物理化学学报 >> 2023, Vol. 39 >> Issue (3): 2210002.doi: 10.3866/PKU.WHXB202210002
张明旭1, 周琪森1, 梅馨怡1, 陈婧萱1, 邱俊明1, 李修志2, 李霜1, 于牧冰1, 秦朝朝2, 张晓亮1,*()
收稿日期:
2022-10-05
录用日期:
2022-11-24
发布日期:
2022-12-02
通讯作者:
张晓亮
E-mail:xiaoliang.zhang@buaa.edu.cn
基金资助:
Mingxu Zhang1, Qisen Zhou1, Xinyi Mei1, Jingxuan Chen1, Junming Qiu1, Xiuzhi Li2, Shuang Li1, Mubing Yu1, Chaochao Qin2, Xiaoliang Zhang1,*()
Received:
2022-10-05
Accepted:
2022-11-24
Published:
2022-12-02
Contact:
Xiaoliang Zhang
E-mail:xiaoliang.zhang@buaa.edu.cn
About author:
Xiaoliang Zhang, Email: xiaoliang.zhang@buaa.edu.cn; Tel.: +86-10-82315857Supported by:
摘要:
胶体量子点(CQD)具有优异的红外光吸收能力和光谱可调特性,是用于制备高效太阳能电池最有前途的红外光电材料之一。然而,以醋酸铵(AA)为添加剂的液相配体交换会导致CQD固体中产生宽带隙PbI2基质,其将作为电荷传输势垒,在很大程度上影响了CQD太阳能电池(CQDSC)中载流子的提取,从而影响了光伏性能。本文报道利用二甲基碘化铵(DMAI)调节CQD配体交换过程,使载流子在CQD固体中的传输势垒大幅降低。通过对CQD固体进行全面的表征和理论计算,充分揭示了DMAI和CQD之间的相互作用。结果表明,通过DMAI调节CQD配体交换过程,使CQD固体均匀堆积,提高了载流子输运性能,并且陷阱辅助复合受到显著抑制。因此,CQDSC器件中的载流子提取得到了大幅提高,能量转换效率(PCE)比用AA制备的CQDSC器件提高了17.8%。此工作为调控CQD表面化学特性提供了新的研究思路,并为降低CQD固体中载流子输运的势垒提供了可行的方法。
:
张明旭, 周琪森, 梅馨怡, 陈婧萱, 邱俊明, 李修志, 李霜, 于牧冰, 秦朝朝, 张晓亮. 贫PbI2基体的胶体量子点固体用于高效红外太阳能电池[J]. 物理化学学报, 2023, 39(3): 2210002.
Mingxu Zhang, Qisen Zhou, Xinyi Mei, Jingxuan Chen, Junming Qiu, Xiuzhi Li, Shuang Li, Mubing Yu, Chaochao Qin, Xiaoliang Zhang. Colloidal Quantum Dot Solids with a Diminished Epitaxial PbI2 Matrix for Efficient Infrared Solar Cells[J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2210002.
Fig 1
(a) Schematic presentation of the surface state of the CQD with different ligand exchange methods. The CQD capped by OA ligands is shown on the left. The middle diagram shows the ligand exchange process occurring on the (111) crystal plane. The right inset is taken from the ligand exchange process. HRTEM images of (b) the CQD-AA and (c) CQD-DMAI after the ligand exchange."
Fig 2
Core level XPS spectra of (a) Pb 4f, (b) I 3d, and (c) N 1s of the CQD-AA and CQD-DMAI. (d) Valence band spectra of CQD-AA and CQD-DMAI. (e) The kinetics of the photobleaching signal of CQD-AA and CQD-DMAI. (f) SCLC curves of AA and DMAI-based devices. (g) Structure optimization diagram of PbI2 and DMAI. The dissociation energy (De) of I? from DMAI and PbI2 was also calculated. The geometric configurations and calculated charge density distribution of (h) PbI2 and (i) DMA+ on the CQD-I (111) facet. The cyan iso-surface and yellow iso-surface represent the positive and negative differential charge density, respectively."
