Please wait a minute...
物理化学学报  2018, Vol. 34 Issue (12): 1334-1357    DOI: 10.3866/PKU.WHXB201804201
所属专题: 表面物理化学
综述     
原子层沉积:一种多相催化剂“自下而上”气相制备新策略
王恒伟1,路军岭1,2,*()
1 中国科学技术大学化学物理系,合肥微尺度物质科学国家研究中心,能源材料化学协同创新中心,合肥 230026
2 中国科学技术大学,中国科学院能量转换重点实验室,合肥 230026
Atomic Layer Deposition: A Gas Phase Route to Bottom-up Precise Synthesis of Heterogeneous Catalyst
Hengwei WANG1,Junling LU1,2,*()
1 Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, University of Science and Technology of China, Hefei 230026, P. R. China
2 CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei 230026, P. R. China
 全文: PDF(10571 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

多相催化剂是极为重要的一类催化剂,在许多重要工业反应中扮演关键角色。然而,传统的湿化学合成手段在很多情况下难以做到对催化剂活性位点的结构、组成以及其周围局部环境的原子级精细调控,继而给优化催化剂性能、理解多相催化机理带来较大的挑战。原子层沉积(ALD)是一种气相催化剂合成技术,其原理是基于两种前驱体蒸汽交替进样并在载体表面上发生分子层面上的“自限制”反应,实现目标材料在载体表面上的精准沉积。利用其分子层面上的“自限制”反应特性,并通过改变沉积周期数、次序和种类等方法可以实现对催化剂活性位结构的原子级精细控制,进而为人们提供了一种催化剂“自下而上”精细可控合成的新策略。在本文中,我们总结了利用ALD方法在负载型单金属和双金属催化剂精细设计方面的进展,讨论了ALD方法在设计高效催化剂方面的特点与优势。特别地,我们总结了利用ALD方法制备单原子和双原子结构金属催化剂的方法与策略。此外,我们总结了利用氧化物可控沉积精准调控金属催化活性中心周围的微环境,从而实现提升催化剂活性、选择性和稳定性的方法。最后我们展望了ALD技术在催化剂制备领域中应用的潜力。

关键词: 原子层沉积负载型金属催化剂“自下而上”合成单原子催化剂双原子催化剂金属氧化物界面限域效应    
Abstract:

Heterogeneous catalysts are usually synthesized by the conventional wet-chemistry methods, including wet-impregnation, ion exchange, and deposition-precipitation. With the development of catalyst synthesis, great progress has been made in many industrially important catalytic processes. However, these catalytic materials often have very complex structures along with poor uniformity of active sites. Such heterogeneity of active site structures significantly decreases catalytic performance, especially in terms of selectivity, and hinders atomic-level understanding of structure-activity relationships. Moreover, loss of exposed active components by sintering or leaching under harsh reaction conditions causes considerable catalyst deactivation. It is desirable to develop a facile method to tune catalyst active site structures, as well as their local chemical environments on the atomic level, thereby facilitating reaction mechanisms understanding and rational design of catalysts with high stability.

Atomic layer deposition (ALD), a gas-phase technique for thin film growth, has emerged as an alternative method to synthesize heterogeneous catalysts. Like chemical vapor deposition (CVD), ALD relies on a sequence of molecular-level, self-limiting surface reactions between the vapors of precursor molecules and a substrate. This unique character makes it possible to deposit various catalytic materials uniformly on a high-surface-area support with nearly atomic precision. By tuning the number, sequence, and types of ALD cycles, bottom-up precise construction of catalytic architectures on a support can be achieved.

In this review, we focus on the design and synthesis of supported metal catalysts using ALD. We first review strategies developed to precisely tailor the size, composition, and structures of metal nanoparticles (NPs) using ALD. Catalytic performances of these ALD metal catalysts are also discussed and compared to conventional catalysts. We highlight synthetic strategies for synthesis of metal single-atom catalysts and bottom-up precise synthesis of dimeric metal catalysts. Their impact on catalysis is discussed. We demonstrate that metal oxide ALD on metal NPs can enhance catalytic activity, selectivity, and especially stability. In particular, we show that site-selective blocking of metal NPs with an oxide overcoat improves selectivity and contributes to an understanding of the distinct functionalities of the low-and high-coordination sites in catalytic reactions on the atomic level. Next, we discuss an effective method to construct bifunctional catalysts via precisely-controlled addition of a secondary functionality using ALD. Finally, we summarize the advantages of ALD for the advanced design and synthesis of catalysts and discuss the challenges and opportunities of scaling up ALD catalyst synthesis for practical applications.

Key words: Atomic layer deposition    Supported metal catalyst    "Bottom-up" synthesis    Single-atom catalyst    Dimeric metal catalysts    Metal-oxide interfaces    Confinement effect
收稿日期: 2018-03-27 出版日期: 2018-04-23
中图分类号:  O643  
基金资助: 国家自然科学基金(21673215);国家自然科学基金(21473169);国家自然科学基金(51402283);中央高校基本科研业务费(WK2060030029);中央高校基本科研业务费(WK6030000015);Max-Planck伙伴小组资助项目
通讯作者: 路军岭     E-mail: junling@ustc.edu.cn
作者简介: Prof. LU Junling received his PhD degree from Institute of Physics, Chinese Academy of Sciences under the supervision of Prof. Hongjun Gao in 2007. During his PhD studies, he visited Prof. Hans-Joachim Freund group at Chemical Physics Department, Fritz-Haber-Institute, Max Planck Society as an exchange student in 2004-2006. After graduation, he spent three years in Prof. Peter C Stair's group at Northwestern University and then about two and a half years in Dr. Jeffrey W. Elam's group at Argonne National Laboratory as a Postdoc. In March. 2013, he became a professor at University of Science and Technology of China. His current research interest is atomically-precise design of new catalytic materials using a combined wet-chemistry and atomic layer deposition (ALD) approach for advanced catalysis
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王恒伟
路军岭

引用本文:

王恒伟,路军岭. 原子层沉积:一种多相催化剂“自下而上”气相制备新策略[J]. 物理化学学报, 2018, 34(12): 1334-1357, 10.3866/PKU.WHXB201804201

Hengwei WANG,Junling LU. Atomic Layer Deposition: A Gas Phase Route to Bottom-up Precise Synthesis of Heterogeneous Catalyst. Acta Phys. -Chim. Sin., 2018, 34(12): 1334-1357, 10.3866/PKU.WHXB201804201.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201804201        http://www.whxb.pku.edu.cn/CN/Y2018/V34/I12/1334

Fig 1  Schematic illustration of ALD process 6. (a) A substrate with nucleation sites; (b) pulse the first precursor to the substrate until saturation to form a molecular layer of A on the substrate with partial remained ligands and gaseous reaction byproducts; (c) purge away the reaction byproducts and unreacted precursors A from the reaction chamber; (d) pulse the second precursor B to remove the remained ligand of precursor A, and regenerate the nucleation sites; (e) purge away the reaction byproducts and unreacted precursors B to complete one ALD cycle. (f) Repeating the ALD cycles to tune the film thickness.
Fig 2  Transmission electron microscopy and high-resolution transmission electron microscopy (HRTEM) images of Ni/Al2O3 catalysts prepared by 1 (a), 5 (b), and 15 (c) ALD cycles 59. Adapted from Elsevier Inc. publisher.
Sample C3H6 hydrogenation TOF/s-1 C3H6 hydrogenolysis TOF/s-1
1-cycle Ni ALD 7.1 0.04
5-cycle Ni ALD 4.6 0.03
15-cycle Ni ALD 4.2 0.20
Incipient wetness 3.2 0.01
Table 1  Propylene hydrogenation and hydrogenolysis turnover frequencies (TOF) at 225 ℃ 59.
Fig 3  Scanning transmission electron microscopy image of Pd NPs supported on Al2O3 prepared by 1 cycle Pd ALD and the correlated Pd particle size distribution 65.
Fig 4  TEM images of one to three cycles of Pt ALD at 300 ℃ on sphere-Al2O3 with O2 treatment 80. As prepared: (a) one cycle Pt, (b) two cycles Pt, and (c) three cycles Pt. After WGS: (d) one cycle Pt, (e) two cycles Pt, and (f) three cycles Pt.
Fig 5  TEM images of the Pt/CNTs catalysts prepared by ALD 84. (a) Pt2/CNTs, (b) Pt5/CNTs, (c) Pt8/CNTs and (d) Pt10/CNTs. The number 2, 5, 8 and 10 represent the Pt ALD cycle.
