物理化学学报 >> 2022, Vol. 38 >> Issue (9): 2204058.doi: 10.3866/PKU.WHXB202204058
所属专题: 烯碳纤维与智能织物
曹晓辉1, 侯成义1, 李耀刚2, 李克睿1, 张青红2,*(), 王宏志1,*(
)
收稿日期:
2022-04-30
录用日期:
2022-05-30
发布日期:
2022-06-07
通讯作者:
张青红,王宏志
E-mail:zhangqh@dhu.edu.cn;wanghz@dhu.edu.cn
作者简介:
张青红,东华大学材料科学与工程学院研究员,博士生导师。2000年毕业于中国科学院上海硅酸盐研究所,获得博士学位。主要研究方向为薄膜太阳能电池、可见光催化制氢及有机-无机杂化材料基金资助:
Xiaohui Cao1, Chengyi Hou1, Yaogang Li2, Kerui Li1, Qinghong Zhang2,*(), Hongzhi Wang1,*(
)
Received:
2022-04-30
Accepted:
2022-05-30
Published:
2022-06-07
Contact:
Qinghong Zhang,Hongzhi Wang
E-mail:zhangqh@dhu.edu.cn;wanghz@dhu.edu.cn
About author:
Email: wanghz@dhu.edu.cn (H.W.)Supported by:
摘要:
在电子信息和物联网技术的推动下,人类对可穿戴电子器件和智能织物的需求愈发突出,功能纤维作为智能可穿戴设备的重要载体,近年来获得快速发展。功能纤维的性能很大程度上取决于纤维的基础构筑单元。过渡金属碳/氮化物(MXenes)作为一种新兴的二维材料,凭借其高电导率、优异的可加工性能、可调节的表面特性以及出色的机械强度等优点,受到了极大的关注,也逐渐成为构筑功能纤维的重要单元。本文将主要综述MXenes的湿化学、熔融盐、无氟试剂刻蚀等方法和力学、电学、光学和化学稳定性等性能,阐述基于该材料制备的功能纤维在传感、储能以及其他智能领域的应用,最后讨论了基于MXenes材料的功能纤维的未来应用前景和技术挑战。
MSC2000:
曹晓辉, 侯成义, 李耀刚, 李克睿, 张青红, 王宏志. 基于MXenes的功能纤维的制备及其在智能可穿戴领域的应用[J]. 物理化学学报, 2022, 38(9): 2204058.
Xiaohui Cao, Chengyi Hou, Yaogang Li, Kerui Li, Qinghong Zhang, Hongzhi Wang. MXenes-Based Functional Fibers and Their Applications in the Intelligent Wearable Field[J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204058.
表1
不同刻蚀方法的优缺点对比"
Preparation methods | Etching reagents | Advantages | Disadvantages |
Wet chemical etching | Hydrofluoric acid (HF) | High reaction rate High yield | Flakes with low quality Unfriendly to environment Hazardous handling |
Mixed acid | Milder reaction | Unfriendly to environment | |
Lithium Fluoride (LiF) + Hydrochloric Acid (HCl) | Flakes with higher quality Simple process Process is mature | Lower yield | |
Molten salt etching | Fluoride salt or zinc chloride | Different MAX can be etched | High energy consumption Low yield |
Fluorine-free reagent etching | Sodium hydroxide, etc. | Friendly to environment Flakes stability is relatively good | Immature process Low yield |
Chemical vapor deposition | – | Flakes with high quality Flakes stability is good | Equipment is expensive Not easy to prepare single layer flakes |
表2
MXenes功能化纤维的制备方法及其性能"
Composition | Active Material | Fabrication method | Conductivity (S?cm?1) | Tensile Strength (MPa) | Young’s Modulus (GPa) | Failure Strain (%) | Ref. |
MXene-coated cotton yarn | 78% (w) MXene | Coating | 198.5 ± 1.4 | 468.4 ± 27.1 | 5.0 ± 0.3 | ~9.4 | |
AgNW/WPU-MXene fiber | AgNW MXene | Self-assembled | – | ~15 | – | ~800 | |
CF/PAI/MXene/ PEEK composite | MXene | Coating | 3.2 | ~70 | ~4.9 | – | |
MXene/PCL fiber | 23% (w) MXene | Wet spinning | 1.84 × 10?3 | 4.15 ± 0.39 | – | 770 ± 52.6 | |
MXene/PPTA | 2% (w) MXene | Wet spinning | 0.172 | ~20 | 1.736 | 3.04 | |
MXene/PU | 23.1% (w) MXene | Wet spinning | 22.6 | ~14 | ~1.8 | ~1.5 | |
MXene/PEDOT: PSS | 70% (w) MXene | Wet spinning | 1489.8 | 58.1 | 7.5 | 1.1 | |
MXene/rGO | 90% (w) MXene | Wet spinning | 290 | 12.9 | – | ~3.5 | |
Pure MXene fiber | 100% (w) MXene | Wet spinning | 7713 ± 110 | 63.9 ± 13.1 | 29.6 ± 5.1 | 0.22 ± 0.05 | |
Pure MXene fiber | 100% (w) MXene | Wet spinning | ~7750 | ~40.5 | – | ~1.7 | |
MXene/PVA | 1% (w) MXene | Electrospinning | 2.7 × 10?3 | – | – | – | |
MXene/nylon nanoyarn | 90% (w) MXene | Bath electrospinning | 1195 ± 107 | 29.0 ± 5.0 | – | 1.85 ± 0.89 |
1 |
Novoselov, K. S.; Geim A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
doi: 10.1126/science.1102896 |
2 |
Wang, G.; Hou, C.; Long, H.; Yang, L.; Wang, Y. Acta Phys. -Chim. Sin. 2019, 35, 1319.
