Please wait a minute...
物理化学学报  2018, Vol. 34 Issue (4): 377-390    DOI: 10.3866/PKU.WHXB201709001
所属专题: 高被引科学家特刊
综述     
锂硫电池用石墨烯基材料的研究进展
陈克1,2, 孙振华1, 方若翩1, 李峰1, 成会明1,3
1 中国科学院金属研究所, 沈阳材料科学国家(联合)实验室, 沈阳 110016;
2 上海科技大学物质科学与技术学院, 上海 201210;
3 清华大学, 清华-伯克利深圳学院, 广东 深圳 518055
Development of Graphene-based Materials for Lithium-Sulfur Batteries
CHEN Ke1,2, SUN Zhenhua1, FANG Ruopian1, LI Feng1, CHENG Huiming1,3
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P. R. China;
2 School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, P. R. China;
3 Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, Guangdong Province, P. R. China
 全文: PDF(2624 KB)   输出: BibTeX | EndNote (RIS) |
摘要:

锂硫电池因其理论能量密度高、资源丰富和环境友好等优势,被认为是最有发展前景的下一代电化学储能系统之一。然而,硫的绝缘性、充放电中间产物多硫化物的溶解和扩散、硫的体积膨胀以及锂负极安全性等问题,严重制约着锂硫电池的商业应用。石墨烯因其具有高导电、高柔性等诸多优异特性而被广泛研究,将其用于锂硫电池的正极载体、隔膜涂层和集流体中,以期实现高比能、高稳定性的锂硫电池。本文综述了石墨烯基材料,包括石墨烯、功能化石墨烯、掺杂石墨烯和石墨烯复合物,在锂硫电池中应用的研究进展,并展望了锂硫电池用石墨烯基材料的未来发展方向。

关键词: 锂硫电池石墨烯掺杂功能化复合材料    
Abstract:

Lithium-sulfur (Li-S) batteries are promising electrochemical energy storage systems because of their high theoretical energy density, natural abundance, and environmental benignity. However, several problems such as the insulating nature of sulfur, high solubility of polysulfides, large volume variation of the sulfur cathode, and safety concerns regarding the lithium anode hinder the commercialization of Li-S batteries. Graphene-based materials, with advantages such as high conductivity and good flexibility, have shown effectiveness in realizing Li-S batteries with high energy density and high stability. These materials can be used as the cathode matrix, separator coating layer, and anode protection layer. In this review, the recent progress of graphene-based materials used in Li-S batteries, including graphene, functionalized graphene, heteroatom-doped graphene, and graphene-based composites, has been summarized. And perspectives regarding the development trend of graphene-based materials for Li-S batteries have been discussed.

Key words: Lithium sulfur battery    Graphene    Doping    Functionalization    Composites
收稿日期: 2017-07-24 出版日期: 2017-09-01
中图分类号:  O646  
基金资助:

国家重点研发计划(2016YFA0200102,2016YFB0100100,2014CB932402),国家自然科学基金项目(51525206,51521091,51372253,U1401243),中科院先导专项(XDA09010104),中国科学院重大突破择优支持项目(KGZD-EW-T06),中国科学院青年创新促进会项目(2015150),辽宁省自然科学基金(2015021012),中科院金属研究所创新基金(2015-PY03)和创新团队国际合作伙伴计划资助

通讯作者: 成会明, 李峰     E-mail: cheng@imr.ac.cn;fli@imr.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈克
孙振华
方若翩
李峰
成会明

引用本文:

陈克, 孙振华, 方若翩, 李峰, 成会明. 锂硫电池用石墨烯基材料的研究进展[J]. 物理化学学报, 2018, 34(4): 377-390.

