, H. P.; Yao, H. B.; Wu, L.; Yu, Z. Y.; Yu, S. H. Adv. Mater. 2018, 30, e1706435. doi: 10.1002/adma.201706435 (68) Kim, I. H.; Yun, T.; Kim, J. E.; Yu, H.; Sasikala, S. P.; Lee, K. E.; Kim, S. O. Adv. Mater. 2018, 30, e1803267. doi: 10.1002/adma.201803267 (69) Li, M.; Zhang, X.; Wang, X.; Ru, Y.; Qiao, J. Nano Lett. 2016, 16, 6511. doi: 10.1021/acs.nanolett.6b03108 (70) Zhen, X. Chao, G. ACS Nano 2011, 5, 2908. doi: 10.1021/nn200069w (71) Park, H.; Lee, K. H.; Kim, Y. B.; Ambade, S. B.; Noh, S. H.; Eom, W.; Hwang, J. Y.; Lee, W. J.; Huang, J.; Han, T. H. Sci. Adv. 2018, 4, eaau2014. doi: 10.1126/sciadv.aau2104 (72) He, H. Y.; Klinowski, J.; Forster, M.; Lerf, A. Chem. Phys. Lett. 1998, 287, 53. doi: 10.1016/s0009-2614(98)00144-4 (73) Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud’homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. J. Phys. Chem. B 2006, 110, 8535. doi: 10.1021/jp060936f (74) Moon, I. K.; Lee, J.; Ruoff, R. S.; Lee, H. Nat. Commun. 2010, 1, 73. doi: 10.1038/ncomms1067 (75) Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, C. A.; et al. Carbon 2009, 47, 145. doi: 10.1016/j.carbon.2008.09.045 (76) Kotov, N. A.; Dekany, I.; Fendler, J. H. Adv. Mater. 1996, 8, 8. doi: 10.1002/adma.19960080806 (77) Sun, W.; Wang, L.; Yang, Z.; Zhu, T.; Wu, T.; Dong, C.; Liu, G. Chem. Mater. 2018, 30, 7473. doi: 10.1021/acs.chemmater.8b01902 (78) Zhou, M.; Wang, Y.; Zhai, Y.; Zhai, J.; Ren, W.; Wang, F.; Dong, S. Chem. Eur. J. 2009, 15, 6116. doi: 10.1002/chem.200900596 (79) Bagri, A.; Mattevi, C.; Acik, M.; Chabal, Y. J.; Chhowalla, M.; Shenoy, V. B. Nat. Chem. 2010, 2, 581. doi: 10.1038/nchem.686 (80) Pei, S; Cheng, H. M.; Carbon 2012, 50, 3210. doi: 10.1016/j.carbon.2011.11.010 (81) Chae, H. G.; Kumar, S. Mater. Sci. 2014, 319, 908. doi: 10.1126/science.1153911 (82) Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. Rev. Mod. Phys. 2009, 81, 109. doi: 10.1103/RevModPhys.81.109 (83) Liu, Y.; Liang, H.; Xu, Z.; Xi, J.; Chen, G.; Gao, W.; Gao, C. ACS Nano 2017, 11, 4301. doi: 10.1021/acsnano.7b01491 (84) Xu, Z.; Sun, H.; Gao, C. Adv. Mater. 2013, 25, 3249. doi: 10. 1002/adma.201300774 (85) Liu, Y.; Xu, Z.; Zhan, J.; Li, P.; Gao, C. Adv. Mater. 2016, 28, 7941. doi: 10.1002/adma.201602444 (86) Fang, B.; Chang, D.; Xu, Z.; Gao, C. Adv. Mater. 2020, 32, 1902664. doi: 10.1002/adma.201902664 (87) Chen, Z. L.; Gao, P.; Liu, Z. F. Acta Phy. -Chim. Sin. 2020, 36, 1907004. [陈召龙, 高鹏, 刘忠范. 