Fig 6  Low resolution (left) and high resolution (right) TEM images of Pt nanoparticles on SrTiO3 nanocubes 85. The Pt particles can be differentiated from the SrTiO3 substrate by both the difference in fringe spacing and the "white line" contrast at the SrTiO3 surface in projection. Near perfect alignment of Pt(100) and SrTiO3(100) lattice fringes indicates a strong epitaxy.
Fig 7  In situ QCM measurements of ALD metal on metal and oxide surface 79. (a) Pd ALD on Pt, Ru, Al2O3, TiO2 and ZrO2 using Pd(hfac)2 and H2 at 150 ℃. (b) Pt ALD on Pd, Ru, Al2O3, TiO2 and ZrO2 using MeCpPtMe3 and O2 at 150 ℃. (c) ABC-type Ru ALD on Pd and Pt at 150 and 200 ℃, and on Al2O3, TiO2 and ZrO2 at 200 ℃ using Ru(EtCp)2, O2 and H2.
Fig 8  In situ FTIR CO chemisorption measurements during ALD of Pt shell on an ALD Pd/Al2O3 sample at 150 ℃ 79. Scale bar, 1%, scale bar for the inset, 0.5%.
Fig 9  Structures of ALD PtPd bimetallic NPs 79. Representative aberration-corrected HAADF-STEM image and corresponding EDS line profiles of (a) 5Pd-core 15Pt-shell, (b) 12Pt-10Pd alloy (c) 12Pt-core 20Pd-rich-shell bimetallic NPs on spherical alumina support. The number represent the correlated metal ALD numbers.
Fig 10  Schematic illustration for fabricating the core-shell NPs through area-selective ALD on ODTS modified substrate 111.
Fig 11  Schematic illustration of synthesis of Au@Pd core-shell bimetallic NPs using low-temperature selective Pd ALD 104.
Fig 12  Aberration-corrected HAADF-STEM images of different bimetallic catalysts at low and high magnifications 104. (a) and (e) Au@3Pd/SiO2; (b) and (f) Au@8Pd/SiO2; (c) and (g) Au@20Pd/SiO2. (d) The growth of Au@Pd particle size as a function of Pd ALD cycles. (h) The Pd shell thickness as a function of Pd ALD cycles. (i) A lower magnification HAADF-STEM image of Au@8Pd/SiO2, and corresponding EDS mapping images: (j) Au Lα1 and (k) Pd Lα1 signals, and (l) the reconstructed Au@Pd bimetallic composition image. The numbers represent the Pd ALD cycle.
Fig 13  Initial activities of Au, Au@Pd and Pd catalysts in benzyl alcohol oxidation 104. Specific activity (black column) normalized to the total Pd content; TOF (red column) normalized to the surface Pd content.
Fig 14  ADF STEM images of ALD Pt/NGNs samples with 50 and ALD cycles and schematic illustration of the Pt ALD mechanism on NGNs 134. Scale bars, 10 nm (a); 5 nm (b). (c) The ALD process includes the following: the Pt precursor (MeCpPtMe3) first reacts with the N-dopant sites in the NGNs (ⅰ). During the following O2 exposure, the Pt precursor on the NGNs is completely oxidized to CO2 and H2O, creating a Pt containing monolayer (ⅱ). These two processes (ⅰ and ⅱ) form a complete ALD cycle. During process (ⅱ), a new layer of adsorbed oxygen forms on the platinum surface, which provides functional groups for the next ALD cycle process (ⅲ).
Fig 15  (a) Schematic illustration of single-atom Pd1/graphene catalyst synthesis via a process of anchor sites creation and selection and Pd ALD on pristine graphene. Representive HAADF-STEM images of Pd1/graphene at low (b, c) and high (d) magnifications. Atomically dispersed Pd atoms in image (d) are highlighted by the white circles 145.
Fig 16  Catalytic performances of Pd1/graphene, Pd-NPs/graphene, Pd-NPs/graphene-500C, and Pd/carbon samples in selective hydrogenation of 1, 3-butadiene 145. (a) Butenes selectivity as a function of conversion by changing the reaction temperatures; (b) the distribution of butenes at 95% conversion. Propene conversion (c) and the distribution of butenes (d) at 98% 1, 3-butadiene conversion in hydrogenation of 1, 3-butadiene in the presence of propene. (e) Schematic illustration of improvement of butenes selectivity on single-atom Pd1/graphene catalyst. Note: the figure legend in (b) also applies to (d).
Fig 17  Synthesis of single-atom Pd1/C3N4 catalyst using Pd ALD 146. (a) Schematic illustration of a single-atom Pd1/C3N4 catalyst synthesized by Pd ALD on pristine g-C3N4. (b, c) Aberration-corrected HAADF-STEM images of the single-atom Pd1/C3N4 catalyst at low and high resolution, respectively.
Fig 18  Single-atom Pt1/CeO2 catalyst synthesized by Pt ALD 148. Representative HAADF-STEM images of the resulting Pt1/CeO2 catalyst at (a, b) low and (c, d) high magnifications. Part of atomically dispersed Pt atoms in images (c, d) are highlighted by the white circles. (e) DRIFTS of CO chemisorption on Pt1/CeO2 and Pt-NPs/CeO2. (f) XPS spectrum of the Pt1/CeO2 sample in the Pt 4f region. The inset in (d) is the optimized structure of Pt1 on CeO2(110). The yellow, blue and red spheres represent Ce, Pt and O atoms, respectively.
Fig 19  Schematic illustration of bottom-up synthesis of dimeric Pt2/graphene catalysts 153. Controlled creation of isolated anchor sites on pristine graphene; one cycle of Pt ALD on the anchor sites for Pt single atoms formation by alternately exposing MeCpPtMe33 and molecular O2 at 250 ℃; second cycle of Pt ALD on the Pt1/graphene to selectively deposit the secondary Pt atoms on the preliminary ones for Pt2 dimers formation at 150 ℃. The balls in cyan, white, red, and blue represent carbon, hydrogen, oxygen, and platinum while the ball in gray represents carbon atoms in the graphene support.
Fig 20  Morphology of the single-atom Pt1/graphene and dimeric Pt2/graphene catalysts 153. Aberration-corrected HAADF-STEM images of Pt1/graphene (a-c) and dimeric Pt2/graphene (d, e). The insets in (a) and (d) show the optimized structure of Pt1 single atoms and Pt2 dimers by DFT calculations.
Fig 21  Oxide overcoating on supported metal catalyst to create new metal-oxide interfaces.
Fig 22  ZnO-promoted Pt catalysts 160. (a) Preparation of the ZnO-promoted Pt catalysts with inverse spatial arrangement. STEM images of (b, c) Pt/ZnO/Al2O3 and (d, e) ZnO/Pt/Al2O3. (f) Alkane selectivity (black), H2 selectivity (red) in gas-phase effluent, and H2 formation rate (blue bar) in the APR of 1-propanol at 200 ℃. (g) Performance of ZnO/Pt/Al2O3 with time-on-stream in the APR of 1-propanol at 200 ℃.
Fig 23  Catalytic performance of multiple confined Ni catalyst in selective hydrogenation of cinnamaldehyde 161. a) The evolution of CA conversion with reaction time, and (b) the recycling results for the catalysts in the hydrogenation of CA. TEM images of Ni-in-ANTs (c) after reaction for 10 min and (d) after the fourth run; and of Ni-out-ANTs (e) after reaction for 10 min and (f) after the fourth run.
Fig 24  CO3O4 nanotrap-anchored Pt NPs on Al2O3 supports based on AS-ALD 163. (a) Preparation procedure. (b). (a) CO conversion and (b) reaction rates of catalysts as a function of reaction temperature. The catalysts are Pt/Al2O3 (■), Pt/Al2O3-600 (□), CO3O4/Pt/Al2O3 (●), and CO3O4/Pt/Al2O3-600 (○).
Fig 25  Plot of the reaction temperature for 50% CO conversion as a function of the number of TiO2 ALD cycles 165. The inserts show schematic model of precisely tuning the interfaces between Au and TiO2 ALD overcoat.
Fig 26  CO conversion as a function of the number of exposed low-coordination Au sites on Au/TiO2-2.9 nm, xc-Au/TiO2-5.0 nm and xc-Au/TiO2-10.2 nm catalysts with different ALD TiO2 overcoating at 298 K 166.
