物理化学学报 >> 2022, Vol. 38 >> Issue (7): 2108028.doi: 10.3866/PKU.WHXB202108028
所属专题: 异质结光催化材料
黄悦1, 梅飞飞1, 张金锋1,*(), 代凯1,*(
), Graham Dawson2
收稿日期:
2021-08-19
录用日期:
2021-09-04
发布日期:
2021-09-09
通讯作者:
张金锋,代凯
E-mail:jfzhang@chnu.edu.cn;daikai940@chnu.edu.cn
作者简介:
第一联系人:†These authors contributed equally to this work.
基金资助:
Yue Huang1, Feifei Mei1, Jinfeng Zhang1,*(), Kai Dai1,*(
), Graham Dawson2
Received:
2021-08-19
Accepted:
2021-09-04
Published:
2021-09-09
Contact:
Jinfeng Zhang,Kai Dai
E-mail:jfzhang@chnu.edu.cn;daikai940@chnu.edu.cn
About author:
Email: daikai940@chnu.edu.cn (K.D.)Supported by:
摘要:
提高光催化分解水制氢的效率是能量转换领域的关键挑战。本研究首先合成了二维多孔氮化碳(PCN),然后在二维PCN上原位生长了一维W18O49 (WO),形成了一种新型的梯形(S型)异质结。该异质结可以加快界面电荷的分离和转移,赋予WO/PCN体系更好的氧化还原能力。此外,具有多孔结构的PCN提供了更多的催化活性位点。与WO和PCN相比,20% WO/PCN复合材料具有更高的H2产率(1700 μmol·g-1·h-1),是PCN (30 μmol·g-1·h-1)的56倍。本研究提供了一种新S型光催化剂用于光催化制氢领域。
MSC2000:
黄悦, 梅飞飞, 张金锋, 代凯, Graham Dawson. 一维/二维W18O49/多孔g-C3N4梯形异质结构建及其光催化析氢性能研究[J]. 物理化学学报, 2022, 38(7): 2108028.
Yue Huang, Feifei Mei, Jinfeng Zhang, Kai Dai, Graham Dawson. Construction of 1D/2D W18O49/Porous g-C3N4 S-Scheme Heterojunction with Enhanced Photocatalytic H2 Evolution[J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2108028.
1 |
Ren Y. ; Li Y. ; Wu X. ; Wang J. ; Zhang G. Chin. J. Catal. 2021, 42, 69.
doi: 10.1016/s1872-2067(20)63631-2 |
2 |
Kuang P. ; Wang Y. ; Zhu B. ; Xia F. ; Tung C. W. ; Wu J. ; Chen H. M. ; Yu J. Adv. Mater. 2021, 33, 2008599.
doi: 10.1002/adma.202008599 |
3 |
Zhang Y. ; Xu J. ; Mei J. ; Sarina S. ; Wu Z. ; Liao T. ; Yan C. ; Sun Z. J. Hazard. Mater. 2020, 394, 122529.
doi: 10.1016/j.jhazmat.2020.122529 |
4 | He R. ; Chen R. ; Luo J. ; Zhang S. ; Xu D. Acta Phys. -Chim. Sin. 2021, 37, 2011022. |
赫荣安; 陈容; 罗金花; 张世英; 许第发; 物理化学学报, 2021, 37, 2011022.
doi: 10.3866/PKU.WHXB202011022 |
|
5 |
Su Q. ; Li Y. ; Hu R. ; Song F. ; Liu S. ; Guo C. ; Zhu S. ; Liu W. ; Pan J. Adv. Sustain. Syst. 2020, 4, 2000130.
doi: 10.1002/adsu.202000130 |
6 |
Li Z. ; Huang W. ; Liu J. ; Lv K. ; Li Q. ACS Catal. 2021, 11, 8510.
doi: 10.1021/acscatal.1c02018 |
7 |
Zhao Y. ; Shao C. ; Lin Z. ; Jiang S. ; Song S. Small 2020, 16, 2000944.
doi: 10.1002/smll.202000944 |
8 |
Liu H. ; Yu J. ; Chen Y. ; Zhou Z. ; Xiong G. ; Zeng L. ; Li H. ; Liu Z. ; Zhao L. ; Wang J. ; et al ACS Appl. Mater. Interfaces 2020, 12, 2362.
doi: 10.1021/acsami.9b17216 |
9 |
Moniruddin M. ; Oppong E. ; Stewart D. ; McCleese C. ; Roy A. ; Warzywoda J. ; Nuraje N. Inorg. Chem. 2019, 58, 12325.