CHEN Ke, SUN Zhenhua, FANG Ruopian, LI Feng, CHENG Huiming. Development of Graphene-based Materials for Lithium-Sulfur Batteries. Acta Physico-Chimica Sinca, 2018, 34(4): 377-390.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201709001        http://www.whxb.pku.edu.cn/CN/Y2018/V34/I4/377

(1) Manthiram, A.; Fu, Y. Z.; Su, Y. S. Acc. Chem. Res. 2013, 46, 1125. doi: 10.1021/ar300179v
(2) Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Nat. Mater. 2011, 11, 19. doi: 10.1038/nmat3191
(3) Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Cheng, H. M.; Li, F. Adv. Mater. 2017, 29, 1606823. doi: 10.1002/adma.201606823
(4) Yu, M.; Li, R.; Wu, M.; Shi, G. Energy Storage Materials 2015, 1, 51. doi: 10.1016/j.ensm.2015.08.004
(5) Ji, X.; Lee, K. T.; Nazar, L. F. Nat. Mater. 2009, 8, 500. doi: 10.1038/nmat2460
(6) Fang, R. P.; Zhao, S. Y.; Pei, S. F.; Qian, X.; Hou, P. X.; Cheng, H. M.; Liu, C.; Li, F. ACS Nano 2016, 10, 8676. doi: 10.1021/acsnano.6b04019
(7) Wang, D. W.; Zhou, G. M.; Li, F.; Wu, K. H.; Lu, G. Q.; Cheng, H. M.; Gentle, I. R. Phys. Chem. Chem. Phys. 2012, 14, 8703. doi: 10.1039/c2cp40808b
(8) Wang, H. L.; Yang, Y.; Liang, Y. Y.; Robinson, J. T.; Li, Y. G.; Jackson, A.; Cui, Y.; Dai, H. J. Nano Lett. 2011, 11, 2644. doi: 10.1021/nl200658a
(9) Su, Y. S.; Manthiram, A. Nat. Commun. 2012, 3, 6. doi: 10.1038/ncomms2163
(10) Zhou, G. M.; Li, L.; Wang, D. W.; Shan, X. Y.; Pei, S.; Li, F.; Cheng, H. M. Adv. Mater. 2015, 27, 641. doi: 10.1002/adma.201404210
(11) Song, R. S.; Fang, R. P.; Wen, L.; Shi, Y.; Wang, S.; Li, F. J. Power Sources 2016, 301, 179. doi: 10.1016/j.jpowsour.2015.10.007
(12) Liang, J.; Yin, L. C.; Tang, X. N.; Yang, H. C.; Yan, W. S.; Song, L.; Cheng, H. M.; Li, F. ACS Appl. Mater. Interfaces 2016, 8, 25193. doi: 10.1021/acsami.6b05647
(13) Duan, B. C.; Wang, W. K.; Wang, A. B.; Yuan, K. G.; Yu, Z. B.; Zhao, H. L.; Qiu, J. Y.; Yang, Y. S. J. Mater. Chem. A 2013, 1, 13261. doi: 10.1039/c3ta12634j
(14) Tang, X. N.; Sun, Z. H.; Chen K.; Yang, H. C.; Zhuo, S. P.; Li, F. Energy Storage Science and Technology 2017, 6, 345. [唐晓楠, 孙振华, 陈克, 杨慧聪, 禚淑萍, 李峰. 储能科学 与技术, 2017, 6, 345.] doi: 10.12028/j.issn.2095-4239.2017.0018
(15) Li, Z.; Yuan, L. X.; Yi, Z. Q.; Sun, Y. M.; Liu, Y.; Jiang, Y.; Shen, Y.; Xin, Y.; Zhang, Z. L.; Huang, Y. H. Adv. Energy Mater. 2014, 4, 8. doi: 10.1002/aenm.201301473