doi: 10.3866/PKU.WHXB201903010 |
王根旺, 侯超剑, 龙昊天, 杨立军, 王扬 物理化学学报, 2019, 35, 1319.
doi: 10.3866/PKU.WHXB201903010 |
|
3 |
Lin, Y.; Williams, T. V.; Connell, J. W. J. Phys. Chem. Lett. 2010, 1, 277.
doi: 10.1021/JZ9002108 |
4 |
Zhou, K.; Mao, N.; Wang, H.; Peng, Y.; Zhang, H. Angew. Chem. Int. Ed. 2011, 50, 10839.
doi: 10.1002/anie.201105364 |
5 |
Li, L.; Yu, Y.; Ye, G.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X.; Zhang, Y. Nat. Nanotech. 2014, 9, 372.
doi: 10.1038/nnano.2014.35 |
6 |
Yan, S.; Li, Z.; Zou, Z. Langmuir. 2009, 25, 10397.
doi: 10.1021/la900923z |
7 |
Wang, Q.; O'Hare, D. Chem. Rev. 2012, 112, 4124.
doi: 10.1021/cr200434v |
8 |
Vogt, P.; Padova, P. D.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Lay, G. L. Phys. Rev. Lett. 2012, 108, 155501.
doi: 10.1103/PHYSREVLETT.108.155501 |
9 |
Naguib, M; Kurtoglu, M; Presser, V; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Adv. Mater. 2011, 23, 4248.
doi: 10.1002/adma.201102306 |
10 |
Vahidmohammadi, A.; Rosen, J.; Gogotsi, Y. Science 2021, 372, eabf1581.
doi: 10.1126/science.abf1581 |
11 |
Wang, Y.; Guo, T.; Tian, Z.; Bibi, K.; Zhang, Y.; Alshareef, H. Adv. Mater. 2022, 34, 2108560.
doi: 10.1002/adma.202108560 |
12 |
Zhao, Y.; Zhang, X.; Han, X.; Hou, C.; Wang, H.; Qi, J.; Li, Y.; Zhang, Q. Chem. Eng. J. 2021, 417, 127912.
doi: 10.1016/j.cej.2020.127912 |
13 |
Wang, C.; Zheng, Z.; Feng, Y.; Huan, Y.; Cao, F.; Guo, Z. Nano Energy 2020, 74, 104817.
doi: 10.1016/j.nanoen.2020.104817 |
14 |
Zhou, B.; Zhang, Z.; Li, Y.; Han, G.; Feng, Y.; Wang, B.; Zhang, D.; Ma, J.; Liu, C. ACS Appl. Mater. Interfaces. 2020, 12, 4895.
doi: 10.1021/acsami.9b19768 |
15 |
Lee, E.; VahidMohammadi, A.; Yoon, Y. S.; Beidaghi, M.; Kim, D. ACS Sens. 2019, 4, 1603.
doi: 10.1021/acssensors.9b00303 |
16 |
Sun, Y.; Meng, X.; Dall'Agnese, Y.; Dall'Agnese, C.; Duan, S.; Gao, Y.; Chen, G.; Wang, X. Nano-Micro Lett. 2019, 11, 79.
doi: 10.1007/s40820-019-0309-6 |
17 |
Cheng, L.; Liu G. P.; Jin W. Q. Acta Phys. -Chim. Sin. 2019, 35, 1090.
doi: 10.3866/PKU.WHXB201810059 |
程龙, 刘公平, 金万勤 物理化学学报, 2019, 35, 1090.
doi: 10.3866/PKU.WHXB201810059 |
|
18 |
Driscoll, N.; Richardson A. G.; Maleski, K.; Anasori, B.; Adewole, O.; Lelyukh, P.; Escobedo, L.; Cullen, D. K.; Lucas, T. H.; Gogotsi, Y.; Vitale, F. ACS Nano 2018, 12, 10419.