doi: 10.1021/acs.inorgchem.9b01854 |
10 |
Mo Z. ; Xu H. ; She X. ; Song Y. ; Yan P. ; Yi J. ; Zhu X. ; Lei Y. ; Yuan S. ; Li H. Appl. Surf. Sci. 2019, 467, 151.
doi: 10.1016/j.apsusc.2018.10.115 |
11 | Jiang Z. ; Chen Q. ; Zheng Q. ; Shen R. ; Zhang P. ; Li X. Acta Phys. -Chim. Sin. 2021, 37, 2010059. |
姜志民; 陈晴; 郑巧清; 沈荣晨; 张鹏; 李鑫; 物理化学学报, 2021, 37, 2010059.
doi: 10.3866/PKU.WHXB202010059 |
|
12 |
Xu F. ; Meng K. ; Cheng B. ; Wang S. ; Xu J. ; Yu J. Nat. Commun. 2020, 11, 4613.
doi: 10.1038/s41467-020-18350-7 |
13 |
Kshirsagar A. S. ; Khanna P. K. Mater. Chem. Front. 2019, 3, 437.
doi: 10.1039/c8qm00537k |
14 |
Lin J. ; Sun T. ; Li M. ; Yang J. ; Shen J. ; Zhang Z. ; Wang Y. ; Zhang X. ; Wang X. J. Catal. 2019, 372, 8.
doi: 10.1016/j.jcat.2019.02.019 |
15 |
Wang J. ; Wang G. ; Cheng B. ; Yu J. ; Fan J. Chin. J. Catal. 2021, 42, 56.
doi: 10.1016/s1872-2067(20)63634-8 |
16 | Mei Z. ; Wang G. ; Yan S. ; Wang J. Acta Phys. -Chim. Sin. 2021, 37, 2009097. |
梅子慧; 王国宏; 严素定; 王娟; 物理化学学报, 2021, 37, 2009097.
doi: 10.3866/PKU.WHXB202009097 |
|
17 |
Wu Q. ; Cheng Y. ; Huang F. ; Li X. ; Cui X. ; Xu J. ; Wang Y. J. Hazard. Mater. 2019, 374, 287.
doi: 10.1016/j.jhazmat.2019.04.035 |
18 |
Meng A. ; Cheng B. ; Tan H. ; Fan J. ; Su C. ; Yu J. Appl. Catal. B 2021, 289, 120039.
doi: 10.1016/j.apcatb.2021.120039 |
19 |
Jeon J. P. ; Kweon D. H. ; Jang B. J. ; Ju M. J. ; Baek J. B. Adv. Sustain. Syst. 2020, 4, 2000197.
doi: 10.1002/adsu.202000197 |
20 |
Xiao Y. ; Tao X. ; Qiu G. ; Dai Z. ; Gao P. ; Li B. J. Colloid Interface Sci. 2019, 550, 99.
doi: 10.1016/j.jcis.2019.04.081 |
21 |
Jiang M. ; Li C. ; Huang K. ; Wang Y. ; Liu J. H. ; Geng Z. ; Hou X. ; Shi J. ; Feng S. ACS Appl. Mater. Interfaces 2020, 12, 35113.
doi: 10.1021/acsami.0c11072 |
22 |
Shen C. H. ; Wen X. J. ; Fei Z. H. ; Liu Z. T. ; Mu Q. M. J. Colloid Interface Sci. 2020, 579, 297.
doi: 10.1016/j.jcis.2020.06.075 |
23 |
Zhang N. ; Jalil A. ; Wu D. ; Chen S. ; Liu Y. ; Gao C. ; Ye W. ; Qi Z. ; Ju H. ; Wang C. ; et al J. Am. Chem. Soc. 2018, 140, 9434.
doi: 10.1021/jacs.8b02076 |
24 |
Zhang M. ; Cheng G. ; Wei Y. ; Wen Z. ; Chen R. ; Xiong J. ; Li W. ; Han C. ; Li Z. J. Colloid Interface Sci. 2020, 572, 306.
doi: 10.1016/j.jcis.2020.03.090 |
25 |
Wang B. ; Chen C. ; Jiang Y. ; Ni P. ; Zhang C. ; Yang Y. ; Lu Y. ; Liu P. Chem. Eng. J. 2021, 412, 128690.
doi: 10.1016/j.cej.2021.128690 |
26 |
Wang K. ; Li J. ; Zhang G. ACS Appl. Mater. Interfaces 2019, 11, 27686.