(16) Li, Z.; Jiang, Y.; Yuan, L. X.; Yi, Z. Q.; Wu, C.; Liu, Y.; Strasser, P.; Huang, Y. H. ACS Nano 2014, 8, 9295. doi: 10.1021/nn503220h
(17) Li, J.; Wu, J.; Zhang, T.; Huang, L. Acta Phys. -Chim. Sin. 2017, 33, 968. [李君涛, 吴娇红, 张涛, 黄令. 物理化学学 报, 2017, 33, 968.] doi: 10.3866/PKU.WHXB201702093
(18) Zhou, G.; Wang, D. W.; Li, F.; Hou, P. X.; Yin, L.; Liu, C.; Lu, G. Q.; Gentle, I. R.; Cheng, H. M. Energy Environ. Sci. 2012, 5, 8901. doi: 10.1039/c2ee22294a
(19) Fang, R. P.; Zhao, S. Y.; Hou, P. X.; Cheng, M.; Wang, S. G.; Cheng, H. M.; Liu, C.; Li, F. Adv. Mater. 2016, 28, 3374. doi: 10.1002/adma.201506014
(20) Zheng, G. Y.; Yang, Y.; Cha, J. J.; Hong, S. S.; Cui, Y. Nano Lett. 2011, 11, 4462. doi: 10.1021/nl2027684
(21) Zhou, G. M.; Li, L.; Ma, C. Q.; Wang, S. G.; Shi, Y.; Koratkar, N.; Ren, W. C.; Li, F.; Cheng, H. M. Nano Energy 2015, 11, 356. doi: 10.1016/j.nanoen.2014.11.025
(22) Zhou, G. M.; Pei, S. F.; Li, L.; Wang, D. W.; Wang, S. G.; Huang, K.; Yin, L. C.; Li, F.; Cheng, H. M. Adv. Mater. 2014, 26, 625. doi: 10.1002/adma.201302877
(23) Zhou, G. M.; Y, L. C.; Wang, D. W.; Li, L.; Pei, S. F.; Gentle, I. R.; Li, F.; Cheng, H. M. ACS Nano 2013, 7, 5367. doi: 10.1021/nn401228t
(24) Li, Q. Z.; Li, Y. H.; Li, Y. J.; Liu, Y. N. Acta Phys. -Chim. Sin. 2014, 30, 1474. [李庆洲, 李玉惠, 李亚娟, 刘又年. 物理化 学学报, 2014, 30, 1474.] doi: 10.3866/PKU.WHXB201406041
(25) Zhang, C. F.; Wu, H. B.; Yuan, C. Z.; Guo, Z. P.; Lou, X. W. Angew. Chem. Int. Ed. 2012, 51, 9592. doi: 10.1002/anie.201205292
(26) He, G.; Evers, S.; Liang, X.; Cuisinier, M.; Garsuch, A.; Nazar, L. F. ACS Nano 2013, 7, 10920. doi: 10.1021/nn404439r
(27) Yang, Y.; Yu, G. H.; Cha, J. J.; Wu, H.; Vosgueritchian, M.; Yao, Y.; Bao, Z. A.; Cui, Y. ACS Nano 2011, 5, 9187. doi: 10.1021/nn203436j
(28) Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H. M.; Li, F. Nat. Commun. 2017, 8, 8. doi: 10.1038/ncomms14627
(29) Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. G. Nat. Commun. 2015, 6, 8058. doi: 10.1038/ncomms9058
(30) Lin, D.; Liu, Y.; Liang, Z.; Lee, H. W.; Sun, J.; Wang, H.; Yan, K.; Xie, J.; Cui, Y. Nat. Nanotech. 2016, 11, 626. doi: 10.1038/nnano.2016.32
(31) Li, W.; Yao, H.; Yan, K.; Zheng, G.; Liang, Z.; Chiang, Y. M.; Cui, Y. Nat. Commun. 2015, 6, 7436. doi: 10.1038/ncomms8436