物理化学学报, 2020, 36, 1907004.] doi: 10.3866/PKU.WHXB201907004 (88) Zhang, L. Y.; He, S. J.; Chen, S. L.; Guo, Q. H.; Hou, H. Q. Acta Phy. -Chim. Sin. 2010, 26, 3181. [张雷勇, 何水剑, 陈水亮, 郭乔辉, 侯豪情. 物理化学学报, 2010, 26, 3181.] doi: 10.3866/PKU.WHXB20101135 (89) Tian, D.; Lu, X. F.; Li, W. M.; Li, Y.; Wang, C. Acta Phy. -Chim. Sin. 2020, 36, 1904056. [田地, 卢晓峰, 李闱墨, 李悦, 王策. 物理化学学报; 2020, 36, 1904056.] doi: 10.3866/PKU.WHXB201904056 (90) Li, Z.; Xu, Z.; Liu, Y.; Wang, R.; Gao, C. Nat. Commun. 2016, 7, 13684. doi: 10.1038/ncomms13684 (91) Seyedin, S.; Romano, M. S.; Minett, A. I.; Razal, J. M. Sci. Rep. 2015, 5, 14946. doi: 10.1038/srep14946 (92) Fang, B.; Peng, L.; Xu, Z.; Gao, C. ACS Nano 2015. 9, 5214. doi: 10.1021/acsnano.5b00616 (93) Jang, J. S.; Yu, H.; Choi, S. J.; Koo, W. T.; Lee, J.; Kim, D. H.; Kim, I. D. ACS Appl. Mater. Inter. 2019, 11, 10208. doi: 10.1021/acsami.8b22015 (94) Fang, B.; Xiao, Y.; Xu, Z.; Chang, D.; Wang, B.; Gao, W.; Gao, C. Mater. Horiz. 2019, 6, 1207. doi: 10.1039/c8mh01647j (95) Peng, Y.; Lin, D.; Gooding, J. J.; Xue, Y.; Dai, L. Carbon 2018, 136, 329. doi: 10.1016/j.carbon.2018.05.004 (96) Choi, S. J.; Yu, H.; Jang, J. S.; Kim, M. H.; Kim, S. J.; Jeong, H. S.; Kim, I. D. Small 2018, 14, e1703934. doi: 10.1002/smll.201703934. (97) Shi, Q.; Li, J.; Hou, C.; Shao, Y.; Zhang, Q.; Li, Y.; Wang, H. Chem. Commun. 2017, 53, 11118. doi: 10.1039/c7cc03408c (98) Hua, C.; Shang, Y.; Li, X.; Hu, X.; Wang, Y.; Wang, X.; Cao, A. Nanoscale 2016, 8, 10659. doi: 10.1039/c6nr02111e (99) Cheng, H.; Hu, Y.; Zhao, F.; Dong, Z.; Wang, Y.; Chen, N.; Qu, L. Adv. Mater. 2014, 26, 2909. doi: 10.1002/adma.201305708 (100) Cheng, H. H.; Liu, J.;; Zhao, Y.; Hu, C. G.; Zhang, Z. P.; Chen, N.; Jiang, L.; Qu, L. Angew. Chem. Int. Edit. 2013, 125, 10676. doi: 10.1002/anie.201304358 (101) Cheng, H.; Liu, J.; Zhao, Y.; Hu, C.; Zhang, Z.; Chen, N.; Qu, L. Angew. Chem. Int. Edit. 2013, 52, 10482. doi: 10.1002/anie.201304358 (102) Liang, Y.; Zhao, F.; Cheng, Z.; Zhou, Q.; Shao, H.; Jiang, L.; Qu, L. Nano Energy 2017, 32, 329. doi: 10.1016/j.nanoen.2016.12.062 (103) Shao, Y.; Wang, H.; Zhang, Q.; Li, Y. J. Mater. Chem. C 2013, 1, 1245. doi:10.1039/c2tc00235c (104) Shao, Y.; El-Kady, M. F.; Wang, L. J.; Zhang, Q.; Li, Y.; Wang, H. Mousavi, M. F.; Kaner, R. B.; Chem. Soc. Rev. 2015, 44, 3639. doi:10.1039/c4cs00316k (105) Shao, Y.; Li, J.; Li, Y.; Wang, H.; Zhang, Q.; Kaner, R. B. Mater. Horiz. 2017, 4, 1145. doi:10.1039/c7mh00441a (106) Shao, Y.; Wang, H.; Zhang, Q.; Li, Y. NPG Asia Mater. 