Please wait a minute...
物理化学学报  2018, Vol. 34 Issue (10): 1171-1178    DOI: 10.3866/PKU.WHXB201803024
所属专题: 材料科学的分子模拟
论文     
含偶氮苯主-客体复合物的光致异构化反应对结合能与几何构象的影响
柳平英1,2,刘春艳2,刘倩2,马晶2,*()
1 景德镇陶瓷大学材料科学与工程学院,江西 景德镇 333403
2 南京大学化学与化工学院,南京大学介观化学教育部重点实验室,南京 210023
Influence of Photoisomerization on Binding Energy and Conformation of Azobenzene-Containing Host-Guest Complex
Pingying LIU1,2,Chunyan LIU2,Qian LIU2,Jing MA2,*()
1 School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, Jiangxi Province, P. R. China
2 School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University, Nanjing 210023, P. R. China
 全文: PDF(1634 KB)   HTML 输出: BibTeX | EndNote (RIS) | Supporting Info
摘要:

在分子尺度上构建光驱动的人工分子机器是超分子化学研究的一个热点。偶氮苯是一类具有双稳态的光致开关分子,能够完成高效、可逆的反式(E)$\to $顺式(Z)的光致异构化过程,因而可以作为人工分子机器的功能单元。本文采用密度泛函理论(DFT)和反应分子动力学(RMD)模拟,研究了含偶氮苯封端基团的互锁型超分子体系中冠醚主体与二烷基铵客体间结合强度,模拟了偶氮苯Z$\to $E异构化反应的动态过程,讨论了异构化反应对主客体分子构象的影响。在偶氮苯封端基团通过发生Z$\to $E异构化实现体系单向可控运动时,较强的主-客体间结合能力是保证互锁型超分子体系稳定的必要前提。顺式客体与主体大环氢键相互作用比反式客体更强,因此顺式复合异构体具有比反式异构体更大的结合强度。偶氮苯基团发生E$\to $Z光致异构化引入位阻效应,使得顺式复合物只能从环戊基准封端处进行脱环。主客体复合过程对偶氮苯基团的几何结构没有明显影响。偶氮苯光致异构化发生的速度快于客体脱环的速度是实现单向运动的动力学上的必要条件。在异构化反应后的500 ps内,大环会经历一个明显的结构驰豫过程。冠醚大环主体的柔性构象有助于实现在偶氮苯光致异构化发生过程中主客体间持续稳定的结合。各种超分子体系中,尽管客体组成各不相同,但是包含相似的主客体识别位点的超分子体系具有相似的结合能,显示了机械互锁型复合体系中各种功能性构建单元间主客体相互作用具有正交性。引入双稳态的偶氮苯功能基团对客体其他部分的几何结构影响很小。理论计算结果有助于理性设计更复杂的刺激响应性人工分子机器。

关键词: 光致异构化反应性分子动力学偶氮苯分子马达准轮烷超分子化学    
Abstract:

The construction of a photo-controllable artificial molecular machine capable of realizing the light-driven motion on a molecular scale and of performing a specific function is a fascinating topic in supramolecular chemistry. The bistable switchable molecule, azobenzene (AZO), has been introduced into the supramolecular architecture as a key building block, owing to its efficient and reversible trans (E)-cis (Z) photoisomerization. The binding strength of the dibenzo[24]crown-8 (DB24C8) host and dialkylammonium-based rod-like guest consisting of an AZO moiety and the Z$\to $E photoisomerization process in an interlocked host-guest complex have been investigated by the density functional theory (DFT) calculations and the reactive molecular dynamics (RMD) simulations by considering both torsion and inversion paths. The strong host-guest binding strength provides a necessary premise to stabilize the complex during the E-Z photoisomerization of the AZO unit, which is a terminal stopper to control the directional motion of the guest. A stronger binding strength for the Z isomer can be induced by the stronger hydrogen-bonding interaction. The steric effect is introduced into the Z isomer to force the ring slipping exclusively over the cyclopentyl terminal (pseudostopper). The host-guest complexation has a slight effect on the conformation of the AZO functional subunit for the two isomers. The faster Z$\to $E photoisomerization process within the picosecond timescale is kinetically more favored than the dethreading of the ring through the pseudostopper subunit of the rod. After isomerization, a structure relaxation is observed for the crown ether ring within 500 ps. The flexible backbone of the crown ether ring is helpful in realizing steady and stable host-guest recognition during photoisomerization. Moreover, the orthogonality of the site-specific binding interaction is revealed by the similar binding energies obtained at similar hydrogen bonding recognition sites for various interlocked host-guest supramolecular systems although the constituents of the guests are different from each other. The introduction of two stereoisomers of the AZO subunit has little influence on the other conformations of guest subunits. These results are useful for the rational design of more sophisticated stimuli-controlled artificial molecular machines.