(32) Zhao, C. Z.; Cheng, X. B.; Zhang, R.; Peng, H. J.; Huang, J. Q.; Ran, R.; Huang, Z. H.; Wei, F.; Zhang, Q. Energy Storage Materials 2016, 3, 77. doi: 10.1016/j.ensm.2016.01.007
(33) Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Phys. Rev. Lett. 2008, 100, 016602. doi: 10.1103/PhysRevLett.100.016602
(34) Geim, A. K. Science 2009, 324, 1530. doi: 10.1126/science.1158877
(35) Liang, J.; Wen, L.; Cheng, H. M.; Li, F. J. Electrochem. 2015, 21, 505. [梁骥; 闻雷; 成会明; 李峰. 电化学, 2015, 21, 505.] doi: 10.13208/j.electrochem.150845
(36) Wang, D. W.; Zeng, Q. C.; Zhou, G. M.; Yin, L. C.; Li, F.; Cheng, H. M.; Gentle, I. R.; Lu, G. Q. M. J. Mater. Chem. A 2013, 1, 9382. doi: 10.1039/c3ta11045a
(37) Cuisinier, M.; Cabelguen, P. E.; Evers, S.; He, G.; Kolbeck, M.; Garsuch, A.; Bolin, T.; Balasubramanian, M.; Nazar, L. F. J. Phys. Chem. Lett. 2013, 4, 3227. doi: 10.1021/jz401763d
(38) Lv, W.; Li, Z.; Deng, Y.; Yang, Q. H.; Kang, F. Energy Storage Materials 2016, 2, 107. doi: 10.1016/j.ensm.2015.10.002
(39) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896
(40) Pu, N. W.; Wang, C. A.; Sung, Y.; Liu, Y. M.; Ger, M. D. Mater. Lett. 2009, 63, 1987. doi: 10.1016/j.matlet.2009.06.031
(41) Liu, X.; Liu, J.; Zhan, D.; Yan, J.; Wang, J.; Chao, D.; Lai, L.; Chen, M.; Yin, J.; Shen, Z. RSC Adv. 2013, 3, 11601. doi: 10.1039/c3ra22673e
(42) Chen, I. W. P.; Chen, Y. S.; Kao, N. J.; Wu, C. W.; Zhang, Y. W.; Li, H. T. Carbon 2015, 90, 16. doi: 10.1016/j.carbon.2015.03.067
(43) Parvez, K.; Yang, S.; Feng, X.; Müllen, K. Synthetic Met. 2015, 210, 123. doi: 10.1016/j.synthmet.2015.07.014
(44) Wei, Y.; Sun, Z. Curr. Opin. Colloid In. 2015, 20, 311. doi: 10.1016/j.cocis.2015.10.010
(45) Singh, R. K.; Kumar, R.; Singh, D. P. RSC Adv. 2016, 6, 64993. doi: 10.1039/c6ra07626b
(46) Yang, S.; Lohe, M. R.; Mullen, K.; Feng, X. Adv. Mater. 2016, 28, 6213. doi: 10.1002/adma.201505326
(47) Wang, J. Z.; Lu, L.; Choucair, M.; Stride, J. A.; Xu, X.; Liu, H. K. J. Power Sources 2011, 196, 7030. doi: 10.1016/j.jpowsour.2010.09.106
(48) Cao, Y.; Li, X.; Aksay, I. A.; Lemmon, J.; Nie, Z.; Yang, Z.; Liu, J. Phys. Chem. Chem. Phys. 2011, 13, 7660. doi: 10.1039/c0cp02477e
(49) Wei, Z. K.; Chen, J. J.; Qin, L. L.; Nemage, A. W.; Zheng, M. S.; Dong, Q. F. J. Electrochem. Soc. 2012, 159, A1236. doi: 10.1149/2.048208jes
(50) Evers, S.; Nazar, L. F. Chem. Commun (Camb). 2012, 48, 1233. doi: 10.1039/c2cc16726c
