物理化学学报 >> 2014, Vol. 30 >> Issue (4): 715-722.doi: 10.3866/PKU.WHXB201401221

催化和表面科学 上一篇    下一篇

金属有机骨架材料MIL-53(Al)负载钴催化剂的CO催化氧化反应性能

谭海燕, 吴金平   

  1. 中国地质大学(武汉)材料与化学学院, 可持续能源实验室, 武汉430074
  • 收稿日期:2013-10-21 修回日期:2014-01-21 发布日期:2014-03-31
  • 通讯作者: 吴金平 E-mail:Wujp@cug.edu.cn
  • 基金资助:

    国家自然科学基金(21203253)及湖北省自然科学基金(2011CDA070)资助项目

Performance of a Metal-Organic Framework MIL-53(Al)-Supported Cobalt Catalyst in the CO Catalytic Oxidation Reaction

TAN Hai-Yan, WU Jin-Ping   

  1. Sustainable Energy Laboratory, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
  • Received:2013-10-21 Revised:2014-01-21 Published:2014-03-31
  • Contact: WU Jin-Ping E-mail:Wujp@cug.edu.cn
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (21203253) and Natural Science Foundation of Hubei Province, China (2011CDA070).

摘要:

采用溶剂法合成了热稳定性高的金属有机骨架材料MIL-53(Al)(MIL:Materials of Institut Lavoisier),用此材料为载体负载钴催化剂用于CO的催化氧化反应,并与Al2O3负载的钴催化剂进行了对比. 采用热重-差热扫描量热(TG-DSC)、傅里叶变换红外(FTIR)光谱、X 射线衍射(XRD)、N2物理吸附-脱附、透射电子显微镜(TEM)、氢气程序升温还原(H2-TPR)等方法对催化剂的结构性质进行了表征. TG和N2物理吸附-脱附结果表明,载体MIL-53(Al)有好的稳定性和高的比表面积;XRD以及TEM结果表明Co/MIL-53(Al)上负载的Co3O4颗粒粒径(平均约为5.03 nm)明显小于Al2O3上Co3O4颗粒粒径(平均约为7.83 nm). MIL-53(Al)的三维多孔结构中分布均匀的位点能很好地分散固定Co3O4颗粒,高度分散的Co3O4颗粒有利于CO的催化氧化反应. H2-TPR实验发现Co/MIL(Al)催化剂的还原温度低于Co/Al2O3催化剂的还原温度,低的还原温度表现为高的催化氧化活性. CO催化氧化结果表明,MIL-53(Al)负载钴催化剂的催化活性明显高于Al2O3负载钴催化剂,MIL-53(Al)负载钴催化剂在160 ℃时使CO氧化的转化率达到98%,到180 ℃时CO则完全转化,催化剂的结构在催化反应过程中保持稳定.

关键词: 金属有机骨架材料, 溶剂热法, MIL-53(Al), 钴催化剂, CO催化氧化

Abstract:

Ametal-organic framework (MOF) material MIL-53(Al) (MIL: Materials of Institut Lavoisier) with high thermal stability was prepared by the solvothermal method, and it served as a support material for a cobalt catalyst in the CO oxidation reaction. A comparison between the catalytic performance of the MIL-53(Al) and the Al2O3 support material was carried out to understand the catalytic behavior of the catalysts. The catalysts were characterized by thermogravimetric-differential scanning calorimeter (TG-DSC), Fourier-transform infrared (FTIR) spectroscopy, N2 adsorption-desorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), and hydrogen temperature-programmed reduction (H2-TPR). The TG and N2 adsorption-desorption analyses showed that MIL-53(Al) had good stability and high surface area. XRD and TEM results indicated that the size of the Co3O4 nanoparticles (5.03 nm) supported on MIL-53(Al) was smaller than that (7.83 nm) on the Al2O3 support. The highly dispersed Co3O4 nanoparticles from the three-dimensional porous structure of MIL-53(Al) led to superior catalytic activity during CO oxidation. The H2-TPR spectra showed that the reduction in temperature of the Co/MIL-53(Al) catalyst was significantly lower than that of the Co/Al2O3 catalyst, implying a higher catalytic activity for the Co/MIL-53(Al) catalyst. Indeed, the heterogeneous catalytic composite material Co/MIL-53(Al) catalyst exhibited much higher activity than the Co/Al2O3 catalyst in the CO oxidation test with 98% conversion at 160 ℃ and 100% conversion at 180 ℃. The catalytic activity and structure of the Co/MIL-53(Al) catalyst were stable during the reaction.

Key words: Metal-organic framework, Solvothermal synthesis, MIL-53(Al), Cobalt catalyst, CO catalytic oxidation

MSC2000: 

  • O643