Key words: Photoisomerization    Reactive molecular dynamics model    Azobenzene    Nanomotors    Pseudorotaxane    Supramolecular chemistry
收稿日期: 2017-12-25 出版日期: 2018-04-13
中图分类号:  O641  
基金资助: 国家自然科学基金(21673111);国家自然科学基金(21661017);江西省自然科学基金(20161BAB203081)
通讯作者: 马晶     E-mail: majing@nju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
柳平英
刘春艳
刘倩
马晶

引用本文:

柳平英,刘春艳,刘倩,马晶. 含偶氮苯主-客体复合物的光致异构化反应对结合能与几何构象的影响[J]. 物理化学学报, 2018, 34(10): 1171-1178, 10.3866/PKU.WHXB201803024

Pingying LIU,Chunyan LIU,Qian LIU,Jing MA. Influence of Photoisomerization on Binding Energy and Conformation of Azobenzene-Containing Host-Guest Complex. Acta Phys. -Chim. Sin., 2018, 34(10): 1171-1178, 10.3866/PKU.WHXB201803024.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201803024        http://www.whxb.pku.edu.cn/CN/Y2018/V34/I10/1171

Fig 1  Schematic representation of the photoactive host-guest system.
Fig 2  Comparison of the calculated binding energies of six host-guest compounds with the similar binding sites.
Fig 3  (a) Optimized structures and geometrical parameters before/after host-guest interlocked process; (b) electrostatic potential maps (ESP) of the isolated rings and rods taken from the two isomers, and hydrogen bonding (HB) interactions for two isomers. The calculated natural bond orbital (NBO) charges involved in the HB interactions are also given.
Fig 4  (a) Schematic representation of the two different isomerization paths for host-guest system (the host was not displayed for clarity). The potential energy curves for Z/E isomerization of thread through (b) torsion and (c) inversion paths, respectively.
Fig 5  (a) Fluctuations of the C―N=N―C torsion angle, φ, with the time evolution and the representative snapshots extracted from the RMD simulations; (b) overlay of ring conformations during and after AZO isomerization.
1 Ma X. ; Zhao Y. Chem. Rev. 2015, 115, 7794.
doi: 10.1021/cr500392w
2 Szymański W. ; Beierle J. ; Kistemaker H. ; Velema W. ; Feringa B. Chem. Rev. 2013, 113, 6114.
doi: 10.1021/cr300179f
3 Balzani V. ; Credi A. ; Silvi S. ; Venturi M. Chem. Soc. Rev. 2006, 35, 1135.
doi: 10.1039/b517102b
4 Balzani V. ; Credi A. ; Venturi M. Chem. Soc. Rev. 2009, 38, 1542.
doi: 10.1039/b806328c
5 Crowley J. ; Goldup S. ; Lee A. ; Leigh D. ; McBurney R. Chem. Soc. Rev. 2009, 38, 1530.
doi: 10.1039/b804243h
6 Erbas-Cakmak S. ; Leigh D. ; McTernan C. ; Nussbaumer A. Chem. Rev. 2015, 115, 10081.
doi: 10.1021/acs.chemrev.5b00146
7 Klajn R. ; Stoddart J. ; Grzybowski B. Chem. Soc. Rev. 2010, 39, 2203.
doi: 10.1039/b920377j
8 Saha S. ; Stoddart J. Chem. Soc. Rev. 2007, 36, 77.
doi: 10.1039/b607187b
9 Tian H. ; Wang Q. Chem. Soc. Rev. 2006, 35, 361.
doi: 10.1039/b512178g
10 van Dongen S. ; Cantekin S. ; Elemans J. ; Rowan A. ; Nolte R. Chem. Soc. Rev. 2014, 43, 99.