(51) Sun, H.; Xu, G. L.; Xu, Y. F.; Sun, S. G.; Zhang, X.; Qiu, Y.; Yang, S. Nano Res. 2012, 5, 726. doi: 10.1007/s12274-012-0257-7
(52) Jin, J.; Wen, Z.; Ma, G.; Lu, Y.; Cui, Y.; Wu, M.; Liang, X.; Wu, X. Rsc Adv. 2013, 3, 2558. doi: 10.1039/c2ra22808d
(53) Wang, C.; Wang, X.; Wang, Y.; Chen, J.; Zhou, H.; Huang, Y. Nano Energy 2015, 11, 678. doi: 10.1016/j.nanoen.2014.11.060
(54) Wang, C.; Wang, X.; Yang, Y.; Kushima, A.; Chen, J.; Huang, Y.; Li, J. Nano Lett. 2015, 15, 1796. doi: 10.1021/acs.nanolett.5600112
(55) Xu, C.; Wu, Y.; Zhao, X.; Wang, X.; Du, G.; Zhang, J.; Tu, J. J. Power Sources 2015, 275, 22. doi: 10.1016/j.jpowsour.2014.11.007
(56) Papandrea, B.; Xu, X.; Xu, Y. X.; Chen, C. Y.; Lin, Z. Y.; Wang, G. M.; Luo, Y. Z.; Liu, M.; Huang, Y.; Mai, L. Q.; Duan, X. F. Nano Res. 2016, 9, 240. doi: 10.1007/s12274-016-1005-1
(57) Xi, K.; Kidambi, P. R.; Chen, R.; Gao, C.; Peng, X.; Ducati, C.; Hofmann, S.; Kumar, R. V. Nanoscale 2014, 6, 5746. doi: 10.1039/c4nr00326h
(58) Lu, S.; Chen, Y.; Wu, X.; Wang, Z.; Li, Y. Sci. Rep. 2014, 4, 4629. doi: 10.1038/srep04629
(59) Liu, Y.; Guo, J.; Zhang, J.; Su, Q.; Du, G. Appl. Surf. Sci. 2015, 324, 399. doi: 10.1016/j.apsusc.2014.10.176
(60) Lin, T. Q.; Tang, Y. F.; Wang, Y. M.; Bi, H.; Liu, Z. Q.; Huang, F. Q.; Xie, X. M.; Jiang, M. H. Energy Environ. Sci. 2013, 6, 1283. doi: 10.1039/c3ee24324a
(61) Xu, H.; Deng, Y.; Shi, Z.; Qian, Y.; Meng, Y.; Chen, G. J. Mater. Chem. A 2013, 1, 15142. doi: 10.1039/c3ta13541a
(62) Peng, H. J.; Liang, J.; Zhu, L.; Huang, J. Q.; Cheng, X. B.; Guo, X.; Ding, W.; Zhu, W.; Zhang, Q. ACS Nano 2014, 8, 11280. doi: 10.1021/nn503985s
(63) Li, Z.; Zhang, S.; Zhang, C.; Ueno, K.; Yasuda, T.; Tatara, R.; Dokko, K.; Watanabe, M. Nanoscale 2015, 7, 14385. doi: 10.1039/c5nr03201f
(64) Fei, L. F.; Li, X. G.; Bi, W. T.; Zhuo. Z. W.; Wei, W. F.; Sun, L.; Lu, W.; Wu, X. J.; Xie, K. Y.; Wu, C. Z.; Chan, H. L. W.; Wang, Y. Adv. Mater. 2015, 27, 5936. doi: 10.1002/adma.201502668
(65) Bao, W. Z.; Zhang, Z. A.; Qu, Y. H.; Zhou, C. K.; Wang, X. W.; Li, J. J. Alloy. Compd. 2014, 582, 334. doi: 10.1016/j.jallcom.2013.08.056
(66) Wu, H.; Huang, Y.; Zong, M.; Fu, H.; Sun, X. Electrochim. Acta 2015, 163, 24. doi: 10.1016/j.electacta.2015.02.131
(67) Xu, J.; Shui, J.; Wang, J.; Wang, M.; Liu, H. K.; Dou, S. X.; Jeon, I. Y.; Seo, J. M.; Baek, J. B.; Dai, L. ACS Nano 2014, 8, 10920. doi: 10.1021/nn5047585
