物理化学学报 >> 2011, Vol. 27 >> Issue (11): 26052605-2612..doi: 10.3866/PKU.WHXB20111116

电化学和新能源 上一篇    下一篇

不同碳源催化化学气相沉积制备自支撑C/Ni-Fiber复合电极材料的电容脱盐性能

王喜文1, 姜芳婷2, 索全伶1, 方玉珠2, 路勇2   

  1. 1. 内蒙古工业大学化工系, 呼和浩特 010051;
    2. 华东师范大学, 上海市绿色化学与化工过程绿色化重点实验室, 上海 200062
  • 收稿日期:2011-05-25 修回日期:2011-08-26 发布日期:2011-10-27
  • 通讯作者: 索全伶, 路勇 E-mail:szj@mail.impu.edu.cn; ylu@chem.ecnu.edu.cn
  • 基金资助:

    国家自然科学基金(20973063, 21076083)和上海市科委“科技启明星(跟踪)计划”(10HQ1400800)资助项目

Self-supporting Macroscopic Carbon/Ni-Fiber Hybrid Electrodes Prepared by Catalytic Chemical Vapor Deposition Using Various Carbonaceous Compounds and Their Capacitive Deionization Performance

WANG Xi-Wen1, JIANG Fang-Ting2, SUO Quan-Ling1, FANG Yu-Zhu2, LU Yong2   

  1. 1. Department of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, P. R. China;
    2. Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, P. R. China
  • Received:2011-05-25 Revised:2011-08-26 Published:2011-10-27
  • Contact: SUO Quan-Ling, LU Yong E-mail:szj@mail.impu.edu.cn; ylu@chem.ecnu.edu.cn
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (20973063, 21076083) and Shanghai Rising-Star Program, China (10HQ1400800).

摘要: 以甲烷、乙烯、乙醇和正丁醇为碳源, 通过催化化学气相沉积在具有三维开放网络结构的烧结8 μm-Ni金属纤维上沉积碳的方法, 制备了以金属Ni 纤维网络为集流极、沉积碳为离子存储库的薄层大面积自支撑C/Ni-fiber 复合电极材料. 用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、热重分析(TGA)、X射线衍射(XRD)、N2-吸脱附等温线和循环伏安与电化学阻抗谱对电极材料进行了表征, 并考察了其作为电极的电容脱盐性能.乙烯、甲烷、正丁醇和乙醇为碳源的沉积碳形态分别为鱼骨状碳纳米管(CNTs)、石墨烯面取向与轴平行的CNTs、棒状和蠕虫状碳纳米纤维(CNFs). C/Ni-fiber 复合电极材料对NaCl的电吸附容量顺序为: 乙烯>正丁醇>甲烷>乙醇, 这与复合电极的电化学特性、孔结构和碳的纳米结构相关. 在1.2 V的工作电压下, 以乙烯为碳源制备的C/Ni-fiber 复合电极材料对水溶液中NaCl (100 mg·L-1)的电吸附容量达159 μmol·g-1.

关键词: 碳纳米管, 碳纤维, 金属纤维, 化学气相沉积, 自支撑电极, 电容脱离子

Abstract: We prepared a series of self-supported macroscopic C/Ni-fiber hybrid electrodes by catalytic chemical vapor deposition (CCVD) using methane, ethylene, ethanol and n-butanol as carbon sources to embed carbon onto a three-dimensional network of sinter-locked conductive 8 μm-nickel fibers. For the as-prepared hybrid electrodes, the Ni-microfibrous network serves as a current collector and the carbons as ion storage media while the macroporous void space serves as an electrolyte reservoir. We characterized the hybrid electrodes using scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), N2 isothermal adsorptiondesorption, cyclic voltammetry and electrochemical impedance spectroscopy. The desalination performance of the C/Ni-fiber hybrids was evaluated as electrodes in a capacitive deionization system. The carbon morphology is dependent on the carbonaceous compounds used in CCVD: carbon nanotubes (CNTs) with fishbone-like structure, CNTs with inclined graphene layers parallel to the tube axis, rod-like carbon nanofibers (CNFs) and worm-like CNFs for ethylene, methane, n-butanol and ethanol. The desalination performance of these hybrid electrodes with respect to the carbonaceous compounds decreases as follows: ethylene>n-butanol>methane>ethanol, which correlates with their electrochemical features, pore structures and their carbon nanostructures. The hybrid electrodes obtained using ethylene as the carbon source gave a maximum electrosorption capacity of 159 μmol·g-1 using a direct current voltage of 1.2 V and a 100 mg·L-1 NaCl aqueous solution as raw water.

Key words: Carbon nanotube, Carbon fiber, Metal fiber, Chemical vapor deposition, Self-supporting electrode, Capacitive deionization

MSC2000: 

  • O646