物理化学学报

最新录用 上一篇    下一篇

气相助剂辅助绝缘衬底上石墨烯生长:现状与展望

刘若娟1,2, 刘冰之2,3, 孙靖宇2,3, 刘忠范1,2,3   

  1. 1 北京大学纳米化学研究中心, 北京分子科学国家研究中心, 北京大学化学与分子工程学院, 北京 100871;
    2 北京石墨烯研究院, 北京 100095;
    3 苏州大学能源学院, 苏州大学能源与材料创新研究院, 苏州大学-北京石墨烯研究院协同创新中心, 江苏 苏州 215006
  • 收稿日期:2021-11-04 修回日期:2021-11-27 录用日期:2021-11-29 发布日期:2021-12-06
  • 通讯作者: 孙靖宇, 刘忠范 E-mail:zfliu@pku.edu.cn;sunjy86@suda.edu.cn
  • 基金资助:
    国家重点研发计划项目(2019YFA0708201),国家自然科学基金(61527814,51702225),北京分子科学国家研究中心(BNLMS-CXTD-202001)和北京市科学技术委员会(Z191100000819004)资助

Gaseous-Promotor-Assisted Direct Growth of Graphene on Insulating Substrates: Progress and Prospects

Ruojuan Liu1,2, Bingzhi Liu2,3, Jingyu Sun2,3, Zhongfan Liu1,2,3   

  1. 1 Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
    2 Beijing Graphene Institute(BGI), Beijing 100095, China;
    3 College of Energy, Soochow Institute for Energy and Materials InnovationS(SIEMIS), SUDA-BGI Collaborative Innovation Center, Soochow University, Suzhou 215006, Jiangsu Province, China
  • Received:2021-11-04 Revised:2021-11-27 Accepted:2021-11-29 Published:2021-12-06
  • Contact: Jingyu Sun, Zhongfan Liu E-mail:zfliu@pku.edu.cn;sunjy86@suda.edu.cn
  • Supported by:
    The project was supported by the National Key R&D Program of China (2019YFA0708201), the National Natural Science Foundation of China (61527814, 51702225), the Beijing National Laboratory for Molecular Sciences (BNLMS-CXTD-202001), and the Beijing Municipal Science & Technology Commission (Z191100000819004).

摘要: 借助化学气相沉积(chemical vapor deposition,CVD)技术在绝缘衬底上直接生长的石墨烯薄膜,在能源存储/转换等领域有着广阔的应用前景。然而,绝缘衬底表面石墨烯的生长呈现成核密度高、畴区尺寸小、生长速率低等特点,获得的石墨烯薄膜往往具有较高的晶界密度和较低的层数均匀度,严重制约着石墨烯基器件性能的发挥。在反应体系中引入气相助剂可有效降低碳源裂解和石墨烯生长的能垒,从而实现石墨烯品质与生长速率的提升。本文综述气相助剂辅助绝缘衬底上石墨烯制备的方法:首先对绝缘衬底上石墨烯的生长行为进行分析;随后着重介绍几类常见的气相助剂辅助石墨烯生长的策略和机理;最后,总结绝缘衬底上制备高品质石墨烯存在的挑战,并对未来的发展方向进行展望。

关键词: 石墨烯, 化学气相沉积, 绝缘衬底, 气相助剂

Abstract: Utilizing a direct chemical vapor deposition approach to synthesize graphene on insulating substrates has received enormous attention to date in both scientific and technological realms. In contrast to the graphene growth on metal substrates, the catalytic inertness of insulators toward feedstock decomposition and the high energy barrier for carbon fragment migration on the insulating surface result in not only high density of grain boundaries but also a low growth rate. Thus-obtained graphene film is usually accompanied by massive defects and limited crystal quality, which adversely affect the physical integrity and electrical performance of the fabricated graphene-based device. In this respect, various strategies have been adopted to modify the direct growth processes of graphene, e.g., sacrificial metal catalysis approach, self-terminating confinement approach and near-equilibrium growth approach. Among these mentioned above, the gaseous-promotor-assisted growth methodology has proven to be a beneficial way in enhancing crystal quality and augmenting the growth rate of graphene. For the gaseous-promotor-assisted chemical vapor deposition route, the gaseous promotor can not only regulate the composition/content of active carbon species in the gas-phase reaction process but also promote the surface migration and growth reactions. In this contribution, we review the recent advances in gaseous-promotor-assisted direct growth of graphene with high crystallinity, optimized uniformity, and enhanced growth rate on insulating substrates. First of all, we provide a systematic description of the growth behavior of graphene on insulators, including both the surface and gas-phase reactions combined with elementary steps during the growth process. We then summarize developed strategies aiming to achieve the direct growth of high-quality graphene via the assistance of gaseous promotors, with special emphasis on the effects and mechanisms of the growth process. The types of promotors commonly used in the gaseous-promotor-assisted strategy can be divided into metallic and non-metallic vapor species. These gaseous promotors can play influence on the feedstock decomposition, graphene nucleation, and enhance the enlargement and merging of individual domains. The corresponding mechanisms of the strategy can be classified into three parts:(1) The existence of highly concentrated metallic vapor species can promote thermal decomposition of carbon feedstock,which is the key to the growth of high-quality graphene; (2) The introduction of oxygen-containing species can effectively reduce the nucleation density, etch the amorphous carbon, leading to a high-quality, uniform growth of graphene film. In addition, hydroxylation of substrate through oxygen-containing species weakens the binding energy between the graphene edge and surface of the substrate, facilitating carbon fragment migration to evolve uniform monolayer graphene film; (3) The appearance of silicon and fluorine species reduces the growth kinetic barrier for carbon feedstock migrating onto the graphene edge to form the honeycomb lattice, which ensures the ultrafast growth of graphene on insulating substrates. Finally, we describe existed challenges and present future perspectives on the direct growth of high-quality graphene on insulating substrates to stimulate more efforts devoted to direct graphene growth and ultimate applications. We hope this review can propel in-depth comprehension of the direct growth of graphene on insulators by gaseous-promotor-assisted strategy, and pave the way for the development and applications of graphene materials.

Key words: Graphene, Chemical vapor deposition, Insulating substrate, Gaseous-promotor

MSC2000: 

  • O647