doi: 10.1021/acsnano.8b06014 |
19 |
Ding, L.; Li, L.; Liu, Y.; Wu, Yi.; Lu, Z.; Deng, J.; Wei, Y.; Caro, J.; Wang, H. Nat. Sustain. 2020, 3, 296.
doi: 10.1038/s41893-020-0474-0 |
20 |
Levitt, A.; Zhang, J.; Dion, G.; Gogotsi, Y.; Razal, J. M. Adv. Funct. Mater. 2020, 30, 2000739.
doi: 10.1002/adfm.202000739 |
21 |
Qin, S.; Usman, K. A. S.; Hegh, D.; Seyedin, S.; Gogotsi, Y.; Zhang, J.; Razal, J. M. ACS Appl. Mater. Interfaces. 2021, 13, 36655.
doi: 10.1021/acsami.1c08985 |
22 |
Seyedin, S.; Uzun, S.; Levitt, A.; Anasori, B.; Dion, G.; Gogotsi, Y.; Razal, J. M. Adv. Funct. Mater. 2020, 30, 1910504.
doi: 10.1002/adfm.201910504 |
23 |
Liu, R.; Li, J.; Li, M.; Zhang, Q.; Shi, G.; Li, Y.; Hou, C.; Wang, H. ACS Appl. Mater. Interfaces. 2020, 12, 46446.
doi: 10.1021/acsami.0c11715 |
24 |
Eom, W.; Shin, H.; Ambade, R. B.; Lee, S. H.; Lee, K. H.; Kang, D. J.; Han, T. H. Nat. Commun. 2020, 11, 2825.
doi: 10.1038/s41467-020-16671-1 |
25 |
Persson, I.; Halim, J.; Hansen, T. W.; Wagner, J. B.; Darakchieva, V.; Palisaitis, J.; Rosen, J.; Persso, P. O. Å. Adv. Funct. Mater. 2020, 30, 1909005.
doi: 10.1002/adfm.201909005 |
26 |
Zheng, W.; Sun, Z.; Zhang, P.; Tian, W.; Wang, Y.; Zhang, Y. Materials Reports. 2017, 31, 1.
doi: 10.11896/j.issn.1005-023X.2017.09.001 |
郑伟, 孙正明, 张培根, 田无边, 王英, 张亚梅 材料导报, 2017, 31, 1.
doi: 10.11896/j.issn.1005-023X.2017.09.001 |
|
27 |
Naguib, M; Mashtalir, O; Carle, J; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. ACS Nano 2012, 6, 1322.
doi: 10.1021/nn204153h |
28 |
Sang, X.; Xie, Y.; Lin, M.; Alhabeb, M.; Aken, K. L. V.; Gogotsi, Y.; Kent, P. R. C.; Xiao, K.; Unocic, R. R. ACS Nano 2016, 10, 9193.
doi: 10.1021/acsnano.6b05240 |
29 |
Pei, Y.; Zhang X.; Hui, Z.; Zhou, J.; Huang, X.; Sun, G.; Huang, W. ACS Nano 2021, 15, 3, 3996.
doi: 10.1021/acsnano.1c00248 |
30 |
Levitt, A. S.; Alhabeb, M.; Hatter C. B.; Sarycheva, A.; Dion, G.; Gogotsi, Y. J. Mater. Chem. A. 2019, 7, 269.
doi: 10.1039/c8ta09810g |
31 |
Cao, J; Sun, Z; Li, J; Zhu, Y.; Yuan, Z.; Zhang, Y.; Li, D.; Wang, L.; Han, W. ACS Nano 2021, 15, 3423.
doi: 10.1021/acsnano.0c10491 |
32 |
Ghidiu, M.; Lukatskaya, M. R.; Zhao, M.; Gogotsi, Y.; Barsoum, M. W. Nature 2014, 516, 78.
doi: 10.1038/nature13970 |
33 |
Lipatov, A.; Alhabeb, M.; Lukatskaya, M. R.; Boson, A.; Gogotsi, Y.; Sinitskii, A. Adv. Electron. Mater. 2016, 2, 1600255.
doi: 10.1002/aelm.201600255 |
34 |
Alhabeb, M; Maleski, K; Anasori, B; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Chem. Mater. 2017, 29, 7633.
doi: 10.1021/acs.chemmater.7b02847 |
35 | Kan, D. First principles study of MXene based bifunctional single atom electrocatalysts. Ph. D. Dissertation, Jilin University, Changchun, 2021 |
阚东晓. MXene基双功能单原子电催化剂的第一性原理研究[D]. 长春: 吉林大学, 2021. doi: 10.27162/d.cnki.gjlin.2021.002809. | |
36 |
Anasori, B.; Xie, Y.; Beidaghi, M.; Lu, J.; Hosler, B. C.; Hultman, L.; Kent, P. R. C.; Gogotsi, Y.; Barsoum, M. W. ACS Nano 2015, 9, 9507.