Fig 3
2D GIWAXS patterns of (a) CQD-AA and (b) CQD-DMAI solid film. (c) Azimuthally-integrated intensities of the 2D GIWAXS data of the CQD-AA and CQD-DMAI solid film. 2D GISAXS patterns of (d) CQD-AA and (e) CQD-DMAI solid films. (f) Azimuthally-integrated intensities of the 2D GISAXS data of the CQD-AA and CQD-DMAI solid films. 2D GISAXS patterns of (g) CQD-AA and (h) CQD-DMAI solid film with varying the distance between the detector and the sample. (i) Azimuthally-integrated intensities of the 2D GISAXS data of the CQD-AA and CQD-DMAI solid films."
Fig 5
Charge carrier dynamics in the CQDSCs. (a) Normalized TPV curves of AA and DMAI-based-CQDSCs. (b) Photocurrent density and (c) photovoltage as a function of the light intensity of AA and DMAI-based-CQDSCs. (d) EIS analysis of AA and DMAI-based-CQDSCs under dark conditions. Proposed charge carrier transport within the (e) AA and (f) DMAI-based CQD solids."
1 |
Chen, J.; Jia, D.; Johansson, E. M. J.; Hagfeldt, A.; Zhang, X. Energy Environ. Sci. 2021, 14, 224.
doi: 10.1039/d0ee02900a |
2 |
Zhang, X.; Hägglund, C.; Johansson, E. M. J. Adv. Funct. Mater. 2016, 26, 1253.
doi: 10.1002/adfm.201503338 |
3 |
Zheng, S.; Chen, J.; Johansson, E. M. J.; Zhang, X. I. Science 2020, 23, 101753.
doi: 10.1016/j.isci.2020.101753 |
4 |
Konstantatos, G.; Howard, I.; Fischer, A.; Hoogland, S.; Clifford, J.; Klem, E.; Levina, L.; Sargent, E. H. Nature 2006, 442, 180.
doi: 10.1038/nature04855 |
5 |
Lee, J. S.; Kovalenko, M. V.; Huang, J.; Chung, D. S.; Talapin, D. V. Nat. Nanotechnol. 2011, 6, 348.
doi: 10.1038/nnano.2011.46 |
6 |
Gao, L.; Quan, L. N.; García de Arquer, F. P.; Zhao, Y.; Munir, R.; Proppe, A.; Quintero-Bermudez, R.; Zou, C.; Yang, Z.; Saidaminov, M. I.; et al Nat. Photonics 2020, 14, 459.
doi: 10.1038/s41566-020-0635-8 |
7 |
McDonald, S. A.; Konstantatos, G.; Zhang, S. G.; Cyr, P. W.; Klem, E. J. D.; Levina, L.; Sargent, E. H. Nat. Mater. 2005, 4, 138.
doi: 10.1038/nmat1299 |
8 |
Mei, X.; Jia, D.; Chen, J.; Zheng, S.; Zhang, X. Nano Today 2022, 43, 101449.
doi: 10.1016/j.nantod.2022.101449 |
9 |
Whitworth, G. L.; Dalmases, M.; Taghipour, N.; Konstantatos, G. Nat. Photonics 2021, 15, 738.
doi: 10.1038/s41566-021-00878-9 |
10 | Wang, C.; Zhang, C.; Li, R.; Chen, Q.; Qian, L.; Chen, L. Acta Phys. -Chim. Sin. 2022, 38, 2104030. |
王成, 张弛, 黎瑞锋, 陈琪, 钱磊, 陈立桅 物理化学学报, 2022, 38, 2104030.
doi: 10.3866/PKU.WHXB202104030 |
|
11 |
Choi, M. J.; Garcia de Arquer, F. P.; Proppe, A. H.; Seifitokaldani, A.; Choi, J.; Kim, J.; Baek, S. W.; Liu, M.; Sun, B.; Biondi, M.; et al Nat. Commun. 2020, 11, 103.
