物理化学学报 >> 2012, Vol. 28 >> Issue (01): 1-18.doi: 10.3866/PKU.WHXB2012281

综述 上一篇    下一篇

原子电荷计算方法的对比

卢天, 陈飞武   

  1. 北京科技大学化学与生物工程学院, 北京 100083
  • 收稿日期:2011-09-13 修回日期:2011-10-25 发布日期:2011-12-29
  • 通讯作者: 陈飞武 E-mail:chenfeiwu@ustb.edu.cn
  • 基金资助:

    国家自然科学基金(20773011)资助项目

Comparison of Computational Methods for Atomic Charges

LU Tian, CHEN Fei-Wu   

  1. School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
  • Received:2011-09-13 Revised:2011-10-25 Published:2011-12-29
  • Contact: CHEN Fei-Wu E-mail:chenfeiwu@ustb.edu.cn
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (20773011).

摘要: 原子电荷是对化学体系中电荷分布最简单、最直观的描述形式之一, 在理论和实际应用中都有重要意义. 本文介绍了12种重要的原子电荷计算方法的原理和特点, 通过大量实例从不同角度比较了它们的优缺点.这些方法包括Mulliken、分子环境中的原子轨道(AOIM)、Hirshfeld、原子偶极矩校正的Hirshfeld 布居(ADCH)、自然布居分析(NPA)、Merz-Kollmann (MK)、分子中的原子(AIM)、Merck 分子力场94 (MMFF94)、AM1-BCC、Gasteiger、电荷模型2(CM2)以及电荷均衡(QEq)方法. 最后本文对如何在实际应用中选择合适的计算方法给出了建议.

关键词: 原子电荷, 计算化学, 布居分析, 电负性, 静电势

Abstract: Atomic charge is one of the simplest and the most intuitive description of charge distribution in chemical systems. It has great significance in theory and in practical applications. In this article we introduce the basic principles and special characteristics of twelve important computational methods for the determination of atomic charges and compare their pros and cons from various aspects by considering a large number of instances. These methods include Mulliken, atomic orbitals in molecules (AOIM), Hirshfeld, atomic dipole moment corrected Hirshfeld population (ADCH), natural population analysis (NPA), Merz-Kollmann (MK), atom in molecules (AIM), Merck molecular force field 94 (MMFF94), AM1-BCC, Gasteiger, charge model 2 (CM2), and charge equilibration (QEq). Finally some general suggestions on how to choose a proper method for practical applications are given.

Key words: Atomic charge, Computational chemistry, Population analysis, Electronegativity, Electrostatic potential

MSC2000: 

  • O641