Fig 27  Products yield on the Pd/Al2O3 samples with and without ALD Al2O3 overcoat during ODHE reaction as a function of reaction time under identical reaction conditions 175. Diamonds with a dashed line, product yields on the uncoated Pd/Al2O3 sample; circles with solid lines, product yields on the 45Al/Pd/Al2O3 sample.
Fig 28  Selectivity to cinnamyl alcohol over various Pt catalysts with different cycles of Fe2O3 overcoating with reaction time in selective hydrogenation of cinnamaldehyde 184. Adapted from Elsevier Inc. publisher.
Fig 29  Catalytic performance of the Pd/Al2O3 samples with and without ALD alumina overcoat in the absence of propene 188. (a) Selectivity to all butenes as a function of 1, 3-butadiene conversion. (b) The detailed selectivities to 1-butene, trans-2-butene and cis-2-butene at a conversion of 95%. The insert in (a) showed a STEM image of Pd/Al2O3 sample with 30 cycles alumina overcoat.
Fig 30  Schematic illustration of the synthesis of shape-selective catalysts by oxide ALD 191. Initially, a template organic molecule is deposited. ALD is performed around the molecule and the template molecule is removed using ozone.
Fig 31  Proposed schematic model of Co/TiO2 catalysts with and without ALD TiO2 decoration on edge 204. a) Co/TiO2, (b) TiO2/Co/TiO2, and (c) TiO2/Co/TiO2 after calcination.
Fig 32  Percent of cobalt leached as a function of time on stream for aqueous-phase hydrogenation of furfural alcohol 204.
Fig 33  The catalytic performance of different catalysts 211. (a) Activity for nitrobenzene hydrogenation usingN2H4·H2O as hydrogen source (Reaction conditions: 50 μL nitrobenzene, 200 μL hydrazine hydrate, 10 mL water-ethanol mixture (V/V = 1/1), and 10 mg catalyst at 40 ℃; Physical mixture catalysts of Al/Ni-Ti+Al-Pt/Ti containing 10 mg Al/Ni-Ti and 10 mg Al-Pt/Ti; Physical mixture catalysts of Ni/Al + Pt/Ti containing 5 mg Ni/Al2O3 and 5 mg Pt/TiO2). (b) Activity for H2 generation from N2H4·H2O decomposition (Reaction conditions: 200 μL hydrazine hydrate, 10 mL water, and 10 mg catalyst at 40 ℃). (c) Activity for hydrogenation of nitrobenzene (Reaction conditions: 50 μL nitrobenzene, 10 mL water-ethanol mixture (V/V = 1/1), and 10 mg catalyst at 40 ℃ in 20 bar H2). (d) Illustration of the tandem catalysis on Al/Ni-Pt/Ti catalyst in the aqueous ethanol solution.
1 Bartholomew C. H. ; Farrauto R. J. Fundamentals of Industrial Catalytic Processes 2nd ed. Wiley: Hoboken N.J., 2006, p. 4.
2 Schwartz T. J. ; O'Neill B. J. ; Shanks B. H. ; Dumesic J. A. ACS Catal. 2014, 4, 2060.
doi: 10.1021/cs500364y
3 Zaera F. Catal. Lett. 2012, 142, 501.
doi: 10.1007/s10562-012-0801-9
4 Thomas J. M. ; Harris K. D. M. Energy Environ. Sci. 2016, 9, 687.
doi: 10.1039/c5ee03461b
5 Deutschmann, O. ; Kn?zinger, H. ; Kochloefl, K. ; Turek, T. Heterogeneous Catalysis and Solid Catalysts. In Ullmann's Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, 2009.
6 O'Neill B. J. ; Jackson D. H. K. ; Lee J. ; Canlas C. ; Stair P. C. ; Marshall C. L. ; Elam J. W. ; Kuech T. F. ; Dumesic J. A. ; Huber G. W. ACS Catal. 2015, 5, 1804.
doi: 10.1021/cs501862h
7 Schauermann S. ; Nilius N. ; Shaikhutdinov S. ; Freund H. J. Acc. Chem. Res. 2013, 46, 1673.
doi: 10.1021/ar300225s
8 Schwarz J. A. ; Contescu C. ; Contescu A. Chem. Rev. 1995, 95, 477.
doi: 10.1021/Cr00035a002
9 Munnik P. ; de Jongh P. E. ; de Jong K. P. Chem. Rev. 2015, 115, 6687.
doi: 10.1021/cr500486u
10 Wrobleski J. T. ; Boudart M. Catal. Today 1992, 15, 349.
doi: 10.1016/0920-5861(92)85002-4
11 Liu Y. X. ; Zhao G. F. ; Wang D. S. ; Li Y. D. Natl. Sci. Rev. 2015, 2, 150.
doi: 10.1093/nsr/nwv014
12 Zhou Z. Y. ; Tian N. ; Li J. T. ; Broadwell I. ; Sun S. G. Chem. Soc. Rev. 2011, 40, 4167.
doi: 10.1039/c0cs00176g
13 Park J. ; Joo J. ; Kwon S. G. ; Jang Y. ; Hyeon T. Angew. Chem. Int. Ed. 2007, 46, 4630.
doi: 10.1002/anie.200603148
14 Liu P. X. ; Qin R. X. ; Fu G. ; Zheng N. F. J. Am. Chem. Soc. 2017, 139, 2122.
doi: 10.1021/jacs.6b10978
15 Marshall S. T. ; O'Brien M. ; Oetter B. ; Corpuz A. ; Richards R. M. ; Schwartz D. K. ; Medlin J. W. Nat. Mater. 2010, 9, 853.
doi: 10.1038/nmat2849
16 Lu J. L. ; Elam J. W. ; Stair P. C. Acc. Chem. Res. 2013, 46, 1806.
doi: 10.1021/ar300229c
17 Ahonen M. ; Pessa M. ; Suntola T. Thin Solid Films 1980, 65, 301.
doi: 10.1016/0040-6090(80)90240-0
18 George S. M. Chem. Rev. 2010, 110, 111.
doi: 10.1021/cr900056b
19 Puurunen R. L. J. Appl. Phys. 2005, 97, 121301.
doi: 10.1063/1.1940727
20 Elam J. W. ; Sechrist Z. A. ; George S. M. Thin Solid Films 2002, 414, 43.
doi: 10.1016/S0040-6090(02)00427-3
21 Ritala M. ; Leskela M. ; Dekker J. P. ; Mutsaers C. ; Soininen P. J. ; Skarp J. Chem. Vap. Deposition 1999, 5, 7.
doi: 10.1002/(Sici)1521-3862(199901)5:1<7::Aid-Cvde7>3.0.Co;2-J
22 Paracchino A. ; Laporte V. ; Sivula K. ; Gratzel M. ; Thimsen E. Nat. Mater. 2011, 10, 456.
doi: 10.1038/NMAT3017
23 Coll M. ; Gazquez J. ; Palau A. ; Varela M. ; Obradors X. ; Puig T. Chem. Mater. 2012, 24, 3732.
doi: 10.1021/cm301864c
24 Pagan-Torres Y. J. ; Gallo J. M. R. ; Wang D. ; Pham H. N. ; Libera J. A. ; Marshall C. L. ; Elam J. W. ; Datye A. K. ; Dumesic J. A. ACS Catal. 2011, 1, 1234.
doi: 10.1021/cs200367t
25 Yang J. H. ; Walczak K. ; Anzenberg E. ; Toma F. M. ; Yuan G. B. ; Beeman J. ; Schwartzberg A. ; Lin Y. J. ; Hettick M. ; Javey A. ; et al J. Am. Chem. Soc. 2014, 136, 6191.
doi: 10.1021/ja501513t
26 Hu S. ; Shaner M. R. ; Beardslee J. A. ; Lichterman M. ; Brunschwig B. S. ; Lewis N. S. Science 2014, 344, 1005.
doi: 10.1126/science.1251428
27 Lu J. ; Elam J. W. ; Stair P. C. Surf. Sci. Rep. 2016, 71, 410.
doi: 10.1016/j.surfrep.2016.03.003
28 Singh J. A. ; Yang N. Y. ; Bent S. F. Annu. Rev. Chem. Biomol. Eng. 2017, 8, 41.
doi: 10.1146/annurev-chembioeng-060816-101547
29 Moro L. F. L. Comput. Chem. Eng. 2003, 27, 1303.
doi: 10.1016/S0098-1354(03)00054-1
30 Rostrup-Nielsen J. R. Catal. Today 2000, 63, 159.
doi: 10.1016/S0920-5861(00)00455-7
31 Tsang S. C. ; Claridge J. B. ; Green M. L. H. Catal. Today 1995, 23, 3.
doi: 10.1016/0920-5861(94)00080-L
32 Zhang Z. ; Wang S. S. ; Song R. ; Cao T. ; Luo L. ; Chen X. ; Gao Y. ; Lu J. ; Li W. X. ; Huang W. Nat. Commun. 2017, 8, 488.
