物理化学学报 >> 2011, Vol. 27 >> Issue (01): 85-90.doi: 10.3866/PKU.WHXB20110111

电化学和新能源 上一篇    下一篇

脉冲微波辅助化学还原合成Pt/C 催化剂及其电催化氧还原性能

王喜照1,2, 郑俊生1,2, 符蓉1,3, 马建新1,2   

  1. 1. 同济大学新能源汽车工程中心, 上海201804;
    2. 同济大学汽车学院, 上海201804;
    3. 华东理工大学资源与环境工程学院, 上海200237
  • 收稿日期:2010-07-19 修回日期:2010-10-26 发布日期:2010-12-31
  • 通讯作者: 马建新 E-mail:jxma@tongji.edu.cn
  • 基金资助:

    国家自然科学基金(21006073), 上海市重点学科项目(B303)和博士后科学基金(20080440645, 200902250)资助

Pulse-Microwave Assisted Chemical Reduction Synthesis of Pt/C Catalyst and Its Electrocatalytic Oxygen Reduction Activity

WANG Xi-Zhao1,2, ZHENG Jun-Sheng1,2, FU Rong1,3, MA Jian-Xin1,2   

  1. 1. Clean Energy Automotive Engineering Center, Tongji university (Jiading Campus), Shanghai 201804, P. R. China;
    2. School of Automotive Studies, Tongji University (Jiading Campus), Shanghai 201804, P. R. China;
    3. School of Resource and Environment Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
  • Received:2010-07-19 Revised:2010-10-26 Published:2010-12-31
  • Contact: MA Jian-Xin E-mail:jxma@tongji.edu.cn
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (21006073), Shanghai Leading Academic Discipline Project, China (B303), and China Postdoctoral Science Foundation (20080440645, 200902250).

摘要:

采用脉冲微波辅助化学还原法制备了质子交换膜燃料电池(PEMFC)用Pt/C 催化剂. 通过透射电镜(TEM)和X射线衍射(XRD)等分析技术对催化剂的微观结构和形貌进行了表征, 并利用循环伏安(CV)、线性扫描(LSV)和恒电位测量等方法评价了催化剂催化氧还原性能. 在此基础上制备了膜电极(MEA)并组装成单电池, 考察了制备的Pt/C 催化剂作为阴极催化剂材料的电催化性能. 结果表明, 脉冲微波辅助化学还原法是一种制备PEMFC催化剂的有效方法, 溶液pH值和微波功率对Pt 颗粒直径和分散有重要影响. TEM和XRD结果显示, 当溶液pH值为10 且微波功率为2 kW时, Pt 纳米粒子较均匀地分散在碳载体上, 粒径分布在1.3-2.4 nm之间, 平均粒径为1.8 nm. CV、LSV和恒电位测试结果表明, 该催化剂电化学比表面积(ESA)为55.6 m2·g-1, 具有良好的催化氧还原反应活性和稳定性. 单电池测试结果表明, 在溶液pH值为10条件下, 微波功率为2 kW时制备的催化剂作阴极催化剂时, 单电池最高功率密度为2.26 W·cm-2·mg-1, 高于微波功率为1 kW时的最高功率密度(2.15 W·cm-2·mg-1)和Johnson Matthey催化剂的最高功率密度(1.89 W·cm-2·mg-1).

关键词: 脉冲微波辅助化学还原, 微波功率, pH值, 燃料电池, Pt/C催化剂, 氧还原反应

Abstract:

We prepared a Pt/C catalyst for use in proton exchange membrane fuel cells (PEMFCs) by pulse-microwave assisted chemical reduction synthesis. The microstructure and morphology of the as-prepared catalyst was characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The catalyst's electrocatalytic performance in the oxygen reduction reaction (ORR) was measured by cyclic voltammetry (CV), linear sweep voltammetry (LSV), and constant potential polarization. The results indicate that pulse-microwave assisted chemical reduction synthesis is an efficient method to prepare PEMFC catalysts and that the pH and the microwave power largely influence the size and dispersion of Pt nanoparticles. At pH 10 and at a microwave power of 2 kW, the Pt nanoparticles were found to be uniform in size and the Pt nanoparticles size ranged between 1.3 and 2.4 nm with an average size of 1.8 nm. Additionally, the Pt nanoparticles were found to be highly dispersed on the surface of the carbon support. The electrochemical measurements showed that the electrochemical surface area (ESA) of the catalyst was 55.6 m2·g-1 and the catalyst exhibited superior performance and stability in the ORR. The maximum power density of the single cell was 2.26 W·cm-2·mg-1 for the catalyst prepared at a microwave power of 2 kW and a pH of 10 as the cathode material. The maximum power density was higher than that of the catalyst prepared using a microwave power of 1 kW (2.15 W·cm-2·mg-1) and also higher than that of the catalyst from Johnson Matthey (1.89 W·cm-2·mg-1).

Key words: Pulse-microwave assisted chemical reduction, Microwave power, pH value, Fuel cell, Pt/C catalyst, Oxygen reduction reaction

MSC2000: 

  • O643