物理化学学报 >> 2013, Vol. 29 >> Issue (07): 1515-1523.doi: 10.3866/PKU.WHXB201304261

电化学和新能源 上一篇    下一篇

侧链型磺化聚芳醚酮/磺化聚乙烯醇复合型直接甲醇燃料电池用质子交换膜

程海龙1, 徐晶美1, 王哲1,2, 任春丽1, 白洪伟1, 赵成吉3, 张会轩1,2   

  1. 1 长春工业大学合成树脂与特种纤维工程研究中心, 长春 130012;
    2 中科院长春应用化学研究所, 长春 130022;
    3 吉林大学化学学院, 麦克德尔米德实验室, 长春 130012
  • 收稿日期:2012-12-26 修回日期:2013-04-25 发布日期:2013-06-14
  • 通讯作者: 王哲, 张会轩 E-mail:wzccut@126.com;zhanghx@mail.ccut.edu.cn
  • 基金资助:

    国家自然科学基金(51273024)和吉林省教育厅重点项目(2012103)资助

Sulfonated Poly(aryl ether ketone) on Side Chain/Sulfonated Poly(vinyl alcohol) Composite Proton Exchange Membrane for Direct Methanol Fuel Cells

CHENG Hai-Long1, XU Jing-Mei1, WANG Zhe1,2, REN Chun-Li1, BAI Hong-Wei1, ZHAO Cheng-Ji3, ZHANG Hui-Xuan1,2   

  1. 1 Engineering Research Center of Synthetic Resin and Special Chemical Fiber, Changchun University of Technology, Changchun 130012, P. R. China;
    2 Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, P. R. China;
    3 Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, P. R. China
  • Received:2012-12-26 Revised:2013-04-25 Published:2013-06-14
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (51273024) and Key Project of Jilin Provincial Department of Education, China (2012103).

摘要:

通过溶液共混法制备了不同磺化聚乙烯醇(SPVA)含量的侧链型磺化聚芳醚酮/磺化聚乙烯醇(S-SPAEK/SPVA)复合膜. 应用红外光谱(FTIR)对复合膜进行了表征, 扫描电镜(SEM)显示SPVA均匀分布在复合膜中. 通过对复合膜的性能测试发现该系列复合膜具有良好的热性能、较高的吸水率和保水能力. SPVA中的羟基能有效地阻碍甲醇的透过, 甲醇渗透系数从S-SPAEK/SPVA5 复合膜的7.9×10-7 cm2·s-1降低到S-SPAEK/SPVA30的1.3×10-7 cm2·s-1, 比S-SPAEK膜的11.5×10-7 cm2·s-1降低了一个数量级. SPVA的引入增加了亲水基团数量, 增加了复合膜的吸水和保水能力, 有利于质子按照“Vehicle”机理和“Grotthuss”机理进行传递, 柔软的SPVA链段与S-SPAEK侧链聚集成亲水相区, 形成连续的质子传输通道, 提高了复合膜的质子传导率. 在25 和80℃ 时, S-SPAEK/SPVA30 复合膜的质子传导率分别达到了0.071 和0.095 S·cm-1. 可见,S-SPAEK/SPVA复合膜有望在直接甲醇燃料电池中得到应用.

关键词: 磺化聚芳醚酮, 磺化聚乙烯醇, 复合膜, 质子传导率, 甲醇渗透率

Abstract:

Poly(aryl ether ketone)/sulfated poly(vinyl alcohol) (S-SPAEK/SPVA) composite membranes with different mass fractions of SPVA were prepared by solution casting using highly sulfonated side-chaintype sulfonated poly(aryl ether ketone) and sulfated poly(vinyl alcohol) as raw materials. Fourier transform infrared (FTIR) spectroscopy confirmed the structure of the S-SPAEK/SPVA composite membranes. Scanning electron microscope (SEM) images showed that SPVA was uniformly dispersed in an S-SPAEK polymer matrix. The uptake and swelling behavior, water retention capacity, methanol permeability, and proton conductivity of the composite membrane were investigated systematically. The performance testing of the composite membranes revealed that thermal stability and water absorption and retention capabilities were improved by introduction of SPVA. The methanol permeability of S-SPAEK/SPVA composite membranes decreased as the content of SPVA increased because the hydroxyl groups could effectively obstruct diffusion of methanol molecules. The methanol diffusion coefficients of the composite membranes decreased from 7.9×10-7cm2·s-1 for S-SPAEK/SPVA5 to 1.3×10-7 cm2·s-1 for S-SPAEK/SPVA30; considerably lower than 11.5×10-7 cm2·s-1 for the pure S-SPAEK membrane. The water absorption and retention capabilities increased as the numbers of hydrophilic groups increased by introduction of SPVA. As a result, the proton conductivity of the composite membranes increased with increasing water absorption and retention capabilities according to the Vehicle and Grotthuss mechanisms. The flexible chain segment of SPVA interacted strongly with the pendant chain of S-SPAEK, aiding hydrophilic/ hydrophobic separation, and improving the proton conductivity of the composite membranes. The proton conductivity of the S-SPAEK/SPVA30 composite membrane reached 0.071 and 0.095 S·cm-1 at 25 and 80℃, respectively. These results show that S-SPAEK/SPVA composite membranes are promising for application in direct methanol fuel cells.

Key words: Sulfonated poly(aryl ether ketone), Sulfated poly(vinyl alcohol), Composite membrane, Proton conductivity, Methanol permeability

MSC2000: 

  • O646