doi: 10.1038/s41467-017-00620-6
33 Rodriguez J. A. ; Liu P. ; Hrbek J. ; Evans J. ; Pérez M. Angew. Chem. Int. Ed. 2007, 46, 1329.
doi: 10.1002/anie.200603931
34 Funabiki M. ; Yamada T. ; Kayano K. Catal. Today 1991, 10, 33.
doi: 10.1016/0920-5861(91)80072-H
35 Hu W. ; Wang Y. ; Shang H. Y. ; Xu H. D. ; Zhong L. ; Chen J. J. ; Gong M. C. ; Chen Y. Q. Acta Phys. -Chim. Sin. 2015, 31, 1771.
doi: 10.3866/PKU.WHXB201507141
胡伟; 王云; 尚鸿燕; 徐海迪; 钟琳; 陈建军; 龚茂初; 陈耀强. 物理化学学报, 2015, 31, 1771.
doi: 10.3866/PKU.WHXB201507141
36 Iglesia E. Appl. Catal. A: Gen. 1997, 161, 59.
doi: 10.1016/S0926-860x(97)00186-5
37 Khodakov A. Y. ; Chu W. ; Fongarland P. Chem. Rev. 2007, 107, 1692.
doi: 10.1021/cr050972v
38 Alonso D. M. ; Wettstein S. G. ; Dumesic J. A. Chem. Soc. Rev. 2012, 41, 8075.
doi: 10.1039/c2cs35188a
39 Shanks B. H. Ind. Eng. Chem. Res. 2010, 49, 10212.
doi: 10.1021/ie100487r
40 Guo Z. ; Liu B. ; Zhang Q. H. ; Deng W. P. ; Wang Y. ; Yang Y. H. Chem. Soc. Rev. 2014, 43, 3480.
doi: 10.1039/c3cs60282f
41 Serrano-Ruiz J. C. ; Dumesic J. A. Green Chem. 2009, 11, 1101.
doi: 10.1039/b906869d
42 Blaser H. U. ; Malan C. ; Pugin B. ; Spindler F. ; Steiner H. ; Studer M. Adv. Synth. Catal. 2003, 345, 103.
doi: 10.1002/adsc.200390000
43 Stamenkovic V. R. ; Mun B. S. ; Arenz M. ; Mayrhofer K. J. J. ; Lucas C. A. ; Wang G. F. ; Ross P. N. ; Markovic N. M. Nat. Mater. 2007, 6, 241.
doi: 10.1038/nmat1840
44 Calle-Vallejo F. ; Koper M. T. M. ; Bandarenka A. S. Chem. Soc. Rev. 2013, 42, 5210.
doi: 10.1039/c3cs60026b
45 Ye Y. ; Sanford M. S. J. Am. Chem. Soc. 2012, 134, 9034.
doi: 10.1021/ja301553c
46 Mohamed Z. ; Dasireddy V. D. B. C. ; Singh S. ; Friedrich H. B. Appl. Catal. B: Environ. 2016, 180, 687.
doi: 10.1016/j.apcatb.2015.07.012
47 Bezemer G. L. ; Bitter J. H. ; Kuipers H. P. ; Oosterbeek H. ; Holewijn J. E. ; Xu X. ; Kapteijn F. ; van Dillen A. J. ; de Jong K. P. J. Am. Chem. Soc. 2006, 128, 3956.
doi: 10.1021/ja058282w
48 Valden M. ; Lai X. ; Goodman D. W. Science 1998, 281, 1647.
doi: 10.1126/science.281.5383.1647
49 Haruta M. Catal. Today 1997, 36, 153.
doi: 10.1016/S0920-5861(96)00208-8
50 Li J. ; Chen W. ; Zhao H. ; Zheng X. ; Wu L. ; Pan H. ; Zhu J. ; Chen Y. ; Lu J. J. Catal. 2017, 352, 371.
doi: 10.1016/j.jcat.2017.06.007
51 Bond G. C. Chem. Soc. Rev. 1991, 20, 441.
doi: 10.1039/Cs9912000441
52 Chen M. S. Acta Phys. -Chim. Sin. 2017, 33, 2424.
doi: 10.3866/PKU.WHXB201707171
陈明树. 物理化学学报, 2017, 33, 2424.
doi: 10.3866/PKU.WHXB201707171
53 Hu L. X. ; Wang L. ; Wang F. ; Zhang C. H. ; He H. Acta Phys. -Chim. Sin. 2017, 33, 1681.
doi: 10.3866/PKU.WHXB201704192
胡凌霄; 王莲; 王飞; 张长斌; 贺泓. 物理化学学报, 2017, 33, 1681.
doi: 10.3866/PKU.WHXB201704192
54 Gates B. C. Chem. Rev. 1995, 95, 511.
doi: 10.1021/cr00035a003
55 Bond G. C. Acc. Chem. Res. 1993, 26, 490.
doi: 10.1021/ar00033a006
56 Lindblad M. ; Lindfors L. P. ; Suntola T. Catal. Lett. 1994, 27, 323.
doi: 10.1007/Bf00813919
57 Ribeiro F. H. ; Somorjai G. A. Recl.: J. R. Neth. Chem. Soc. 1994, 113, 419.
doi: 10.1002/recl.19941131002
58 Narayanan S. ; Uma K. J. Chem. Soc. Faraday Trans. 1985, 81, 2733.
doi: 10.1039/F19858102733
59 Gould T. D. ; Lubers A. M. ; Neltner B. T. ; Carrier J. V. ; Weimer A. W. ; Falconer J. L. ; Medlin J. W. J. Catal. 2013, 303, 9.
doi: 10.1016/j.jcat.2013.03.013
60 Jiang C. J. ; Shang Z. Y. ; Liang X. H. ACS Catal. 2015, 5, 4814.
doi: 10.1021/acscatal.5b00969
61 Mahata N. ; Cunha A. F. ; Orfao J. J. M. ; Figueiredo J. L. Appl. Catal. A: Gen. 2008, 351, 204.
doi: 10.1016/j.apcata.2008.09.015
62 Kim D. H. ; Sim J. K. ; Lee J. ; Seo H. O. ; Jeong M. G. ; Kim Y. D. ; Kim S. H. Fuel 2013, 112, 111.
doi: 10.1016/j.fuel.2013.04.089
63 Lei Y. ; Lu J. ; Luo X. Y. ; Wu T. P. ; Du P. ; Zhang X. Y. ; Ren Y. ; Wen J. G. ; Miller D. J. ; Miller J. T. ; et al Nano Lett. 2013, 13, 4182.
doi: 10.1021/nl401833p
64 Stair P. C. Top. Catal. 2012, 55, 93.
doi: 10.1007/s11244-012-9776-4
65 Feng H. ; Elam J. W. ; Libera J. A. ; Setthapun W. ; Stair P. C. Chem. Mater. 2010, 22, 3133.
doi: 10.1021/cm100061n
66 Elam J. W. ; Zinovev A. ; Han C. Y. ; Wang H. H. ; Welp U. ; Hryn J. N. ; Pellin M. J. Thin Solid Films 2006, 515, 1664.
doi: 10.1016/j.tsf.2006.05.049
67 Feng H. ; Libera J. A. ; Stair P. C. ; Miller J. T. ; Elam J. W. ACS Catal. 2011, 1, 665.
doi: 10.1021/cs2000957
68 Lee C. ; Yoon H. K. ; Moon S. ; Yoon K. J. Korean J. Chem. Eng. 1998, 15, 590.
doi: 10.1007/Bf02698983
69 Matsumura Y. ; Okumura M. ; Usami Y. ; Kagawa K. ; Yamashita H. ; Anpo M. ; Haruta M. Catal. Lett. 1997, 44, 189.
doi: 10.1023/A:1018918301790
70 King J. S. ; Wittstock A. ; Biener J. ; Kucheyev S. O. ; Wang Y. M. ; Baumann T. F. ; Giri S. K. ; Hamza A. V. ; Baeumer M. ; Bent S. F. Nano Lett. 2008, 8, 2405.
