物理化学学报 >> 2013, Vol. 29 >> Issue (07): 1479-1486.doi: 10.3866/PKU.WHXB201305083

电化学和新能源 上一篇    下一篇

镍锡析氢活性阴极的电化学制备及其在碱性溶液中的电催化机理

曹寅亮1,2, 李志林1,2, 王峰1,2, 刘景军1,2, 吉静1,2, 王建军3, 张良虎3, 覃事永3   

  1. 1 北京化工大学, 化工资源有效利用国家重点实验室, 北京 100029;
    2 北京化工大学, 材料电化学过程与技术北京市重点实验室, 北京 100029;
    3 蓝星(北京)化工机械有限公司, 北京 100176
  • 收稿日期:2013-03-07 修回日期:2013-05-07 发布日期:2013-06-14
  • 通讯作者: 王峰 E-mail:wangf@mail.buct.edu.cn
  • 基金资助:

    国家自然科学基金(51125007)资助项目

Electrochemical Preparation of Ni-Sn Active Cathode and Its Electrocatalytic Hydrogen Evolution Reaction Mechanisms in Alkaline Solution

CAO Yin-Liang1,2, LI Zhi-Lin1,2, WANG Feng1,2, LIU Jing-Jun1,2, JI Jing1,2, WANG Jian-Jun3, ZHANG Liang-Hu3, QIN Shi-Yong3   

  1. 1 State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China;
    2 Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China;
    3 Blue Star (Beijing) Chemical Machinery Co., Ltd., Beijing 100176, P. R. China
  • Received:2013-03-07 Revised:2013-05-07 Published:2013-06-14
  • Contact: WANG Feng E-mail:wangf@mail.buct.edu.cn
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (51125007).

摘要:

采用恒电流电沉积法在铜箔基底上获得镍锡合金镀层电极. 电子能谱(EDS)、X射线衍射(XRD)以及高分辨透射电镜(HRTEM)分析表明, 随着锡含量的增加, 镀层由镍晶胚与非晶镍锡构成的非晶态结构转变为Ni3Sn4与Ni3Sn2的混晶结构. 扫描电镜(SEM)分析发现, 非晶结构镍锡合金电极表面粒子分布均匀且粒径细小, Ni3Sn4与Ni3Sn2混晶结构的镍锡合金电极表面粗糙且断面呈分层自组装结构. 在25℃, 1 mol·L-1 NaOH溶液中的稳态极化曲线表明非晶结构的镍锡合金电极具有良好的催化活性, 其析氢过电位仅为85 mV. 交流阻抗测试表明, 非晶以及混晶结构的镍锡合金在析氢电催化反应过程中由电化学吸附(Volmer)以及电化学脱附(Heyrovsky) 两个电荷转移过程控制, 且非晶结构电极相比于Ni3Sn4与Ni3Sn2混晶结构电极的高活性源于其活性氢具有更快的电化学吸附以及脱附速度.

关键词: 镍锡合金, 电沉积, 非晶态, 析氢反应机理, 交流阻抗

Abstract:

A simple galvanostatic electrodeposition method was used to synthesize an active Ni-Sn electrode on a Cu foil substrate. Characterization by high-resolution transmission electron microscopy (HRTEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD) revealed that the crystal structures of the deposited films transformed from amorphous structures composed of Ni crystal embryos and amorphous Ni-Sn to Ni3Sn4/ Ni3Sn2 mixed crystals with increasing Sn content. Scanning electron microscope (SEM) images indicated that the amorphous Ni-Sn electrode possessed a smooth surface with uniform distribution of small particles, whereas the Ni3Sn4/Ni3Sn2 mixed crystalline electrode exhibited a rough surface composed of lamellar structures. The polarization curves measured in 1 mol·L-1 NaOH solution at 25℃ indicated that the amorphous Ni-Sn electrode showed a smaller overpotential (85 mV) and better electrocatalytic performance for hydrogen evolution than the mixed crystalline electrode. Electrochemical impedance spectroscopy (EIS) results showed that the hydrogen evolution reaction occurs on the Ni-Sn alloy electrode under a mixture of Volmer and Heyrovsky control. The higher activity of the amorphous Ni-Sn electrode was attributed to the faster charge transfer and electrochemical adsorption and desorption rates of hydrogen atoms compared with those on the mixed crystalline electrode.

Key words: Nickel-tin alloy, Electrodepodition, Amorphous, Hydrogen evolution reaction mechanism, Alternating current impedance