物理化学学报 >> 2012, Vol. 28 >> Issue (03): 567-572.doi: 10.3866/PKU.WHXB201112071

理论与计算化学 上一篇    下一篇

O/N替代掺杂对zigzag型硼氮窄纳米带能带及输运特性的影响

陈余行, 张朝民, 吴建宝, 林琦   

  1. 上海工程技术大学基础教学学院, 上海 201620
  • 收稿日期:2011-10-13 修回日期:2011-11-28 发布日期:2012-02-23
  • 通讯作者: 吴建宝 E-mail:wujianbao@sues.edu.cn
  • 基金资助:

    国家自然科学基金(11047164), 上海市高校选拔培养优秀青年教师科研专项基金(gjd10023)和上海市教委学科建设项目(11XK11, 2011X34)资助

Effect of O/N Substitutive Doping on the Band Structure and Transport Properties of the zigzag Boron Nitride Narrow-Nanoribbons

CHEN Yu-Hang, ZHANG Chao-Min, WU Jian-Bao, LIN Qi   

  1. College of Fundamental Studies, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
  • Received:2011-10-13 Revised:2011-11-28 Published:2012-02-23
  • Contact: WU Jian-Bao E-mail:wujianbao@sues.edu.cn
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (11047164), Shanghai College Foundation for Excellent Young Teachers of China (gjd10023), and Academic Program of Shanghai Municipal Education Commission, China (11XK11, 2011X34).

摘要: 用第一性原理非平衡格林函数方法研究了O原子掺杂zigzag 型硼氮窄纳米带(z-BNNNRs)的能带结构和电子输运特性. 研究结果表明: O原子对N原子的替代掺杂使z-BNNNRs的能带结构出现明显变化, 体系由半导体转变为金属; O掺杂明显地改变了z-BNNNRs体系的导电性能, 在一定的偏压范围内产生明显的负微分电阻(NDR)现象, 边缘掺杂比中间掺杂产生更大的负微分电导, 进一步的输运性质计算给出的透射谱也印证了这一点. 随着掺杂浓度的增加, 负微分电导的极值也随之增大.

关键词: 硼氮纳米带, 氧掺杂, 能带结构, 输运性质, 负微分电阻

Abstract: By performing first-principles calculations and non-equilibrium Green's function, the energy band structure, transmission spectrum and current-voltage characteristics of the O-doping zigzag boron nitride narrow-nanoribbons (z-BNNNRs) were investigated. The calculation results show that O-doping remarkably changes the z-BNNNRs energy band structure and transform the material from a semiconductor to a metal. It is also demonstrated that the system exhibits an obvious negative differential resistance (NDR) characteristic. Further investigations revealed that the position and concentration of O-doping also affected the NDR behavior over a certain range of bias. The negative differential conductance (NDC) for edge-doping is greater than that for middle-doping and the maximum of the NDC increases with an increase of the concentration of O-doping. This special electronic transport property of O-doping z-BNNNRs makes it more suitable as a candidate for molecular devices.

Key words: BN nanoribbon, O-doping, Energy band structure, Transport property, Negative differential resistance

MSC2000: 

  • O641