doi: 10.1021/acsnano.5b03591 |
37 |
Yang, J.; Naguib, M.; Ghidiu, M.; Pan, L.; Gu, J.; Nanda, J.; Halim, J.; Gogotsi, Y.; Barsoum, M. W. J. Am. Ceram. Soc. 2016, 99, 660.
doi: 10.1111/jace.13922 |
38 |
Halim, J.; Kota, S.; Lukatskaya, M. R.; Naguib, M.; Zhao, M.; Moon, E. J.; Pitock, J.; Nanda, J.; May, S. J.; Gogotsi, Y.; Barsoum, M. W. Adv. Funct. Mater. 2016, 26, 3118.
doi: 10.1002/adfm.201505328 |
39 |
Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. Adv. Mater. 2014, 26, 992.
doi: 10.1002/adma.201304138 |
40 |
Urbankowski, P.; Anasori, B.; Makaryan, T.; Er, D.; Kota, S.; Walsh, P. L.; Zhao, M.; Shenoy, V. B.; Barsouma, M. W.; Gogotsi. Y. Nanoscale 2016, 8, 11385.
doi: 10.1039/C6NR02253G |
41 |
Li, M.; Lu, J.; Luo, K.; Li, Y.; Chang, K.; Chen, K.; Zhou, J.; Rosen, J.; Hultman, L.; Eklund, P.; et al. J. Am. Chem. Soc. 2019, 141, 4730.
doi: 10.1021/jacs.9b00574 |
42 |
Li, Y.; Shao, H.; Lin, Z.; Lu, J.; Liu, L.; Duployer, B.; Persson, P. O. Å.; Eklund, P.; Hultman, L.; Li, M.; et al. Nat. Mater. 2020, 19, 894.
doi: 10.1038/s41563-020-0657-0 |
43 | Li, X. Study on Environmental Instability of Two-dimensional Crystal MXene (Ti3C2Tx). Ph. D. Dissertation, Shandong University, Jinan, 2021 |
李雪松. 二维晶体MXene (Ti3C2Tx)环境不稳定性的研究[D]. 济南: 山东大学, 2021. | |
44 |
Li, T.; Yao, L.; Liu, Q.; Gu, J.; Luo, R.; Li, J.; Yan, X.; Wang, W.; Liu, P.; Chen, B.; et al. Angew. Chem. Int. Ed. 2018, 57, 6115.
doi: 10.1002/anie.201800887 |
45 |
Yang, S.; Zhang, P.; Wang, F.; Ricciardulli, A. G.; Lohe, M. R.; Blom, P. W. M.; Feng, X. Angew. Chem. Int. Ed. 2018, 57, 15491.
doi: 10.1002/anie.201809662 |
46 |
Wang, C.; Shou, H.; Chen, S.; Wei, S.; Lin, Y.; Zhang, P.; Liu, Z.; Zhu, K.; Guo, X.; Wu, X.; et al. Adv. Mater. 2021, 33, 2101015.
doi: 10.1002/adma.202101015 |
47 |
Xu, C.; Wang, L.; Liu, Z.; Chen, L.; Guo, J.; Kang, N.; Ma, X.; Cheng, H.; Ren, W. Nat. Mater. 2015, 14, 1135.
doi: 10.1038/nmat4374 |
48 |
Wang, Z.; Kochat, V.; Pandey, P.; Kashyap, S.; Chattopadhy, S.; Samanta, A.; Sarkar, S.; Manimunda, P.; Zhang, X.; Asif, S.; et al. Adv. Mater. 2017, 29, 1700364.
doi: 10.1002/adma.201700364 |
49 |
Qi, Y.; Meng, C.; Xu, X.; Deng, B.; Han, N.; Liu, M.; Hong, M.; Ning, Y.; Liu, K.; Zhao, J.; et al. J. Am. Chem. Soc. 2017, 139, 48, 17574.
doi: 10.1021/jacs.7b09755 |
50 |
Kurtoglu, M.; Naguib, M.; Gogotsi, Y.; Barsoum, M. W. MRS Commun. 2012, 2, 133.
doi: 10.1557/mrc.2012.25 |
51 |
Borysiuk, V. N.; Mochalin, V. N.; Gogotsi, Y. Nanotechnology. 2015, 26, 265705.
doi: 10.1088/0957-4484/26/26/265705 |
52 |
Lipatov, A.; Lu, H.; Alhabeb, M.; Anasori, B.; Gruverman, A.; Gogotsi, Y.; Sinitskii, A. Sci. Adv. 2018, 4, eaat0491.