doi: 10.1039/c3cs60178a
11 Zhang T. ; Mu L. ; She G. ; Shi W. Chem. Commun. 2012, 48, 452.
doi: 10.1039/c1cc16339f
12 Burkhart C. ; Haberhauer G. Eur. J. Org. Chem. 2017, 2017, 1308.
doi: 10.1002/ejoc.201601371
13 Dey K. ; Sen A. J. Am. Chem. Soc. 2017, 139, 7666.
doi: 10.1021/jacs.7b02347
14 Kathan M. ; Hecht S. Chem. Soc. Rev. 2017, 46, 5536.
doi: 10.1039/c7cs00112f
15 Oruganti B. ; Wang J. ; Durbeej B. Int. J. Quantum Chem. 2017, e25405.
doi: 10.1002/qua.25405
16 Qu D. ; Wang Q. ; Zhang Q. ; Ma X. ; Tian H. Chem. Rev. 2015, 115, 7543.
doi: 10.1021/cr5006342
17 Baroncini M. ; Bergamini G. Chem. Rec. 2017, 17, 700.
doi: 10.1002/tcr.201600112
18 Ueno A. ; Yoshimura H. ; Saka R. ; Osa T. J. Am. Chem. Soc. 1979, 101, 2779.
doi: 10.1002/adom.201600281
19 Yao X. ; Li T. ; Wang J. ; Ma X. ; Tian H. Adv. Opt. Mater. 2016, 4, 1322.
doi: 10.1002/adom.201600281
20 Baroncini M. ; Silvi S. ; Venturi M. ; Credi A. Angew. Chem. Int. Ed. 2012, 51, 4223.
doi: 10.1002/anie.201200555
21 Ragazzon G. ; Baroncini M. ; Silvi S. ; Venturi M. ; Credi A. Nat. Nanotechnol. 2015, 10, 70.
doi: 10.1038/nnano.2014.260
22 Liu Z. ; Ma J. J. Phys. Chem. A 2011, 115, 10136.
doi: 10.1021/jp203570m
23 Tian Z. ; Wen J. ; Ma J. J. Chem. Phys. 2013, 139, 014706.
doi: 10.1063/1.4812379
24 Wen J. ; Tian Z. ; Ma J. J. Phys. Chem. C 2013, 117, 19934.
doi: 10.1021/jp404434r
25 Tian Z. ; Wen J. ; Ma J. Mol. Simul. 2014, 41, 28.
doi: 10.1080/08927022.2014.918974
26 Liu C. ; Zheng D. ; Hu W. ; Tian Z. ; Zhao J. ; Zhu Y. ; Ma J. Nanoscale 2017, 9, 16700.
doi: 10.1039/C7NR03421K
27 Zhao J. ; Liu C. ; Ma J. Nanoscale 2017, 9, 19017.
doi: 10.1039/c7nr07382h
28 Pang J. ; Tian Z. ; Ma J. Sci. Sin. Chim. 2015, 45, 412.
doi: 10.1360/n032014-00250
29 Zheng D. ; Yuan X. ; Ma J. Acta Phys. -Chim. Sin. 2016, 32, 290.
doi: 10.3866/PKU.WHXB201512072
郑东; 袁相爱; 马晶. 物理化学学报, 2016, 32, 290.