doi: 10.1038/s41467-019-13437-2 |
12 |
Jia, D.; Chen, J.; Zheng, S.; Phuyal, D.; Yu, M.; Tian, L.; Liu, J.; Karis, O.; Rensmo, H.; Johansson, E. M. J.; et al Adv. Energy Mater. 2019, 9, 1902809.
doi: 10.1002/aenm.201902809 |
13 |
Chen, J.; Zheng, S.; Jia, D.; Liu, W.; Andruszkiewicz, A.; Qin, C.; Yu, M.; Liu, J.; Johansson, E. M. J.; Zhang, X. ACS Energy Lett. 2021, 6, 1970.
doi: 10.1021/acsenergylett.1c00475 |
14 |
Zhang, X.; Zhang, J.; Phuyal, D.; Du, J.; Tian, L.; Öberg, V. A.; Johansson, M. B.; Cappel, U. B.; Karis, O.; Liu, J.; et al Adv. Energy Mater. 2018, 8, 1702049.
doi: 10.1002/aenm.201702049 |
15 |
Zhang, X.; Cappel, U. B.; Jia, D.; Zhou, Q.; Du, J.; Sloboda, T.; Svanström, S.; Johansson, F. O. L.; Lindblad, A.; Giangrisostomi, E.; et al Chem. Mater. 2019, 31, 4081.
doi: 10.1021/acs.chemmater.9b00742 |
16 |
Zheng, S.; Wang, Y.; Jia, D.; Tian, L.; Chen, J.; Shan, L.; Dong, L.; Zhang, X. Adv. Mater. Interfaces 2021, 8, 2100489.
doi: 10.1002/admi.202100489 |
17 |
Zhang, X.; Öberg, V. A.; Du, J.; Liu, J.; Johansson, E. M. J. Energy Environ. Sci. 2018, 11, 354.
doi: 10.1039/c7ee02772a |
18 |
Zhang, X.; Zhang, J.; Liu, J.; Johansson, E. M. J. Nanoscale 2015, 7, 11520.
doi: 10.1039/c5nr02617b |
19 |
Zhang, X.; Hägglund, C.; Johansson, M. B.; Sveinbjörnsson, K.; Johansson, E. M. J. Adv. Funct. Mater. 2016, 26, 1921.
doi: 10.1002/adfm.201504038 |
20 |
Chen, J.; Jia, D.; Qiu, J.; Zhuang, R.; Hua, Y.; Zhang, X. Nano Energy 2022, 96, 107140.
doi: 10.1016/j.nanoen.2022.107140 |
21 |
Jia, D.; Chen, J.; Qiu, J.; Ma, H.; Yu, M.; Liu, J.; Zhang, X. Joule 2022, 6, 1632.
doi: 10.1016/j.joule.2022.05.007 |
22 |
Semonin, O. E.; Luther, J. M.; Choi, S.; Chen, H. Y.; Gao, J.; Nozik, A. J.; Beard, M. C. Science 2011, 334, 1530.
doi: 10.1126/science.1209845 |
23 |
Nozik, A. J.; Beard, M. C.; Luther, J. M.; Law, M.; Ellingson, R. J.; Johnson, J. C. Chem. Rev. 2010, 110, 6873.
doi: 10.1021/cr900289f |
24 | Han, B. Acta Phys. -Chim. Sin. 2020, 36, 1911025. |
韩布兴 物理化学学报, 2020, 36, 1911025.
doi: 10.3866/PKU.WHXB201911025 |
|
25 |
Zhang, J.; Gao, J.; Miller, E. M.; Luther, J. M.; Beard, M. C. ACS Nano 2014, 8, 614.
doi: 10.1021/nn405236k |
26 |
Yuan, M.; Kemp, K. W.; Thon, S. M.; Kim, J. Y.; Chou, K. W.; Amassian, A.; Sargent, E. H. Adv. Mater. 2014, 26, 3513.