doi: 10.1126/sciadv.aat0491 |
53 |
Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. Nat. Rev. Mater. 2017, 2, 16098.
doi: 10.1038/natrevmats.2016.98 |
54 |
Miranda, A.; Halim, J.; Barsoum, M. W.; Lorke. A. Appl. Phys. Lett. 2016, 108, 033102.
doi: 10.1063/1.4939971 |
55 |
Tang, Q.; Zhou, Z.; Shen, P. J. Am. Chem. Soc. 2012, 134, 16909.
doi: 10.1021/ja308463r |
56 |
Lai, S.; Jeon, J.; Jang, S.; Xu, J.; Choi, Y. J.; Park, J.; Hwang, E.; Lee, S. Nanoscale 2015, 7, 19390.
doi: 10.1039/C5NR06513E |
57 |
Wang, H.; Wu, Y.; Zhang, J.; Li, G.; Huang, H.; Zhang, X.; Jiang, Q. Mater. Lett. 2015, 160, 537.
doi: 10.1016/j.matlet.2015.08.046 |
58 |
Zeraati, A. S.; Mirkhani, S. A.; Sun, P.; Naguib, M.; Braun, P. V.; Sundararaj, U. Nanoscale 2021, 13, 3572.
doi: 10.1039/d0nr06671k |
59 |
Xu, D.; Li, Z.; Li, L.; Wang, J. Adv. Funct. Mater. 2020, 30, 2000712.
doi: 10.1002/adfm.202000712 |
60 |
Berdiyorov, G. R. AIP Adv. 2016, 6, 055105.
doi: 10.1063/1.4948799 |
61 |
Xuan, J.; Wang, Z.; Chen, Y.; Liang, D.; Cheng, L.; Yang, X.; Liu, Z.; Ma, R.; Sasaki, T.; Geng, F. Angew. Chem. Int. Ed. 2016, 55, 14569.
doi: 10.1002/anie.201606643 |
62 |
Robinson, J. T.; Tabakman, S. M.; Liang, Y.; Wang, H.; Casalongue, H. S.; Vinh, D.; Dai, H. J. Am. Chem. Soc. 2011, 133, 6825.
doi: 10.1021/ja2010175 |
63 |
Hantanasirisakul, K.; Zhao, M.; Urbankowski, P.; Halim, J.; Anasori, B.; Kota, S.; Ren, C. E.; Barsoum, M. W.; Gogotsi, Y. Adv. Electron. Mater. 2016, 2, 1600050.
doi: 10.1002/aelm.201600050 |
64 |
Dillon, A. D.; Ghidiu, M. J.; Krick, A. L.; Griggs, J.; May, S. J.; Gogotsi, Y.; Barsoum, M. W.; Fafarman, A. T. Adv. Funct. Mater. 2016, 26, 4162.
doi: 10.1002/adfm.201600357 |
65 |
Natu, V.; Sokol, M.; Verger, L.; Barsoum, M. W. J. Phys. Chem. C. 2018, 122, 27745.
doi: 10.1021/acs.jpcc.8b08860 |
66 |
Naguib, M.; Mashtalir, O.; Lukatskaya, M.; Dyatkin, B.; Zhang, C.; Presser, V.; Gogotsi, Y.; Barsoum, M. W. Chem. Commun. 2014, 50, 7420.
doi: 10.1039/c4cc01646g |
67 |
Maleski, K.; Mochalin, V. N.; Gogotsi, Y. Chem. Mater. 2017, 29, 1632.
doi: 10.1021/acs.chemmater.6b04830 |
68 |
Zhu, Y.; Pang, Z.; Ge M. New Chem. Mater. 2020, 48, 102.
doi: 10.19817/j.cnki.issn1006-3536.2020.01.023 |
朱亚楠, 逄增媛, 葛明桥 化工新型材料, 2020, 48, 102.
doi: 10.19817/j.cnki.issn1006-3536.2020.01.023 |
|
69 |
Uzun, S.; Seyedin, S.; Stoltzfus, A. L.; Levitt, A. S.; Alhabeb, M.; Anayee, M.; Strobel, C. J.; Razal, J. M.; Dion, G.; Gogotsi, Y. Adv. Funct. Mater. 2019, 29, 1905015.
doi: 10.1002/adfm.201905015 |
70 |
Levitt, A.; Hegh, D.; Phillips, P.; Uzun, S.; Anayee, M.; Razal, J. M.; Gogotsi, Y.; Dion, G. Mater. Today. 2020, 34, 17.