doi: 10.1021/nl801299z
71 Knoops H. C. M. ; Mackus A. J. M. ; Donders M. E. ; van de Sanden M. C. M. ; Notten P. H. L. ; Kessels W. M. M. Electrochem. Solid State Lett. 2009, 12, G34.
doi: 10.1149/1.3125876
72 Aaltonen T. ; Rahtu A. ; Ritala M. ; Leskela M. Electrochem. Solid State Lett. 2003, 6, C130.
doi: 10.1149/1.1595312
73 Zhou Y. ; King D. M. ; Liang X. H. ; Li J. H. ; Weimer A. W. Appl. Catal. B: Environ. 2010, 101, 54.
doi: 10.1016/j.apcatb.2010.09.005
74 Aaltonen T. ; Ritala M. ; Tung Y. L. ; Chi Y. ; Arstila K. ; Meinander K. ; Leskela M. J. Mater. Res. 2004, 19, 3353.
doi: 10.1557/Jmr.2004.0426
75 Liu C. ; Wang C. C. ; Kei C. C. ; Hsueh Y. C. ; Perng T. P. Small 2009, 5, 1535.
doi: 10.1002/smll.200900278
76 Lashdaf M. ; Lahtinen J. ; Lindblad M. ; Venalainen T. ; Krause A. O. I. Appl. Catal. A: Gen. 2004, 276, 129.
doi: 10.1016/j.apcata.2004.07.050
77 Baker L. ; Cavanagh A. S. ; Seghete D. ; George S. M. ; Mackus A. J. M. ; Kessels W. M. M. ; Liu Z. Y. ; Wagner F. T. J. Appl. Phys. 2011, 109, 084333.
doi: 10.1063/1.3555091
78 Gould T. D. ; Lubers A. M. ; Corpuz A. R. ; Weimer A. W. ; Falconer J. L. ; Medlin J. W. ACS Catal. 2015, 5, 1344.
doi: 10.1021/cs501265b
79 Lu J. L. ; Low K. B. ; Lei Y. ; Libera J. A. ; Nicholls A. ; Stair P. C. ; Elam J. W. Nat. Commun. 2014, 5, 3264.
doi: 10.1038/Ncomms4264
80 Setthapun W. ; Williams W. D. ; Kim S. M. ; Feng H. ; Elam J. W. ; Rabuffetti F. A. ; Poeppelmeier K. R. ; Stair P. C. ; Stach E. A. ; Ribeiro F. H. ; et al J. Phys. Chem. C 2010, 114, 9758.
doi: 10.1021/jp911178m
81 Phatak A. A. ; Koryabkina N. ; Rai S. ; Ratts J. L. ; Ruettinger W. ; Farrauto R. J. ; Blau G. E. ; Delgass W. N. ; Ribeiro F. H. Catal. Today 2007, 123, 224.
doi: 10.1016/j.cattod.2007.02.031
82 Shim J. H. ; Jiang X. ; Bent S. F. ; Prinz F. B. J. Electrochem. Soc. 2010, 157, B793..
doi: 10.1149/1.3368787
83 Hsieh C. T. ; Liu Y. Y. ; Tzou D. Y. ; Chen W. Y. J. Phys. Chem. C 2012, 116, 26735.
doi: 10.1021/jp303552j
84 Li J. W. ; Bin Z. ; Chen Y. ; Zhang J. K. ; Yang H. M. ; Zhang J. W. ; Lu X. L. ; Li G. C. ; Qin Y. Catal. Sci. Technol. 2015, 5, 4218.
doi: 10.1039/c5cy00598a
85 Enterkin J. A. ; Poeppelmeier K. R. ; Marks L. D. Nano Lett. 2011, 11, 993.
doi: 10.1021/nl104263j
86 Winterbo. Wl Acta Metall. 1967, 15, 303.
doi: 10.1016/0001-6160(67)90206-4
87 Lu J. L. ; Elam J. W. Chem. Mater. 2015, 27, 4950.
doi: 10.1021/acs.chemmater.5b00818
88 Vuori H. ; Pasanen A. ; Lindblad M. ; Valden M. ; Niemela M. V. ; Krause A. O. I. Appl. Surf. Sci. 2011, 257, 4204.
doi: 10.1016/j.apsusc.2010.12.021
89 Chen C. S. ; Lin J. H. ; You J. H. ; Chen C. R. J. Am. Chem. Soc. 2006, 128, 15950.
doi: 10.1021/ja063083d
90 Dai M. ; Kwon J. ; Halls M. D. ; Gordon R. G. ; Chabal Y. J. Langmuir 2010, 26, 3911.
doi: 10.1021/la903212c
91 Kim J. M. ; Lee H. B. R. ; Lansalot C. ; Dussarrat C. ; Gatineau J. ; Kim H. Jpn. J. Appl. Phys. 2010, 49, 05FA10.
doi: 10.1143/JJAP.49.05FA10
92 Lee H. B. R. ; Kim J. ; Kim H. ; Kim W. H. ; Lee J. W. ; Hwang I. J. Korean Phys. Soc. 2010, 56, 104.
doi: 10.3938/jkps.56.104
93 Masango S. S. ; Peng L. ; Marks L. D. ; Van Duyne R. P. ; Stair P. C. J. Phys. Chem. C 2014, 118, 17655.
doi: 10.1021/jp504067c
94 Maroun F. ; Ozanam F. ; Magnussen O. M. ; Behm R. J. Science 2001, 293, 1811.
doi: 10.1126/science.1061696
95 Gao F. ; Goodman D. W. Chem. Soc. Rev. 2012, 41, 8009.
doi: 10.1039/C2CS35160A
96 Wang A. ; Liu X. Y. ; Mou C. Y. ; Zhang T. J. Catal. 2013, 308, 258.
doi: 10.1016/j.jcat.2013.08.023
97 Sárkány A. ; Geszti O. ; Sáfrán G. Appl. Catal. A: Gen. 2008, 350, 157.
doi: 10.1016/j.apcata.2008.08.012
98 Nutt M. O. ; Heck K. N. ; Alvarez P. ; Wong M. S. Appl. Catal. B: Environ. 2006, 69, 115.
doi: 10.1016/j.apcatb.2006.06.005
99 Sun S. Q. ; Yi Y. H. ; Wang L. ; Zhang J. L. ; Guo H. C. Acta Phys. -Chim. Sin. 2017, 33, 1123.
doi: 10.3866/PKU.WHXB201703301
孙帅其; 易延辉; 王丽; 张家良; 郭洪臣. 物理化学学报, 2017, 33, 1123.
doi: 10.3866/PKU.WHXB201703301
100 Lim B. ; Kobayashi H. ; Yu T. ; Wang J. ; Kim M. J. ; Li Z. Y. ; Rycenga M. ; Xia Y. J. Am. Chem. Soc. 2010, 132, 2506.
doi: 10.1021/ja909787h
101 Harada M. ; Asakura K. ; Toshima N. J. Phys. Chem 1993, 97, 5103.
doi: 10.1021/j100121a042
102 Ferrando R. ; Jellinek J. ; Johnston R. L. Chem. Rev. 2008, 108, 845.
doi: 10.1021/cr040090g
103 Hutchings G. J. ; Kiely C. J. Acc. Chem. Res. 2013, 46, 1759.
doi: 10.1021/ar300356m
104 Wang H. ; Wang C. ; Yan H. ; Yi H. ; Lu J. J. Catal. 2015, 324, 59.
doi: 10.1016/j.jcat.2015.01.019
105 Cao K. ; Cai J. M. ; Liu X. ; Chen R. J. Vac. Sci. Technol. A 2018, 36, 010801.
doi: 10.1116/1.5000587
106 Martensson P. ; Carlsson J. O. J. Electrochem. Soc. 1998, 145, 2926.
doi: 10.1149/1.1838738
107 Hsu I. J. ; McCandless B. E. ; Weiland C. ; Willis B. G. J. Vac. Sci. Technol. A 2009, 27, 660.
doi: 10.1116/1.3143663
108 Weber M. J. ; Mackus A. J. M. ; Verheijen M. A. ; van der Marel C. ; Kessels W. M. M. Chem. Mater. 2012, 24, 2973.
doi: 10.1021/cm301206e
109 Weber M. J. ; Verheijen M. A. ; Bol A. A. ; Kessels W. M. M. Nanotechnology 2015, 26, 094002.
doi: 10.1088/0957-4484/26/9/094002
110 Cao K. ; Liu X. ; Zhu Q. ; Shan B. ; Chen R. ChemCatChem 2016, 8, 326.
doi: 10.1002/cctc.201500827
111 Cao K. ; Zhu Q. Q. ; Shan B. ; Chen R. Sci. Rep. 2015, 5, 8470.
doi: 10.1038/Srep08470
112 Qian K. ; Huang W. Catal. Today 2011, 164, 320.
doi: 10.1016/j.cattod.2010.10.018
113 Xu J. ; White T. ; Li P. ; He C. ; Yu J. ; Yuan W. ; Han Y. F. J. Am. Chem. Soc. 2010, 132, 10398.
doi: 10.1021/ja102617r
114 Edwards J. K. ; Solsona B. ; Landon P. ; Carley A. F. ; Herzing A. ; Watanabe M. ; Kiely C. J. ; Hutchings G. J. J. Mater. Chem. 2005, 15, 4595.