doi: 10.1002/adma.201305912 |
27 |
Wang, Y.; Lu, K.; Han, L.; Liu, Z.; Shi, G.; Fang, H.; Chen, S.; Wu, T.; Yang, F.; Gu, M.; et al Adv. Mater. 2018, 30, 1704871.
doi: 10.1002/adma.201704871 |
28 |
Wang, Y.; Liu, Z.; Huo, N.; Li, F.; Gu, M.; Ling, X.; Zhang, Y.; Lu, K.; Han, L.; Fang, H.; et al Nat. Commun. 2019, 10, 5136.
doi: 10.1038/s41467-019-13158-6 |
29 |
Xia, Y.; Liu, S.; Wang, K.; Yang, X.; Lian, L.; Zhang, Z.; He, J.; Liang, G.; Wang, S.; Tan, M.; et al Adv. Funct. Mater. 2019, 30, 1907379.
doi: 10.1002/adfm.201907379 |
30 |
Voznyy, O.; Zhitomirsky, D.; Stadler, P.; Ning, Z.; Hoogland, S.; Sargent, E. H. ACS Nano 2012, 6, 8448.
doi: 10.1021/nn303364d |
31 |
Choi, H.; Ko, J. H.; Kim, Y. H.; Jeong, S. J. Am. Chem. Soc. 2013, 135, 5278.
doi: 10.1021/ja400948t |
32 |
Zherebetskyy, D.; Scheele, M.; Zhang, Y.; Bronstein, N.; Thompson, C.; Britt, D.; Salmeron, M.; Alivisatos, P.; Wang, L. W. Science 2014, 344, 1380.
doi: 10.1126/science.1252727 |
33 |
Chen, W.; Guo, R.; Tang, H.; Wienhold, K. S.; Li, N.; Jiang, Z.; Tang, J.; Jiang, X.; Kreuzer, L. P.; Liu, H.; et al Energy Environ. Sci. 2021, 14, 3420.
doi: 10.1039/d1ee00832c |
34 |
Shi, G.; Wang, H.; Zhang, Y.; Cheng, C.; Zhai, T.; Chen, B.; Liu, X.; Jono, R.; Mao, X.; Liu, Y.; et al Nat. Commun. 2021, 12, 4381.
doi: 10.1038/s41467-021-24614-7 |
35 |
Zhang, Z.; Sung, J.; Toolan, D. T. W.; Han, S.; Pandya, R.; Weir, M. P.; Xiao, J.; Dowland, S.; Liu, M.; Ryan, A. J.; et al Nat. Mater. 2022, 21, 533.
doi: 10.1038/s41563-022-01204-6 |
36 |
Sánchez-Godoy, H. E.; Erazo, E. A.; Gualdrón-Reyes, A. F.; Khan, A. H.; Agouram, S.; Barea, E. M.; Rodriguez, R. A.; Zarazúa, I.; Ortiz, P.; Cortés, M. T.; et al Adv. Energy Mater. 2020, 10, 2002422.
doi: 10.1002/aenm.202002422 |
37 |
Tavakoli, M. M.; Dastjerdi, H. T.; Yadav, P.; Prochowicz, D.; Si, H.; Tavakoli, R. Adv. Funct. Mater. 2021, 31, 2010623.
doi: 10.1002/adfm.202010623 |
38 |
Kim, H. I.; Baek, S. W.; Cheon, H. J.; Ryu, S. U.; Lee, S.; Choi, M. J.; Choi, K.; Biondi, M.; Hoogland, S.; de Arquer, F. P. G.; et al Adv. Mater. 2020, 32, 2004985.
doi: 10.1002/adma.202004985 |
39 |
Sun, B.; Johnston, A.; Xu, C.; Wei, M.; Huang, Z.; Jiang, Z.; Zhou, H.; Gao, Y.; Dong, Y.; Ouellette, O.; et al Joule 2020, 4, 1542.