2014, 6, 119. doi: 10.1038/am.2014.59 (107) Huang, G.; Hou, C.; Shao, Y.; Zhu, B.; Jia, B.; Wang, H.; Zhang, Q.; Li, Y. Nano Energy 2015, 12, 26. doi:10.1016/j.nanoen.2014.11.056 (108) El-Kady, M. F.; Shao, Y.; Kaner, R. B. Nat. Rev. Mater. 2016, 1, 16033. doi: 10.1038/natrevmats.2016.33 (109) Kou, L.; Huang, T.; Zheng, B.; Han, Y.; Zhao, X.; Gopalsamy, K.; Gao, C. Nat. Commun. 2014, 5, 3754. doi: 10.1038/ncomms4754 (110) Cai, S.; Huang, T.; Chen, H.; Salman, M.; Gopalsamy, K.; Gao, C. J. Mater. Chem. A 2017, 5, 22489. doi: 10.1039/c7ta07937k (111) Hoshide, T.; Zheng, Y.; Hou, J.; Wang, Z.; Li, Q.; Zhao, Z.; Geng, F. Nano Lett. 2017, 17, 3543. doi: 10.1021/acs.nanolett.7b00623 (112) Chong, W. G.; Huang, J.-Q.; Xu, Z.-L.; Qin, X.; Wang, X.; Kim, J.-K. Adv. Funct. Mater. 2017, 27, 1604815. doi: 10.1002/adfm.201604815 (113) Cao, J.; Zhang, Y. Y.; Men, C. L.; Sun, Y. Y.; Wang, Z. N.; Zhang, X. T.; Li, Q. W. ACS Nano 2014, 8, 4325. doi: 10.1021/nn4059488 (114) Zhao, S. Y.; Li, G.; Tong, C. J.; Chen, W. J.; Wang, P. X.; Dai, J. K.; Fu, X. F.; Xu, Z.; Liu, X. J.; Liang, Z. F.; et al. Nat. Commun. 2020, 11, 1788. doi: 10.1038/s41467-020-15570-9 |
[1] | 宋雨珂, 谢文富, 邵明飞. 一体化电极电催化二氧化碳还原研究进展[J]. 物理化学学报, 2022, 38(6): 2101028 -0 . |
[2] | 朱思颖, 李辉阳, 胡忠利, 张桥保, 赵金保, 张力. 锂离子电池氧化亚硅负极结构优化和界面改性研究进展[J]. 物理化学学报, 2022, 38(6): 2103052 -0 . |
[3] | 张威, 梁海琛, 朱科润, 田泳, 刘瑶, 陈佳音, 李伟. 三维大孔/介孔碳-碳化钛复合材料用于无枝晶锂金属负极[J]. 物理化学学报, 2022, 38(6): 2105024 -0 . |
[4] | 杨越, 朱加伟, 王鹏彦, 刘海咪, 曾炜豪, 陈磊, 陈志祥, 木士春. 镶嵌于NH2-MIL-125 (Ti)衍生氮掺多孔碳中的花状超细纳米TiO2作为高活性和稳定性的锂离子电池负极材料[J]. 物理化学学报, 2022, 38(6): 2106002 -0 . |
[5] | 莫英, 肖逵逵, 吴剑芳, 刘辉, 胡爱平, 高鹏, 刘继磊. 锂离子电池隔膜的功能化改性及表征技术[J]. 物理化学学报, 2022, 38(6): 2107030 -0 . |
[6] | 吴锋, 李晴, 陈来, 王紫润, 陈刚, 包丽颖, 卢赟, 陈实, 苏岳锋. 高镍正极材料中钴元素的替代方案及其合成工艺优化[J]. 物理化学学报, 2022, 38(5): 2007017 -0 . |
[7] | 王磊, 孙毯毯, 闫娜娜, 刘晓娜, 马超, 徐舒涛, 郭鹏, 田鹏, 刘中民. 不同结构导向剂合成不同硅含量SAPO-34分子筛的酸性质[J]. 物理化学学报, 2022, 38(4): 2003046 -0 . |
[8] | 丁心湄, 梁艳丽, 张海龙, 赵明, 王健礼, 陈耀强. 高分散还原态Pt基催化剂的制备及其NO氧化的催化性能[J]. 物理化学学报, 2022, 38(4): 2005009 -0 . |
[9] | 薄拯, 孔竞, 杨化超, 郑周威, 陈鹏鹏, 严建华, 岑可法. 基于混合溶剂有机电解液的超低温孔洞石墨烯超级电容[J]. 物理化学学报, 2022, 38(4): 2005054 -0 . |
[10] | 程熠, 王坤, 亓月, 刘忠范. 石墨烯纤维材料的化学气相沉积生长方法[J]. 物理化学学报, 2022, 38(2): 2006046 -0 . |
[11] | 蹇木强, 张莹莹, 刘忠范. 石墨烯纤维:制备、性能与应用[J]. 物理化学学报, 2022, 38(2): 2007093 -0 . |
[12] | 姜美慧, 盛利志, 王超, 江丽丽, 范壮军. 超级电容器用石墨烯薄膜:制备、基元结构及表面调控[J]. 物理化学学报, 2022, 38(2): 2012085 -0 . |
[13] | 陈清, 赵健, 程虎虎, 曲良体. 石墨烯三维结构组装体制备及光热水蒸发和水处理研究进展[J]. 物理化学学报, 2022, 38(1): 2101020 -0 . |
[14] | 樊润林, 彭宇航, 田豪, 郑俊生, 明平文, 张存满. 燃料电池复合石墨双极板基材的研究进展:材料、结构与性能[J]. 物理化学学报, 2021, 37(9): 2009095 -0 . |
[15] | 陈鹏, 周莹, 董帆. 二维光催化材料电子结构和性能调控策略研究进展[J]. 物理化学学报, 2021, 37(8): 2010010 -0 . |
|