doi: 10.1021/acsami.9b05074 |
27 |
Huo Y. ; Zhang J. ; Wang Z. ; Dai K. ; Pan C. ; Liang C. J. Colloid Interface Sci. 2021, 585, 684.
doi: 10.1016/j.jcis.2020.10.048 |
28 |
Qin D. ; Xia Y. ; Li Q. ; Yang C. ; Qin Y. ; Lv K. J. Mater. Sci. Technol. 2020, 56, 206.
doi: 10.1016/j.jmst.2020.03.034 |
29 |
Liu D. ; Zhang S. ; Wang J. ; Peng T. ; Li R. ACS Appl. Mater. Interfaces 2019, 11, 27913.
doi: 10.1021/acsami.9b08329 |
30 |
Liang Y. ; Xu W. ; Fang J. ; Liu Z. ; Chen D. ; Pan T. ; Yu Y. ; Fang Z. Appl. Catal. B 2021, 295, 120279.
doi: 10.1016/j.apcatb.2021.120279 |
31 |
Zhang B. ; Hu X. ; Liu E. ; Fan J. Chin. J. Catal. 2021, 42, 1519.
doi: 10.1016/s1872-2067(20)63765-2 |
32 |
Mei F. ; Li Z. ; Dai K. ; Zhang J. ; Liang C. Chin. J. Catal. 2020, 41, 41.
doi: 10.1016/s1872-2067(19)63389-9 |
33 |
Yang Y. ; Zhang D. ; Fan J. ; Liao Y. ; Xiang Q. Sol. RRL 2020, 5, 2000351.
doi: 10.1002/solr.202000351 |
34 |
Li Q. ; Zhao W. ; Zhai Z. ; Ren K. ; Wang T. ; Guan H. ; Shi H. J. Mater. Sci. Technol. 2020, 56, 216.
doi: 10.1016/j.jmst.2020.03.038 |
35 |
Cheng C. ; He B. ; Fan J. ; Cheng B. ; Cao S. ; Yu J. Adv. Mater. 2021, 33, 2100317.
doi: 10.1002/adma.202100317 |
36 |
Liu L. ; Dai K. ; Zhang J. ; Li L. J. Colloid Interface Sci. 2021, 604, 844.
doi: 10.1016/j.jcis.2021.07.064 |
37 |
He F. ; Meng A. ; Cheng B. ; Ho W. ; Yu J. Chin. J. Catal. 2020, 41, 9.
doi: 10.1016/s1872-2067(19)63382-6 |
38 |
Ke X. ; Zhang J. ; Dai K. ; Fan K. ; Liang C. Sol. RRL 2021, 5, 2000805.
doi: 10.1002/solr.202000805 |
39 |
He R. ; Liu H. ; Liu H. ; Xu D. ; Zhang L. J. Mater. Sci. Technol. 2020, 52, 145.
doi: 10.1016/j.jmst.2020.03.027 |
40 | Chen R. ; Li D. ; Fang Z. ; Huang Y. ; Luo B. ; Shi W. Acta Phys. -Chim. Sin. 2020, 36, 1903047. |
陈锐杰; 李娣; 方振远; 黄元勇; 罗必富; 施伟东; 物理化学学报, 2020, 36, 1903047.
doi: 10.3866/PKU.WHXB201903047 |
|
41 |
Li X. ; Mei F. ; Zhang J. ; Dai K. ; Liang C. Appl. Surf. Sci. 2020, 507, 145213.
doi: 10.1016/j.apsusc.2019.145213 |
42 |
Zhuang Y. ; Liu Y. ; Meng X. Appl. Surf. Sci. 2019, 496, 143647.
doi: 10.1016/j.apsusc.2019.143647 |
43 |
Peng J. ; Shen J. ; Yu X. ; Tang H. ; Zulfiqar ; Liu Q. Chin. J. Catal. 2021, 42, 87.
doi: 10.1016/s1872-2067(20)63595-1 |
44 |
Li Q. ; Shi T. ; Li X. ; Lv K. ; Li M. ; Liu F. ; Li H. ; Lei M. Appl. Catal. B 2018, 229, 8.
doi: 10.1016/j.apcatb.2018.01.078 |
45 |
Vu M. H. ; Nguyen C. C. ; Do T. O. ACS Sustain. Chem. Eng. 2020, 8, 12321.