doi: 10.1039/B509542E
115 Edwards J. K. ; Solsona B. E. ; Landon P. ; Carley A. F. ; Herzing A. ; Kiely C. J. ; Hutchings G. J. J. Catal. 2005, 236, 69.
doi: 10.1016/j.jcat.2005.09.015
116 Chen M. ; Kumar D. ; Yi C. W. ; Goodman D. W. Science 2005, 310, 291.
doi: 10.1126/science.1115800
117 Yu W. Y. ; Mullen G. M. ; Flaherty D. W. ; Mullins C. B. J. Am. Chem. Soc. 2014, 136, 11070.
doi: 10.1021/ja505192v
118 Enache D. I. ; Edwards J. K. ; Landon P. ; Solsona-Espriu B. ; Carley A. F. ; Herzing A. A. ; Watanabe M. ; Kiely C. J. ; Knight D. W. ; Hutchings G. J. Science 2006, 311, 362.
doi: 10.1126/science.1120560
119 Chen Y. T. ; Wang H. P. ; Liu C. J. ; Zeng Z. Y. ; Zhang H. ; Zhou C. M. ; Jia X. L. ; Yang Y. H. J. Catal. 2012, 289, 105.
doi: 10.1016/j.jcat.2012.01.020
120 Silva T. A. G. ; Teixeira-Neto E. ; Lopez N. ; Rossi L. M. Sci. Rep. 2014, 4, 5766.
doi: 10.1038/Srep05766
121 Henning A. M. ; Watt J. ; Miedziak P. J. ; Cheong S. ; Santonastaso M. ; Song M. ; Takeda Y. ; Kirkland A. I. ; Taylor S. H. ; Tilley R. D. Angew. Chem. Int. Ed. 2013, 125, 1517.
doi: 10.1002/ange.201207824
122 Chen Y. ; Lim H. ; Tang Q. ; Gao Y. ; Sun T. ; Yan Q. ; Yang Y. Appl. Catal. A: Gen. 2010, 380, 55.
doi: 10.1016/j.apcata.2010.03.026
123 Pritchard J. ; Kesavan L. ; Piccinini M. ; He Q. ; Tiruvalam R. ; Dimitratos N. ; Lopez-Sanchez J. A. ; Carley A. F. ; Edwards J. K. ; Kiely C. J. ; et al Langmuir 2010, 26, 16568.
doi: 10.1021/la101597q
124 Zhang H. ; Xie Y. ; Sun Z. ; Tao R. ; Huang C. ; Zhao Y. ; Liu Z. Langmuir 2011, 27, 1152.
doi: 10.1021/la1034728
125 Hou W. ; Dehm N. A. ; Scott R. W. J. J. Catal. 2008, 253, 22.
doi: 10.1016/j.jcat.2007.10.025
126 Yang X. F. ; Wang A. Q. ; Qiao B. T. ; Li J. ; Liu J. Y. ; Zhang T. Acc. Chem. Res. 2013, 46, 1740.
doi: 10.1021/ar300361m
127 Gates B. C. ; Flytzani-Stephanopoulos M. ; Dixon D. A. ; Katz A. Catal. Sci. Technol. 2017, 7, 4259.
doi: 10.1039/c7cy00881c
128 Flytzani-Stephanopoulos M. ; Gates B. C. Annu. Rev. Chem. Biomol. Eng. 2012, 3, 545.
doi: 10.1146/annurev-chembioeng-062011-080939
129 Flytzani-Stephanopoulos M. Acc. Chem. Res. 2014, 47, 783.
doi: 10.1021/ar4001845
130 Qiao B. T. ; Wang A. Q. ; Yang X. F. ; Allard L. F. ; Jiang Z. ; Cui Y. T. ; Liu J. Y. ; Li J. ; Zhang T. Nat. Chem. 2011, 3, 634.
doi: 10.1038/Nchem.1095
131 Yang M. ; Li S. ; Wang Y. ; Herron J. A. ; Xu Y. ; Allard L. F. ; Lee S. ; Huang J. ; Mavrikakis M. ; Flytzani-Stephanopoulos M. Science 2014, 346, 1498.
doi: 10.1126/science.1260526
132 Zhang X. ; Shi H. ; Xu B. Q. Angew. Chem. Int. Ed. 2005, 44, 7132.
doi: 10.1002/anie.200502101
133 Moses-DeBusk M. ; Yoon M. ; Allard L. F. ; Mullins D. R. ; Wu Z. L. ; Yang X. F. ; Veith G. ; Stocks G. M. ; Narula C. K. J. Am. Chem. Soc. 2013, 135, 12634.
doi: 10.1021/ja401847c
134 Cheng N. C. ; Stambula S. ; Wang D. ; Banis M. N. ; Liu J. ; Riese A. ; Xiao B. W. ; Li R. Y. ; Sham T. K. ; Liu L. M. ; et al Nat. Commun. 2016, 7, 13638.
doi: 10.1038/Ncomms13638
135 Lin L. L. ; Zhou W. ; Gao R. ; Yao S. Y. ; Zhang X. ; Xu W. Q. ; Zheng S. J. ; Jiang Z. ; Yu Q. L. ; Li Y. W. ; et al Nature 2017, 544, 80.
doi: 10.1038/nature21672
136 Liu J. Y. ACS Catal. 2017, 7, 34.
doi: 10.1021/acscatal.6b01534
137 Jones J. ; Xiong H. F. ; Delariva A. T. ; Peterson E. J. ; Pham H. ; Challa S. R. ; Qi G. S. ; Oh S. ; Wiebenga M. H. ; Hernandez X. I. P. ; et al Science 2016, 353, 150.
doi: 10.1126/science.aaf8800
138 Lang R. ; Li T. ; Matsumura D. ; Miao S. ; Ren Y. ; Cui Y. T. ; Tan Y. ; Qiao B. ; Li L. ; Wang A. ; et al Angew. Chem. Int. Ed. 2016, 55, 16054.
doi: 10.1002/anie.201607885
139 Lin J. ; Wang A. Q. ; Qiao B. T. ; Liu X. Y. ; Yang X. F. ; Wang X. D. ; Liang J. X. ; Li J. X. ; Liu J. Y. ; Zhang T. J. Am. Chem. Soc. 2013, 135, 15314.
doi: 10.1021/ja408574m
140 Yang S. ; Kim J. ; Tak Y. J. ; Soon A. ; Lee H. Angew. Chem. Int. Ed. 2016, 55, 2058.
doi: 10.1002/anie.201509241
141 Yin P. ; Yao T. ; Wu Y. ; Zheng L. ; Lin Y. ; Liu W. ; Ju H. ; Zhu J. ; Hong X. ; Deng Z. ; et al Angew. Chem. Int. Ed. 2016, 55, 10800.
doi: 10.1002/anie.201604802
142 Ding K. ; Gulec A. ; Johnson A. M. ; Schweitzer N. M. ; Stucky G. D. ; Marks L. D. ; Stair P. C. Science 2015, 350, 189.
doi: 10.1126/science.aac6368
143 Sun S. H. ; Zhang G. X. ; Gauquelin N. ; Chen N. ; Zhou J. G. ; Yang S. L. ; Chen W. F. ; Meng X. B. ; Geng D. S. ; Banis M. N. ; et al Sci. Rep. 2013, 3, 1775.
doi: 10.1038/Srep01775
144 Stambula S. ; Gauquelin N. ; Bugnet M. ; Gorantla S. ; Turner S. ; Sun S. ; Liu J. ; Zhang G. ; Sun X. ; Botton G. A. J. Phys. Chem. C 2014, 118, 3890.