doi: 10.1016/j.mattod.2020.02.005 |
71 |
Pu, J.; Zhao, X.; Zha, X.; Bai, L.; Ke, K.; Bao, R.; Liu, Z.; Yang, M.; Yang, W. J. Mater. Chem. A. 2019, 7, 15913.
doi: 10.1039/c9ta04352g |
72 |
Hu, M.; Li, Z.; Li, G.; Hu, T.; Zhang, C.; Wang, X. Adv. Mater. Technol. 2017, 2, 1700143.
doi: 10.1002/admt.201700143 |
73 |
Shi, B.; Li, L.; Chen, A.; Liu, X.; Shen, G. Nano‑Micro Lett. 2022, 14, 34.
doi: 10.1007/s40820-021-00757-6 |
74 |
Zhang, J.; Seyedin, S.; Gu, Z.; Yang, W.; Wang, X.; Razal, J. M. Nanoscale 2017, 9, 18604.
doi: 10.1039/c7nr06619h |
75 |
Yuan, X.; Jiang, J.; Wei, H.; Yuan, C.; Wang, M.; Zhang, D.; Liu, L.; Huang, Y.; Gao, G.; Jiang, Z. Compos. Sci. Technol. 2021, 201, 108496.
doi: 10.1016/j.compscitech.2020.108496 |
76 |
Ericson, L. M.; Fan, H.; Peng, H. Davis, V. A.; Zhou, W.; Sulpizio, J.; Wang, Y.; Booker, R.; Vavro, J.; Guthy, C.; et al. Science 2004, 305, 1447.
doi: 10.1126/science.1101398 |
77 |
Li, S.; Li, Y.; Shao, Y.; Wang, H. Adv. Fiber Mater. 2022, 4, 129.
doi: 10.1007/s42765-021-00111-w |
78 |
Xu, Z.; Sun, H.; Zhao, X.; Gao, C. Adv. Mater. 2013, 25, 188.
doi: 10.1002/adma.201203448 |
79 |
Xia, Z.; Shao, Y. Acta Phys. -Chim. Sin. 2022, 38, 2103046.
doi: 10.3866/PKU.WHXB202103046 |
夏洲, 邵元龙 物理化学学报, 2022, 38, 2103046.
doi: 10.3866/PKU.WHXB202103046 |
|
80 |
Seyedin, S.; Zhang, J.; Usman, K. A. S.; Qin, S.; Glushenkov, A. M.; Yanza, E. R. S.; Jones, R. T.; Razal, J. M. Global Challenges. 2019, 3, 1900037.
doi: 10.1002/gch2.201900037 |
81 |
Cheng, B.; Wu, P. ACS Nano 2021, 15, 8676.
doi: 10.1021/acsnano.1c00749 |
82 |
Zhang, J.; Seyedin, S.; Qin, S.; Wang, Z.; Moradi, S.; Yang, F.; Lynch, P. A.; Yang, W.; Liu, J.; Wang, X.; Razal, J. M. Small 2019, 15, 1804732.
doi: 10.1002/smll.201804732 |
83 |
Lee, S. H.; Eom, W.; Shin, H. Ambade, R. B.; Bang, J. H.; Kim, H. W.; Han, T. H. ACS Appl. Mater. Interfaces. 2020, 12, 10434.
doi: 10.1021/acsami.9b21765 |
84 |
Yang, Q.; Xu, Z.; Fang, B.; Huang, T.; Cai, S.; Chen, H.; Liu, Y.; Gopalsamy, K.; Gao, W.; Gao, C. J. Mater. Chem. A. 2017, 5, 22113.
doi: 10.1039/c7ta07999k |
85 |
Shin, H.; Eom, W.; Lee, K. H.; Jeong, W.; Kang, D. J.; Han, T. H. ACS Nano 2021, 15, 3320.
doi: 10.1021/acsnano.0c10255 |
86 |
Zhang, J.; Uzun, S.; Seyedin, S.; Lynch, P. A.; Akuzum, B.; Wang, Z.; Qin, S.; Alhabeb, M.; Shuck, C. E.; Lei, W.; et al. ACS Cent. Sci. 2020, 6, 254.
doi: 10.1021/acscentsci.9b01217 |
87 |
Hwang H.; Byun, S.; Yuk, S.; Kim, S.; Song, S. H.; Lee, D. Appl. Surf. Sci. 2021, 556, 149710.
doi: 10.1016/j.apsusc.2021.149710 |
88 |
Seo, D.; Kim, M.; Song, J. K.; Kim, E.; Koo, J.; Kim, K. C.; Han, H.; Lee, Y.; Ahn, C. W. ChemElectroChem 2022, 9, e202101344.
doi: 10.1002/celc.202101344 |
89 |
Mayerberger, E. A.; Urbanek, O.; McDaniel, R. M.; Street, R. M.; Barsoum, M. W.; Schauer, C. L. J. Appl. Polym. Sci. 2017, 134, 45295.