doi: 10.1021/acssuschemeng.0c04662 |
46 |
Yang Y. ; Zhang X. ; Niu C. ; Feng H. ; Qin P. ; Guo H. ; Liang C. ; Zhang L. ; Liu H. ; Li L. Appl. Catal. B 2020, 264, 118465.
doi: 10.1016/j.apcatb.2019.118465 |
47 |
Sun S. ; Gou X. ; Tao S. ; Cui J. ; Li J. ; Yang Q. ; Liang S. ; Yang Z. Mater. Chem. Front. 2019, 3, 597.
doi: 10.1039/c8qm00577j |
48 |
Yan J. ; Wang C. ; Ma H. ; Li Y. ; Liu Y. ; Suzuki N. ; Terashima C. ; Fujishima A. ; Zhang X. Appl. Catal. B 2020, 268, 118401.
doi: 10.1016/j.apcatb.2019.118401 |
49 |
Li X. ; Zhang J. ; Huo Y. ; Dai K. ; Li S. ; Chen S. Appl. Catal. B 2021, 280, 119452.
doi: 10.1016/j.apcatb.2020.119452 |
50 |
Xie Y. ; Zhuo Y. ; Liu S. ; Lin Y. ; Zuo D. ; Wu X. ; Li C. ; Wong P. K. Sol. RRL 2020, 4, 1900440.
doi: 10.1002/solr.201900440 |
51 |
Hu T. ; Dai K. ; Zhang J. ; Chen S. Appl. Catal. B 2020, 269, 118844.
doi: 10.1016/j.apcatb.2020.118844 |
52 |
Liu Y. ; Liu H. ; Zhou H. ; Li T. ; Zhang L. Appl. Surf. Sci. 2019, 466, 133.
doi: 10.1016/j.apsusc.2018.10.027 |
53 |
Xu X. ; Luo F. ; Tang W. ; Hu J. ; Zeng H. ; Zhou Y. Adv. Funct. Mater. 2018, 28, 1804055.
doi: 10.1002/adfm.201804055 |
54 |
Deng Y. ; Tang L. ; Feng C. ; Zeng G. ; Chen Z. ; Wang J. ; Feng H. ; Peng B. ; Liu Y. ; Zhou Y. Appl. Catal. B 2018, 235, 225.
doi: 10.1016/j.apcatb.2018.04.075 |
55 |
Fei X. ; Zhang L. ; Yu J. ; Zhu B. Front. Nanotechnol. 2021, 3, 698351.
doi: 10.3389/fnano.2021.698351 |
56 | Liu Y. ; Hao X. ; Hu H. ; Jin Z. Acta Phys. -Chim. Sin. 2021, 37, 2008030. |
刘阳; 郝旭强; 胡海强; 靳治良; 物理化学学报, 2021, 37, 2008030.
doi: 10.3866/PKU.WHXB202008030 |
|
57 |
Zhu B. ; Tan H. ; Fan J. ; Cheng B. ; Yu J. ; Ho W. J. Materiomics 2021, 7, 988.
doi: 10.1016/j.jmat.2021.02.015 |
58 |
Wageh S. ; Ahmed A. A. G. a. ; Rashida J. ; Xin L. ; Peng Z. Chin. J. Catal. 2021, 42, 667.
doi: 10.1016/S1872-2067(20)63705-6 |
59 |
Bao Y. ; Song S. ; Yao G. ; Jiang S. Sol. RRL 2021, 5, 2100118.
doi: 10.1002/solr.202100118 |
60 |
Shen R. ; Lu X. ; Zheng Q. ; Chen Q. ; Ng Y. H. ; Zhang P. ; Li X. Sol. RRL 2021, 5, 2100177.
doi: 10.1002/solr.202100177 |
61 |
Xia P. ; Cao S. ; Zhu B. ; Liu M. ; Shi M. ; Yu J. ; Zhang Y. Angew. Chem. Int. Ed. 2020, 59, 5218.
doi: 10.1002/anie.201916012 |
62 |
Liu L. ; Hu T. ; Dai K. ; Zhang J. ; Liang C. Chin. J. Catal. 2021, 42, 46.
doi: 10.1016/s1872-2067(20)63560-4 |
63 |
Wang R. ; Shen J. ; Zhang W. ; Liu Q. ; Zhang M. ; Zulfiqar ; Tang H. Ceram. Int. 2020, 46, 23.
doi: 10.1016/j.ceramint.2019.08.226 |
64 |
Xu Q. ; Zhang L. ; Cheng B. ; Fan J. ; Yu J. Chem 2020, 6, 1543.