doi: 10.1021/jp408979h
145 Yan H. ; Cheng H. ; Yi H. ; Lin Y. ; Yao T. ; Wang C. ; Li J. ; Wei S. ; Lu J. J. Am. Chem. Soc. 2015, 137, 10484.
doi: 10.1021/jacs.5b06485
146 Huang X. ; Xia Y. ; Cao Y. ; Zheng X. ; Pan H. ; Zhu J. ; Ma C. ; Wang H. ; Li J. ; You R. ; et al Nano Res. 2017, 10, 1302.
doi: 10.1007/s12274-016-1416-z
147 Cao Y. ; Chen S. ; Luo Q. ; Yan H. ; Lin Y. ; Liu W. ; Cao L. ; Lu J. ; Yang J. ; Yao T. ; et al Angew. Chem. Int. Ed. 2017, 56, 12191.
doi: 10.1002/anie.201706467
148 Wang C. ; Gu X. K. ; Yan H. ; Lin Y. ; Li J. ; Liu D. ; Li W. X. ; Lu J. ACS Catal. 2017, 7, 887.
doi: 10.1021/acscatal.6b02685
149 Lu J. ; Cheng L. ; Lau K. C. ; Tyo E. ; Luo X. ; Wen J. ; Miller D. ; Assary R. S. ; Wang H. H. ; Redfern P. ; et al Nat. Commun. 2014, 5, 4895.
doi: 10.1038/ncomms5895
150 Nesselberger M. ; Roefzaad M. ; Hamou R. F. ; Biedermann P. U. ; Schweinberger F. F. ; Kunz S. ; Schloegl K. ; Wiberg G. K. H. ; Ashton S. ; Heiz U. ; et al Nat. Mater. 2013, 12, 919.
doi: 10.1038/NMAT3712
151 Yoon B. ; Hakkinen H. ; Landman U. ; Worz A. S. ; Antonietti J. M. ; Abbet S. ; Judai K. ; Heiz U. Science 2005, 307, 403.
doi: 10.1126/science.1104168
152 Li Z. Y. ; Young N. P. ; Di Vece M. ; Palomba S. ; Palmer R. E. ; Bleloch A. L. ; Curley B. C. ; Johnston R. L. ; Jiang J. ; Yuan J. Nature 2008, 451, 46.
doi: 10.1038/nature06470
153 Yan H. ; Lin Y. ; Wu H. ; Zhang W. H. ; Sun Z. H. ; Cheng H. ; Liu W. ; Wang C. L. ; Li J. J. ; Huang X. H. ; et al Nat. Commun. 2017, 8, 1070.
doi: 10.1038/S41467-017-01259-Z
154 Fu Q. ; Li W. X. ; Yao Y. X. ; Liu H. Y. ; Su H. Y. ; Ma D. ; Gu X. K. ; Chen L. M. ; Wang Z. ; Zhang H. ; et al Science 2010, 328, 1141.
doi: 10.1126/science.1188267
155 Chen G. X. ; Zhao Y. ; Fu G. ; Duchesne P. N. ; Gu L. ; Zheng Y. P. ; Weng X. F. ; Chen M. S. ; Zhang P. ; Pao C. W. ; et al Science 2014, 344, 495.
doi: 10.1126/science.1252553
156 Rodriguez J. A. ; Ma S. ; Liu P. ; Hrbek J. ; Evans J. ; Perez M. Science 2007, 318, 1757.
doi: 10.1126/science.1150038
157 Zhao G. F. ; Yang F. ; Chen Z. J. ; Liu Q. F. ; Ji Y. J. ; Zhang Y. ; Niu Z. Q. ; Mao J. J. ; Bao X. H. ; Hu P. J. ; et al Nat. Commun. 2017, 8, 14039.
doi: 10.1038/Ncomms14039
158 Lunkenbein T. ; Schumann J. ; Behrens M. ; Schlogl R. ; Willinger M. G. Angew. Chem. Int. Ed. 2015, 54, 4544.
doi: 10.1002/anie.201411581
159 Kattel S. ; Ramirez P. J. ; Chen J. G. ; Rodriguez J. A. ; Liu P. Science 2017, 355, 1296.
doi: 10.1126/science.aal3573
160 Lei Y. ; Lee S. ; Low K. B. ; Marshall C. L. ; Elam J. W. ACS Catal. 2016, 6, 3457.
doi: 10.1021/acscatal.6b00963
161 Gao Z. ; Dong M. ; Wang G. Z. ; Sheng P. ; Wu Z. W. ; Yang H. M. ; Zhang B. ; Wang G. F. ; Wang J. G. ; Qin Y. Angew. Chem. Int. Ed. 2015, 54, 9006.
doi: 10.1002/anie.201503749
162 Yi H. ; Xia Y. ; Yan H. ; Lu J. Chin. J. Catal. 2017, 38, 1581.
doi: 10.1016/S1872-2067(17)62768-2
163 Liu X. ; Zhu Q. Q. ; Lang Y. ; Cao K. ; Chu S. Q. ; Shan B. ; Chen R. Angew. Chem. Int. Ed. 2017, 56, 1648.
doi: 10.1002/anie.201611559
164 Haruta M. Chem. Record 2003, 3, 75.
doi: 10.1002/tcr.10053
165 Wang C. L. ; Wang H. W. ; Yao Q. ; Yan H. ; Li J. J. ; Lu J. L. J. Phys. Chem. C 2016, 120, 478.
doi: 10.1021/acs.jpcc.5b11047
166 Yao Q. ; Wang C. L. ; Wang H. W. ; Yan H. ; Lu J. L. J. Phys. Chem. C 2016, 120, 9174.
doi: 10.1021/acs.jpcc.5b12712
167 Gao Z. ; Qin Y. Acc. Chem. Res. 2017, 50, 2309.
doi: 10.1021/acs.accounts.7b00266
168 Li J. J. ; Lu J. L. Chin. J. Chem. Phys. 2017, 30, 319.
doi: 10.1063/1674-0068/30/cjcp1703032
169 den Breejen J. P. ; Radstake P. B. ; Bezemer G. L. ; Bitter J. H. ; Froseth V. ; Holmen A. ; de Jong K. P. J. Am. Chem. Soc. 2009, 131, 7197.
doi: 10.1021/ja901006x
170 Kuhn J. N. ; Huang W. ; Tsung C. K. ; Zhang Y. ; Somorjai G. A. J. Am. Chem. Soc. 2008, 130, 14026.
doi: 10.1021/ja805050c
171 Reske R. ; Mistry H. ; Behafarid F. ; Cuenya B. R. ; Strasser P. J. Am. Chem. Soc. 2014, 136, 6978.
doi: 10.1021/ja500328k
172 Englisch M. ; Jentys A. ; Lercher J. A. J. Catal. 1997, 166, 25.
doi: 10.1006/jcat.1997.1494
173 Galvis H. M. T. ; Bitter J. H. ; Davidian T. ; Ruitenbeek M. ; Dugulan A. I. ; de Jong K. P. J. Am. Chem. Soc. 2012, 134, 16207.
doi: 10.1021/ja304958u
174 Cao S. W. ; Tao F. ; Tang Y. ; Li Y. T. ; Yu J. G. Chem. Soc. Rev. 2016, 45, 4747.
doi: 10.1039/c6cs00094k
175 Lu J. L. ; Fu B. S. ; Kung M. C. ; Xiao G. M. ; Elam J. W. ; Kung H. H. ; Stair P. C. Science 2012, 335, 1205.
doi: 10.1126/science.1212906
176 Feng H. ; Lu J. L. ; Stair P. C. ; Elam J. W. Catal. Lett. 2011, 141, 512.
doi: 10.1007/s10562-011-0548-8
177 Lu J. L. ; Liu B. ; Guisinger N. P. ; Stair P. C. ; Greeley J. P. ; Elam J. W. Chem. Mater. 2014, 26, 6752.
doi: 10.1021/cm503178j
178 Huff M. ; Schmidt L. D. J. Phys. Chem. 1993, 97, 11815.
doi: 10.1021/J100147a040
179 Helveg S. ; Lopez-Cartes C. ; Sehested J. ; Hansen P. L. ; Clausen B. S. ; Rostrup-Nielsen J. R. ; Abild-Pedersen F. ; Norskov J. K. Nature 2004, 427, 426.
doi: 10.1038/nature02278
180 Zhang H. B. ; Gu X. K. ; Canlas C. ; Kropf A. J. ; Aich P. ; Greeley J. P. ; Elam J. W. ; Meyers R. J. ; Dumesic J. A. ; Stair P. C. ; et al Angew. Chem. Int. Ed. 2014, 53, 12132.