doi: 10.1002/APP.45295 |
90 |
Wang, D.; Zhang, D.; Li, P.; Yang, Z.; Mi, Q.; Yu, L. Nano-Micro Lett. 2021, 13, 57.
doi: 10.1007/s40820-020-00580-5 |
91 |
Yang, K.; Yin, F.; Xia, D.; Peng, H.; Yang, J.; Yuan, W. Nanoscale 2019, 11, 9949.
doi: 10.1039/c9nr00488b |
92 |
Jia, Z.; Li, Z.; Ma, S.; Zhang, W.; Chen, Y.; Luo, Y.; Jia, D.; Zhong, B.; Razal, J. M.; Wang, X.; et al. J. Colloid Interface Sci. 2021, 584, 1.
doi: 10.1016/j.jcis.2020.09.035 |
93 |
Levitt, A.; Seyedin, S.; Zhang, J.; Wang, X.; Razal, J. M.; Dion, G.; Gogotsi, Y. Small 2020, 16, 2002158.
doi: 10.1002/smll.202002158 |
94 |
Xin, M.; Li, J.; Ma, Z.; Pan, L.; Shi, Y. Front. Chem. 2020, 8, 297.
doi: 10.3389/fchem.2020.00297 |
95 |
Lan, L.; Jiang, C.; Yao, Y.; Ping, J.; Ying, Y. Nano Energy 2021, 84, 105954.
doi: 10.1016/j.nanoen.2021.105954 |
96 |
Wu, G.; Yang, Z.; Zhang, Z.; Ji, B.; Hou, C.; Li, Y.; Jia, W.; Zhang, Q.; Wang, H. Electrochim. Acta. 2021, 395, 139141.
doi: 10.1016/j.electacta.2021.139141 |
97 |
Deng, C.; Zhao, S.; Su, E.; Li, Y.; Wu, F. Adv. Mater. Technol. 2021, 6, 2100574.
doi: 10.1002/admt.202100574 |
98 |
Salauddin, M.; Rana, S. M. S.; Rahman, M. T.; Sharifuzzaman, M.; Maharjan, P.; Bhatta, T.; Cho, H.; Lee, S. H.; Park, C.; Shrestha, K.; et al. Adv. Funct. Mater. 2022, 32, 2107143.
doi: 10.1002/adfm.202107143 |
99 |
Ghosh, R.; Singh, A.; Santra, S.; Ray, S. K.; Chandra, A.; Guha, P. K. Sensors Actuat. B Chem. 2014, 205, 67.
doi: 10.1016/j.snb.2014.08.044 |
100 |
Tang, Y.; Xu, Y.; Yang, J.; Song, Y.; Yin, F.; Yuan, W. Sens. Actuators B-Chem. 2021, 346, 130500.
doi: 10.1016/j.snb.2021.130500 |
101 |
Römer, F. M.; Wiedwald, U.; Strusch, T.; Halim, J.; Mayerberger, E.; Barsoumb, M. W.; Farle, M. RSC Adv. 2017, 7, 13097.
doi: 10.1039/C6RA27505B |
102 |
Wang, L.; Tian, M.; Zhang, Y.; Sun, F.; Qi, X.; Liu, Y.; Qu, L. J. Mater. Sci. 2020, 55, 6187.
doi: 10.1007/s10853-020-04425-9 |
103 |
Ma, X.; Jiang, Z.; Lin, Y. J. Semicond. 2021, 42, 101602.
doi: 10.1088/1674-4926/42/10/101602 |
104 |
Wang, Y.; Zheng, Y.; Zhao, J.; Li, Y. Energy Storage Mater. 2020, 33, 82.
doi: 10.1016/j.ensm.2020.06.018 |
105 |
Li, H.; Shao, F.; Wen, X.; Ding, Y.; Zhou, C.; Zhang, Y.; Wei, H.; Hu, N. Electrochim. Acta. 2021, 371, 137838.
doi: 10.1016/j.electacta.2021.137838 |
106 |
Wu, G.; Sun, S.; Zhu, X.; Ma, Z.; Zhang, Y.; Bao, N. Angew. Chem. Int. Ed. 2021, 61, e202115559.
doi: 10.1002/anie.202115559 |
107 |
Seyedin, S.; Yanza, E. R. S.; Razal, J. M. J. Mater. Chem. A. 2017, 5, 24076.
doi: 10.1039/c7ta08355f |
108 |
Guo, Z.; Li, Y.; Zhang, R.; Lu, Z. J. Textile Res. 2022, 43, 74.
doi: 10.13475/j.fzxb.20211102607 |
郭子娇, 李悦, 张瑞, 陆赞 纺织学报, 2022, 43, 74.