doi: 10.3866/PKU.WHXB201512072
30 Tabacchi G. ; Silvi S. ; Venturi M. ; Credi A. ; Fois E. ChemPhysChem 2016, 17, 1913.
doi: 10.1002/cphc.201501160
31 Bandara H. ; Burdette S. Chem. Soc. Rev. 2012, 41, 1809.
doi: 10.1039/c1cs15179g
32 Ciminelli C. ; Granucci G. ; Persico M. Chemistry 2004, 10, 2327.
doi: 10.1002/chem.200305415
33 Floss G. ; Saalfrank P. J. Phys. Chem. A 2015, 119, 5026.
doi: 10.1021/acs.jpca.5b02933
34 Gao A. ; Li B. ; Zhang P. ; Han K. J. Chem. Phys. 2012, 137, 204305.
doi: 10.1063/1.4767459
35 Ishikawa T. ; Noro T. ; Shoda T. J. Chem. Phys. 2001, 115, 7503.
doi: 10.1063/1.1406975
36 Li Y. ; Hartke B. J. Chem. Phys. 2013, 139, 224303.
doi: 10.1063/1.4837237
37 Pederzoli M. ; Pittner J. ; Barbatti M. ; Lischka H. J. Phys. Chem. A 2011, 115, 11136.
doi: 10.1021/jp2013094
38 Tiberio G. ; Muccioli L. ; Berardi R. ; Zannoni C. ChemPhysChem 2010, 11, 1018.
doi: 10.1002/cphc.200900652
39 Yin T. ; Zhao Z. ; Zhang H. RSC Adv. 2016, 6, 79879.
doi: 10.1039/c6ra10880f
40 Bockmann M. ; Braun S. ; Doltsinis N. ; Marx D. J. Chem. Phys. 2013, 139, 084108.
doi: 10.1063/1.4818489
41 Liu P. ; Chen Q. ; Ma J. J. Comput. Chem. 2016, 37, 2228.
doi: 10.1002/jcc.24452
42 Liu P. ; Chen Q. ; Ma J. Sci. Sin. Chim. 2016, 46, 69.
doi: 10.1360/N032015-00152
43 Liu P. ; Li W. ; Liu L. ; Wang L. ; Ma J. J. Phys. Chem. A 2014, 118, 9032.
doi: 10.1021/jp5020516
44 Ashton P. ; Ballardini R. ; Balzani V. ; Baxter I. ; Credi A. ; Fyfe M. ; Gandolfi M. ; Gomez-Lopez M. ; Martinez-Diaz M. ; Piersanti A. ; et al J. Am. Chem. Soc. 1998, 120, 11932.
doi: 10.1021/ja982167m
45 Frisch, M. ; Trucks, G. ; Schlegel, H. ; Scuseria, G. ; Robb, M. ; Cheeseman, J. ; Scalmani, G. ; Barone, V. ; Mennucci, B. ; Petersson, G. et al. Gaussian 09, Revision B. 01; Gaussian Inc. : Wallingford, CT, USA, 2010.
46 Li S. ; Li W. ; Fang T. J. Am. Chem. Soc. 2005, 127, 7215.
doi: 10.1021/ja0427247
47 Li W. ; Li S. ; Jiang Y. J. Phys. Chem. A 2007, 111, 2193.
doi: 10.1021/jp067721q
48 Li S. ; Li W. ; Ma J. Acc. Chem. Res. 2014, 47, 2712.
doi: 10.1021/ar500038z
49 Boys S. ; Bernardi F. Mol. Phys. 1970, 19, 553.
doi: 10.1080/00268977000101561
50 Simon S. ; Duran M. ; Dannenberg J. J. Chem. Phys. 1996, 105, 11024.
doi: 10.1063/1.472902
51 van Duin A. ; Dasgupta S. ; Lorant F. ; Goddard W. J. Phys. Chem. A 2001, 105, 9396.
