物理化学学报 >> 2016, Vol. 32 >> Issue (2): 573-580.doi: 10.3866/PKU.WHXB201511105

论文 上一篇    下一篇

Fe2O3/rGO纳米复合物的制备及其储锂和储钠性能

李婷*(),龙志辉,张道洪*()   

  • 收稿日期:2015-09-23 发布日期:2016-01-30
  • 通讯作者: 李婷,张道洪 E-mail:liting@mail.scuec.edu.cn;zhangdh27@163.com
  • 基金资助:
    国家自然科学基金(21403305);中南民族大学中央高校基本科研业务费专项资金(CZQ14007)

Synthesis and Electrochemical Properties of Fe2O3/rGO Nanocomposites as Lithium and Sodium Storage Materials

Ting LI*(),Zhi-Hui LONG,Dao-Hong ZHANG*()   

  • Received:2015-09-23 Published:2016-01-30
  • Contact: Ting LI,Dao-Hong ZHANG E-mail:liting@mail.scuec.edu.cn;zhangdh27@163.com
  • Supported by:
    the National Natural Science Foundation of China(21403305);"Fundamental Research Funds for the CentralUniversities", South-Central University for Nationalities, China(CZQ14007)

摘要:

金属氧化物可通过电化学转换反应与锂离子及钠离子发生多电子可逆结构转换,是一类极具应用前景的高容量锂离子和钠离子电池负极材料。实验以氧化石墨烯和铁盐为前驱体,采用简单的溶剂法,成功将Fe2O3纳米单晶粒子均匀负载于石墨烯的导电片层上,获得Fe2O3/rGO(还原氧化石墨烯)纳米复合材料。复合电极在锂离子和钠离子电池中都表现出优异的充放电性能和循环稳定性。实验结果表明石墨烯的包覆不仅能降低Fe2O3发生转换反应的电荷传递阻抗,而且能够稳定电极在循环过程中带来的结构转变,极大改善电极大电流充放能力和循环稳定性。本研究为发展高容量的锂离子和钠离子电池负极材料提供了可行的途径。

关键词: 金属氧化物, 电化学转换反应, 锂离子电池, 钠离子电池, 负极材料

Abstract:

Metal oxides are promising high-capacity anode materials for lithium and sodium-ion batteries because of the reversible multi-electron structural conversion reactions with lithium and sodium ions. In this study, Fe2O3/rGO (reduced graphene oxide) nanocomposites were prepared using graphene oxide sheets and ferric salt as precursors through a one-step solvothermal method. The experimental results demonstrated that the Fe2O3 nanocrystals were uniformly dispersed on the surface of reduced graphene oxide sheets. The nanocomposite anodes show superior charge-discharge performances and cyclability in lithium and sodium ion batteries, indicating that reduced graphene oxide sheets can reduce the charge-transfer resistance and stabilize the structure change during cycling. It suggests a potential feasibility to use these metal oxide nanocomposites as high capacity anode materials for lithium and sodium ion batteries.

Key words: Metal oxide, Electrochemical conversion reaction, Lithium ion battery, Sodium ion battery, Anode material

MSC2000: 

  • O646