doi: 10.1016/j.joule.2020.05.011 |
40 |
Cao, Y. M.; Stavrinadis, A.; Lasanta, T.; So, D.; Konstantatos, G. Nat. Energy 2016, 1, 16035.
doi: 10.1038/Nenergy.2016.35 |
41 |
Kagan, C. R.; Murray, C. B. Nat. Nanotechnol. 2015, 10, 1013.
doi: 10.1038/nnano.2015.247 |
42 |
Balazs, D. M.; Dirin, D. N.; Fang, H. H.; Protesescu, L.; ten Brink, G. H.; Kooi, B. J.; Kovalenko, M. V.; Loi, M. A. ACS Nano 2015, 9, 11951.
doi: 10.1021/acsnano.5b04547 |
43 |
Gilmore, R. H.; Liu, Y.; Shcherbakov-Wu, W.; Dahod, N. S.; Lee, E. M. Y.; Weidman, M. C.; Li, H.; Jean, J.; Bulović, V.; Willard, A. P.; et al Matter 2019, 1, 250.
doi: 10.1016/j.matt.2019.05.015 |
44 |
Liu, M.; Voznyy, O.; Sabatini, R.; Garcia de Arquer, F. P.; Munir, R.; Balawi, A. H.; Lan, X.; Fan, F.; Walters, G.; Kirmani, A. R.; et al Nat. Mater. 2017, 16, 258.
doi: 10.1038/nmat4800 |
45 |
Jo, J. W.; Kim, Y.; Choi, J.; de Arquer, F. P. G.; Walters, G.; Sun, B.; Ouellette, O.; Kim, J.; Proppe, A. H.; Quintero-Bermudez, R.; et al Adv. Mater. 2017, 29, 1703627.
doi: 10.1002/adma.201703627 |
46 |
Zhou, Q.; Qiu, J.; Wang, Y.; Yu, M.; Liu, J.; Zhang, X. ACS Energy Lett. 2021, 6, 1596.
doi: 10.1021/acsenergylett.1c00291 |
47 |
Polman, A.; Knight, M.; Garnett, E. C.; Ehrler, B.; Sinke, W. C. Science 2016, 352, aad4424.
doi: 10.1126/science.aad4424 |
48 |
Xu, J.; Voznyy, O.; Liu, M.; Kirmani, A. R.; Walters, G.; Munir, R.; Abdelsamie, M.; Proppe, A. H.; Sarkar, A.; Garcia de Arquer, F. P.; et al Nat. Nanotechnol. 2018, 13, 456.
doi: 10.1038/s41565-018-0117-z |
49 |
Qiu, J.; Zhou, Q.; Jia, D.; Wang, Y.; Li, S.; Zhang, X. J. Mater. Chem. A 2022, 10, 1821.
doi: 10.1039/d1ta09756c |
50 |
Gao, J.; Johnson, J. C. ACS Nano 2012, 6, 3292.
doi: 10.1021/nn300707d |
51 |
Kroupa, D. M.; Voros, M.; Brawand, N. P.; McNichols, B. W.; Miller, E. M.; Gu, J.; Nozik, A. J.; Sellinger, A.; Galli, G.; Beard, M. C. Nat. Commun. 2017, 8, 15257.
doi: 10.1038/ncomms15257 |
52 |
Hu, L.; Lei, Q.; Guan, X.; Patterson, R.; Yuan, J.; Lin, C. H.; Kim, J.; Geng, X.; Younis, A.; Wu, X.; et al Adv. Sci. 2021, 8, 2003138.
doi: 10.1002/advs.202003138 |
53 |
Wang, Y.; Mei, X.; Qiu, J.; Zhou, Q.; Jia, D.; Yu, M.; Liu, J.; Zhang, X. J. Phys. Chem. Lett. 2021, 12, 11330.
doi: 10.1021/acs.jpclett.1c03213 |
54 |
Li, F.; Liu, Y.; Shi, G. Z.; Chen, W.; Guo, R. J.; Liu, D.; Zhang, Y. H.; Wang, Y. J.; Meng, X.; Zhang, X. L.; et al Adv. Funct. Mater. 2021, 31, 2104457.