doi: 10.1016/j.chempr.2020.06.010 |
65 | Wageh, S.; Al-Ghamdi, A. A.; Liu, L. Acta Phys. -Chim. Sin. 2021, 37, 2010024. Wageh, S., Al-Ghamdi, A. A., |
刘丽君. 物理化学学报, 2021, 37, 2010024. doi: 10.3866/PKU.WHXB202010024 | |
66 |
Xiang X. ; Zhu B. ; Cheng B. ; Yu J. ; Lv H. Small 2020, 16, 2001024.
doi: 10.1002/smll.202001024 |
[1] | 刘珊池, 王凯, 杨梦雪, 靳治良. Mn0.2Cd0.8S@CoAl LDH S-型异质结构建及其光催化析氢性能研究[J]. 物理化学学报, 2022, 38(7): 2109023 - . |
[2] | 朱弼辰, 洪小洋, 唐丽永, 刘芹芹, 唐华. 二维/一维BiOBr0.5Cl0.5/WO3 S型异质结助力光催化CO2还原[J]. 物理化学学报, 2022, 38(7): 2111008 - . |
[3] | 韩高伟, 徐飞燕, 程蓓, 李佑稷, 余家国, 张留洋. 反蛋白石结构ZnO@PDA用于增强光催化产H2O2性能[J]. 物理化学学报, 2022, 38(7): 2112037 - . |
[4] | 周亮, 李云锋, 张永康, 秋列维, 邢艳. 具有高效界面电荷转移的0D/2D Bi4V2O11/g-C3N4梯形异质结的设计合成及抗生素降解性能研究[J]. 物理化学学报, 2022, 38(7): 2112027 - . |
[5] | 王文亮, 张灏纯, 陈义钢, 史海峰. 具有光催化与光芬顿反应协同作用的2D/2D α-Fe2O3/g-C3N4 S型异质结用于高效降解四环素[J]. 物理化学学报, 2022, 38(7): 2201008 - . |
[6] | 邹菁云, 高冰, 张小品, 唐磊, 冯思敏, 金赫华, 刘碧录, 成会明. 一维碳纳米管/二维二硫化钼混合维度异质结的原位制备及其电荷转移性能[J]. 物理化学学报, 2022, 38(5): 2008037 - . |
[7] | 孙志聪, 罗二桂, 孟庆磊, 王显, 葛君杰, 刘长鹏, 邢巍. 采用薄层氮化碳促进的高性能钯基催化剂用于甲酸分解制氢[J]. 物理化学学报, 2022, 38(3): 2003035 - . |
[8] | 李红英, 龚海明, 靳治良. In2O3修饰三维纳米花MoSx构建S型异质结用于高效光催化产氢[J]. 物理化学学报, 2022, 38(12): 2201037 - . |
[9] | 李瀚, 李芳, 余家国, 曹少文. 二维/二维FeNi-LDH/g-C3N4复合光催化剂用于促进CO2光还原反应[J]. 物理化学学报, 2021, 37(8): 2010073 - . |
[10] | 李云锋, 张敏, 周亮, 杨思佳, 武占省, 马玉花. g-C3N4表面改性及其光催化制H2与CO2还原研究进展[J]. 物理化学学报, 2021, 37(6): 2009030 - . |
[11] | 李喜宝, 刘积有, 黄军同, 何朝政, 冯志军, 陈智, 万里鹰, 邓芳. 全有机S型异质结PDI-Ala/S-C3N4光催化剂增强光催化性能[J]. 物理化学学报, 2021, 37(6): 2010030 - . |
[12] | 刘东, 陈圣韬, 李仁杰, 彭天右. 用于光催化能量转换的Z-型异质结的研究进展[J]. 物理化学学报, 2021, 37(6): 2010017 - . |
[13] | 赫荣安, 陈容, 罗金花, 张世英, 许第发. 石墨烯量子点修饰的BiOI/PAN柔性纤维的制备及其增强的光催化活性[J]. 物理化学学报, 2021, 37(6): 2011022 - . |
[14] | 梅子慧, 王国宏, 严素定, 王娟. 微波辅助快速制备2D/1D ZnIn2S4/TiO2 S型异质结及其光催化制氢性能[J]. 物理化学学报, 2021, 37(6): 2009097 - . |
[15] | 费新刚, 谭海燕, 程蓓, 朱必成, 张留洋. 理论计算研究二维/二维BP/g-C3N4异质结的光催化CO2还原性能[J]. 物理化学学报, 2021, 37(6): 2010027 - . |
|