doi: 10.1002/anie.201407236
181 Cai J. ; Zhang J. ; Cao K. ; Gong M. ; Lang Y. ; Liu X. ; Chu S. ; Shan B. ; Chen R. ACS Appl. Nano Mater. 2018, 1, 522.
doi: 10.1021/acsanm.7b00026
182 Cao K. ; Shi L. ; Gong M. ; Cai J. M. ; Liu X. ; Chu S. Q. ; Lang Y. ; Shan B. ; Chen R. Small 2017, 13, 1700648.
doi: 10.1002/Smll.201700648
183 Ding L. ; Yi H. ; Zhang W. ; You R. ; Cao T. ; Yang J. ; Lu J. ; Huang W. ACS Catal. 2016, 6, 3700.
doi: 10.1021/acscatal.6b00702
184 Hu Q. M. ; Wang S. ; Gao Z. ; Li Y. Q. ; Zhang Q. ; Xiang Q. ; Qin Y. Appl. Catal. B: Environ. 2017, 218, 591.
doi: 10.1016/j.apcatb.2017.06.087
185 Gounder R. ; Iglesia E. Chem. Commun. 2013, 49, 3491.
doi: 10.1039/c3cc40731d
186 Canivet J. ; Fateeva A. ; Guo Y. M. ; Coasne B. ; Farrusseng D. Chem. Soc. Rev. 2014, 43, 5594.
doi: 10.1039/c4cs00078a
187 Zhang H. B. ; Pan X. L. ; Han X. W. ; Liu X. M. ; Wang X. F. ; Shen W. L. ; Bao X. H. Chem. Sci. 2013, 4, 1075.
doi: 10.1039/c2sc21761a
188 Yi H. ; Du H. ; Hu Y. ; Yan H. ; Jiang H. L. ; Lu J. ACS Catal. 2015, 5, 2735.
doi: 10.1021/acscatal.5b00129
189 El Kolli N. ; Delannoy L. ; Louis C. J. Catal. 2013, 297, 79.
doi: 10.1016/j.jcat.2012.09.022
190 Hugon A. ; Delannoy L. ; Krafft J. M. ; Louis C. J. Phys. Chem. C 2010, 114, 10823.
doi: 10.1021/jp100479b
191 Canlas C. P. ; Lu J. L. ; Ray N. A. ; Grosso-Giordano N. A. ; Lee S. ; Elam J. W. ; Winans R. E. ; Van Duyne R. P. ; Stair P. C. ; Notestein J. M. Nat. Chem. 2012, 4, 1030.
doi: 10.1038/Nchem.1477
192 Bartholomew C. H. Appl. Catal. A: Gen. 2001, 212, 17.
doi: 10.1016/S0926-860x(00)00843-7
193 Wanke S. E. J. Catal. 1977, 46, 234.
doi: 10.1016/0021-9517(77)90204-4
194 Campbell C. T. ; Parker S. C. ; Starr D. E. Science 2002, 298, 811.
doi: 10.1126/science.1075094
195 O'Neill B. J. ; Jackson D. H. K. ; Crisci A. J. ; Farberow C. A. ; Shi F. Y. ; Alba-Rubio A. C. ; Lu J. L. ; Dietrich P. J. ; Gu X. K. ; Marshall C. L. ; et al Angew. Chem. Int. Ed. 2013, 52, 13808.
doi: 10.1002/anie.201308245
196 Zheng F. F. ; Li Q. ; Zhang H. ; Wong W. Z. ; Yin X. D. ; Zheng Y. P. ; Huang C. J. ; Wan H. L. Acta Phys. -Chim. Sin. 2017, 33, 1689.
doi: 10.3866/PKU.WHXB201704243
郑芳芳; 李倩; 张宏; 翁维正; 伊晓东; 郑燕萍; 黄传敬; 万惠霖. 物理化学学报, 2017, 33, 1689.
doi: 10.3866/PKU.WHXB201704243
197 Seipenbusch M. ; Binder A. J. Phys. Chem. C 2009, 113, 20606.
doi: 10.1021/jp9063998
198 Yu K. ; Wu Z. ; Zhao Q. ; Li B. ; Xie Y. J. Phys. Chem. C 2008, 112, 2244.
doi: 10.1021/jp711880e
199 Arnal P. M. ; Comotti M. ; Schuth F. Angew. Chem. Int. Ed. 2006, 45, 8224.
doi: 10.1002/anie.200603507
200 Zhang H. ; Canlas C. ; Jeremy Kropf A. ; Elam J. W. ; Dumesic J. A. ; Marshall C. L. J. Catal. 2015, 326, 172.
doi: 10.1016/j.jcat.2015.03.017
201 Gould T. D. ; Izar A. ; Weimer A. W. ; Falconer J. L. ; Medlin J. W. ACS Catal. 2014, 4, 2714.
doi: 10.1021/cs500809w
202 O'Neill B. J. ; Sener C. ; Jackson D. H. K. ; Kuech T. F. ; Dumesic J. A. ChemSusChem 2014, 7, 3247.
doi: 10.1002/cssc.201402832
203 Wang C. L. ; Lu J. L. Chin. J. Chem. Phys. 2016, 29, 571.
doi: 10.1063/1674-0068/29/cjcp1604065
204 Lee J. C. ; Jackson D. H. K. ; Li T. ; Winans R. E. ; Dumesic J. A. ; Kuech T. F. ; Huber G. W. Energy Environ. Sci. 2014, 7, 1657.
doi: 10.1039/c4ee00379a
205 Onn T. M. ; Zhang S. Y. ; Arroyo-Ramirez L. ; Chung Y. C. ; Graham G. W. ; Pan X. Q. ; Gorte R. J. ACS Catal. 2015, 5, 5696.
doi: 10.1021/acscatal.5b01348
206 Ge Q. J. ; Huang Y. M. ; Qiu F. Y. ; Li S. B. Appl. Catal. A: Gen. 1998, 167, 23.
doi: 10.1016/S0926-860x(97)00290-1
207 Ema T. ; Miyazaki Y. ; Koyama S. ; Yano Y. ; Sakai T. Chem. Commun. 2012, 48, 4489.
doi: 10.1039/c2cc30591g
208 Guo X. G. ; Fang G. Z. ; Li G. ; Ma H. ; Fan H. J. ; Yu L. ; Ma C. ; Wu X. ; Deng D. H. ; Wei M. M. ; et al Science 2014, 344, 616.
doi: 10.1126/science.1253150
209 Kang J. ; Cheng K. ; Zhang L. ; Zhang Q. ; Ding J. ; Hua W. ; Lou Y. ; Zhai Q. ; Wang Y. Angew. Chem. Int. Ed. 2011, 123, 5306.
doi: 10.1002/ange.201101095
210 Alba-Rubio A. C. ; O'Neill B. J. ; Shi F. ; Akatay C. ; Canlas C. ; Li T. ; Winans R. ; Elam J. W. ; Stach E. A. ; Voyles P. M. ; et al ACS Catal. 2014, 4, 1554.
doi: 10.1021/cs500330p
211 Ge H. B. ; Zhang B. ; Gu X. M. ; Liang H. J. ; Yang H. M. ; Gao Z. ; Wang J. G. ; Qin Y. Angew. Chem. Int. Ed. 2016, 55, 7081.
doi: 10.1002/anie.201600799
[1] 尹玥琪,蒋梦绪,刘春光. Keggin型多酸负载的单原子催化剂(M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-)活化氮气分子的密度泛函理论计算研究[J]. 物理化学学报, 2018, 34(3): 270-277.
[2] 郝旭强,杨浩,靳治良,续京,敏世雄,吕功煊. 类石墨烯C3N4纳米片光催化分解水制氢中的量子限域效应[J]. 物理化学学报, 2016, 32(10): 2581-2592.
[3] 韩冰, 褚月英, 郑安民, 邓风. 分子筛限域孔道中吡啶的吸附结构和能量[J]. 物理化学学报, 2012, 28(02): 315-323.
[4] 孙大立, 彭盛霖, 欧阳俊, 欧阳方平. 孔洞石墨烯纳米带的电子输运性质[J]. 物理化学学报, 2011, 27(05): 1103-1107.
[5] 余保龙, 吴晓春, 邹炳锁, 张桂兰, 汤国庆, 陈文驹. 介电限域效应对SnO2纳米微粒光学特性的影响[J]. 物理化学学报, 1994, 10(02): 103-106.