doi: 10.13475/j.fzxb.20211102607 |
|
109 |
Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Hong, S. M.; Koo, C. M.; Gogotsi, Y. Science 2016, 353, 1137.
doi: 10.1126/science.aag2421 |
110 |
Han, M.; Yin, X.; Hantanasirisakul, K.; Li, X.; Iqbal, A.; Hatter, C. B.; Anasori, B.; Koo, C. M.; Torita, T.; Soda, Y.; et al. Adv. Opt. Mater. 2019, 7, 1900267.
doi: 10.1002/adom.201900267 |
111 |
Wang, Q.; Zhang, H.; Liu, J.; Zhao, S.; Xie, X.; Liu, L.; Yang, R.; Koratkar, N.; Yu, Z. Adv. Funct. Mater. 2019, 29, 1806819.
doi: 10.1002/adfm.201806819 |
112 |
Liu, L.; Chen, W.; Zhang, H.; Wang, Q.; Guan, F.; Yu, Z. Adv. Funct. Mater. 2019, 29, 1905197.
doi: 10.1002/adfm.201905197 |
113 |
Zheng, Y.; Yin, R.; Zhao, Y.; Liu, H.; Zhang, D.; Shi, X.; Zhang, B.; Liu, C.; Shen, C. Chem. Eng. J. 2021, 420, 127720.
doi: 10.1016/j.cej.2020.127720 |
114 |
Zheng, X.; Shen, J.; Hu, Q.; Nie, W.; Wang, Z.; Zhou, L.; Li, C. Nanoscale 2021, 13, 1832.
doi: 10.1039/d0nr07433k |
[1] | 何文倩, 邸亚, 姜南, 刘遵峰, 陈永胜. 石墨烯诱导水凝胶成核的高强韧人造蛛丝[J]. 物理化学学报, 2022, 38(9): 2204059 - . |
[2] | 阙海峰, 江华宁, 王兴国, 翟朋博, 孟令佳, 张鹏, 宫勇吉. 二维材料范德华间隙的利用[J]. 物理化学学报, 2021, 37(11): 2010051 - . |
[3] | 王易,霍旺晨,袁小亚,张育新. 二氧化锰与二维材料复合应用于超级电容器[J]. 物理化学学报, 2020, 36(2): 1904007 - . |
[4] | 谭淼,张磊,梁万珍. 基于二维材料WX2构建的范德华异质结的结构和性质及应变效应的理论研究[J]. 物理化学学报, 2019, 35(4): 385 -393 . |
[5] | 李家意,丁一,张卫,周鹏. 基于二维材料及其范德瓦尔斯异质结的光电探测器[J]. 物理化学学报, 2019, 35(10): 1058 -1077 . |
[6] | 杜春保,胡小玲,张刚,程渊. 二维材料“遇见”生物大分子:机遇与挑战[J]. 物理化学学报, 2019, 35(10): 1078 -1089 . |
[7] | 任玉美,许群. 构筑先进二维异质结构Ag/WO3−x用于提升光电转化效率[J]. 物理化学学报, 2019, 35(10): 1157 -1164 . |
[8] | 程龙,刘公平,金万勤. 二维材料膜在气体分离领域的最新研究进展[J]. 物理化学学报, 2019, 35(10): 1090 -1098 . |
[9] | 陈熙,张胜利. 基于3d元素掺杂的石墨二炔分子传感材料性能调控[J]. 物理化学学报, 2018, 34(9): 1061 -1073 . |
[10] | 凌崇益,王金兰. 基于类石墨烯二维材料的析氢反应电催化剂的研究进展[J]. 物理化学学报, 2017, 33(5): 869 -885 . |
[11] | 贺雷,张向倩,陆安慧. 二维炭基多孔材料的合成及应用[J]. 物理化学学报, 2017, 33(4): 709 -728 . |
[12] | 曾梦琪,张涛,谭丽芳,付磊. 液态金属催化剂:二维材料的点金石[J]. 物理化学学报, 2017, 33(3): 464 -475 . |
[13] | 张绍政,刘佳,谢燕,陆银稷,李林,吕亮,杨建辉,韦世豪. 二维M2XO2-2x(OH)2x(M=Ti, V;X=C, N)析氢催化活性的第一性原理研究[J]. 物理化学学报, 2017, 33(10): 2022 -2028 . |
[14] | 石乃恩,宋传远,张俊,黄维. 金属卟啉二维纳米晶的制备及其光电性能[J]. 物理化学学报, 2016, 32(10): 2447 -2461 . |
[15] | 杨建辉, 计嘉琳, 李林, 韦世豪. 二维TiC 层表面H2的化学吸附与物理吸附[J]. 物理化学学报, 2014, 30(10): 1821 -1826 . |
|