doi: 10.1002/adfm.202104457 |
55 |
Wang, R.; Wu, X.; Xu, K.; Zhou, W.; Shang, Y.; Tang, H.; Chen, H.; Ning, Z. Adv. Mater. 2018, 30, 1704882.
doi: 10.1002/adma.201704882 |
56 |
Xu, K.; Zhou, W.; Ning, Z. Small 2020, 16, 2003397.
doi: 10.1002/smll.202003397 |
[1] | 孙国栋,康熙,金山,李小武,胡大乔,汪恕欣,朱满洲. 银镍合金团簇Ag4Ni2(SPhMe2)8 (SPhMe2 = 2, 4-二甲基苯硫酚)的合成及其结构表征[J]. 物理化学学报, 2018, 34(7): 799 -804 . |
[2] | 黄伟新,千坤,邬宗芳,陈士龙. 金催化作用的结构敏感性[J]. 物理化学学报, 2016, 32(1): 48 -60 . |
[3] | 王利,施宏,刘慧慧,邵翔,吴凯. Mo(001)表面的CaO(001)薄膜模型催化体系的STM研究[J]. 物理化学学报, 2016, 32(1): 183 -194 . |
[4] | 卫会云,王国帅,吴会觉,罗艳红,李冬梅,孟庆波. 量子点敏化太阳能电池研究进展[J]. 物理化学学报, 2016, 32(1): 201 -213 . |
[5] | 倪婷, 邹凡蒋, 玉蓉, 杨盛谊. 用CdSe/ZnS量子点提高体异质结有机太阳电池的效率[J]. 物理化学学报, 2014, 30(3): 453 -459 . |
[6] | 李闻哲, 王立铎, 高瑞, 董豪鹏, 牛广达, 郭旭东, 邱勇. 通过S2-中间态将CdSe量子点有机配体转化为ZnS保护层及其器件光伏特性[J]. 物理化学学报, 2013, 29(11): 2345 -2353 . |
[7] | 周晋, 李文, 邢伟, 禚淑萍. 可调有序介孔炭在有机和硫酸电解液中的电容性质[J]. 物理化学学报, 2011, 27(06): 1431 -1438 . |
[8] | 郎需庆;马红钦;谭欣;朱慧铭. PTFE超细颗粒的表面活化与化学接枝[J]. 物理化学学报, 2005, 21(07): 703 -706 . |
[9] | 王辉;张秀娟;张晓宏;吴世康. 纳米硅胶颗粒的制备及其对金属离子的识别[J]. 物理化学学报, 2004, 20(03): 313 -317 . |
[10] | 王绪绪;傅贤智. MCM-41表面羟基与四新戊基锆的反应[J]. 物理化学学报, 2001, 17(02): 165 -168 . |
[11] | 陈卫祥, 陈昀, 潘洪革, 陈长聘. 贮氢合金表面处理改善Ni/MH电池1C充放电性能[J]. 物理化学学报, 1998, 14(08): 742 -746 . |
[12] | 王贵昌, 孙予罕, 钟炳. 金属态原子电负性的计算及应用(II)[J]. 物理化学学报, 1998, 14(03): 204 -209 . |
[13] | 季伟捷;沈师孔;李树本;王弘立. Fe2O3在ZrO2上的分散状态及其对催化性能的影响[J]. 物理化学学报, 1993, 9(03): 311 -318 . |
[14] | 朱永法. 俄歇化学位移及其在表面化学上的应用[J]. 物理化学学报, 1993, 9(02): 211 -217 . |
[15] | 孟庆金;孙守恒;朱丹红;陈卫兵;P.H.Rieger. 溶液中(RC2R')Co(CO)(PR″3)2的配体PR″3之间的交换作用——三跳动力学模型[J]. 物理化学学报, 1991, 7(05): 518 -523 . |
|