doi: 10.1021/jp004368u
52 Mueller J. ; van Duin A. ; Goddard W. J. Phys. Chem. C 2010, 114, 4939.
doi: 10.1021/jp9035056
53 Brenner D. ; Shenderova O. ; Harrison J. ; Stuart S. ; Ni B. ; Sinnott S. J. Phys.: Condens. Matter 2002, 14, 783.
doi: 10.1088/0953-8984/14/4/312
54 Yu J. ; Sinnott S. ; Phillpot S. Phys. Rev. B 2007, 75, 085311.
doi: 10.1103/PhysRevB.75.085311
55 Shan T. ; Devine B. ; Hawkins J. ; Asthagiri A. ; Phillpot S. ; Sinnott S. Phys. Rev. B 2010, 82, 235302.
doi: 10.1103/PhysRevB.82.235302
56 Materials Studio, Version 4. 0; Accelrys, Inc. : San Diego, CA, USA, 2006.
57 Liu P. ; Li W. ; Kan Z. ; Sun H. ; Ma J. J. Phys. Chem. A 2016, 120, 490.
doi: 10.1021/acs.jpca.5b10085
[1] 刘丹阳,王宛洛,徐首红,刘洪来. 二维界面上偶氮苯糖脂的光响应行为[J]. 物理化学学报, 2017, 33(4): 836-844.
[2] 孙进,丁宗玲,喻远琴,李广. Au纳米粒子表面附近偶氮苯分子的吸收光谱[J]. 物理化学学报, 2017, 33(11): 2199-2206.
[3] 罗文丽, 苏亚琼, 田向东, 赵刘斌, 吴德印, 田中群. 对氯硝基苯吸附在银纳米粒子上的偶联反应[J]. 物理化学学报, 2012, 28(12): 2767-2773.
[4] 王罗新, 易长海, 邹汉涛, 许杰, 徐卫林. 椅式(8,8)单壁碳纳米管内偶氮苯的顺反异构化[J]. 物理化学学报, 2010, 26(01): 149-154.
[5] 朱玥, 蒲敏, 何静, EVANS David G.. 偶氮苯磺酸衍生物的光致顺反异构化机理[J]. 物理化学学报, 2009, 25(11): 2296-2304.
[6] 宋冰蕾, 赵剑曦. 光敏季铵盐Gemini表面活性剂a4-6-m在气/液界面的吸附[J]. 物理化学学报, 2009, 25(10): 2020-2025.
[7] 席海涛;高亚军;孙小强;殷开梁;陈正隆. 缺电子联吡啶环蕃与富电子苯醚链的结合能[J]. 物理化学学报, 2009, 25(02): 377-381.
[8] 罗世霞;张笑一;张思亭;朱淮武;胡继伟;卫钢. 巯基偶氮苯单分子电子传输的取代基效应[J]. 物理化学学报, 2008, 24(08): 1471-1476.
[9] 赵焱;杨自明;朱洪友;顾娟;王宇飞. 一种新型芳香二胺桥联β-环糊精对染料的分子识别[J]. 物理化学学报, 2007, 23(03): 394-398.
[10] 武国华, 盛六四, 张允武, 高辉, 陈祖耀. 氧化偶氮苯的真空紫外光电离与光离解[J]. 物理化学学报, 2000, 16(10): 948-951.
[11] 张燕玲, 高兴明, 童林荟, 马学毅. 苯甲酰基修饰环糊精衍生物的圆二色性与分子构象[J]. 物理化学学报, 1999, 15(09): 856-859.
[12] 武国华, 盛六四, 高辉, 张允武. 对氨基偶氮苯的同步辐射光电离与光离解[J]. 物理化学学报, 1999, 15(09): 860-864.
[13] 王臻, 张浩力, 力虎林. 偶氮苯衍生物—β-环糊精包合物的自组装行为[J]. 物理化学学报, 1999, 15(07): 606-612.
[14] 李海英, 张浩力, 张锦, 刘忠范. 新型偶氮苯硫醇衍生物自组装膜的制备与结构表征[J]. 物理化学学报, 1999, 15(03): 198-203.
[15] 邵会波, 于化忠, 程广军, 张浩力, 刘忠范. 偶氮苯硫醇衍生物自组装成膜过程考察[J]. 物理化学学报, 1998, 14(09): 846-851.