(68) Li, H.; Yang, X.; Wang, X.; Liu, M.; Ye, F.; Wang, J.; Qiu, Y.; Li, W.; Zhang, Y. Nano Energy 2015, 12, 468. doi: 10.1016/j.nanoen.2015.01.007
(69) Li, B.; Li, S.; Liu, J.; Wang, B.; Yang, S. Nano Lett. 2015, 15, 3073. doi: 10.1021/acs.nanolett.5b00064
(70) Shi, J. L.; Peng, H. J.; Zhu, L.; Zhu, W.; Zhang, Q. Carbon 2015, 92, 96. doi: 10.1016/j.carbon.2015.03.031
(71) Huang, X.; Sun, B.; Li, K.; Chen, S.; Wang, G. J. Mater. Chem. A 2013, 1, 13484. doi: 10.1039/c3ta12826a
(72) Zhai, P. Y.; Peng, H. J.; Cheng, X. B.; Zhu, L.; Huang, J. Q.; Zhu, W.; Zhang, Q. Energy Storage Materials 2017, 7, 56. doi: 10.1016/j.ensm.2016.12.004
(73) Tang, C.; Li, B. Q.; Zhang, Q.; Zhu, L.; Wang, H. F.; Shi, J. L.; Wei, F. Adv. Funct. Mater. 2016, 26, 577. doi: 10.1002/adfm.201503726
(74) Cheng, X. B.; Peng, H. J.; Huang, J. Q.; Zhang, R.; Zhao, C. Z.; Zhang, Q. ACS Nano 2015, 9, 6373. doi: 10.1021/acsnano.5b01990
(75) Su, Y. S.; Manthiram, A. Chem. Commun. 2012, 48, 8817. doi: 10.1039/c2cc33945e
(76) Peng, H. J.; Wang, D. W.; Huang, J. Q.; Cheng, X. B.; Yuan, Z.; Wei, F.; Zhang, Q. Adv. Sci. 2016, 3, 1500268. doi: 10.1002/advs.201500268
(77) Huang, J. Q.; Zhang, Q.; Wei, F. Energy Storage Materials 2015, 1, 127. doi: 10.1016/j.ensm.2015.09.008
(78) Wang, X. F.; Wang, Z. X.; Chen, L. Q. J. Power Sources 2013, 242, 65. doi: 10.1016/j.jpowsour.2013.05.063
(79) Wei, L.; Chen, J.; Luo, H. Z.; Li, F. Chin. Sci. Bull. 2015, 60, 630. [闻雷, 陈静, 罗洪泽, 李峰. 科学通报, 2015, 60, 630.] doi: 10.1360/N972014-01053
(80) Ji, L.; Rao, M.; Zheng, H.; Zhang, L.; Li, Y.; Duan, W.; Guo, J.; Cairns, E. J.; Zhang, Y. J. Am. Chem. Soc. 2011, 133, 18522. doi: 10.1021/ja206955k
(81) Xiao, M.; Huang, M.; Zeng, S.; Han, D.; Wang, S.; Sun, L.; Meng, Y. RSC Adv. 2013, 3, 4914. doi: 10.1039/c3ra00017f
(82) Rong, J.; Ge, M.; Fang, X.; Zhou, C. Nano Lett. 2014, 14, 473. doi: 10.1021/nl403404v
(83) Liu, S.; Xie, K.; Li, Y.; Chen, Z.; Hong, X.; Zhou, L.; Yuan, J.; Zheng, C. Rsc Adv. 2015, 5, 5516. doi: 10.1039/c4ra12393j
(84) Huang, J. Q.; Zhuang, T. Z.; Zhang, Q.; Peng, H. J.; Chen, C. M.; Wei, F. ACS Nano 2015, 9, 3002. doi: 10.1021/nn507178a
(85) Bai, S.; Liu, X.; Zhu, K.; Wu, S.; Zhou, H. Nat. Energy 2016, 1, 16094. doi: 10.1038/nenergy.2016.94
(86) Zhuang, T. Z.; Huang, J. Q.; Peng, H. J.; He, L. Y.; Cheng, X. B.; Chen, C. M.; Zhang, Q. Small 2016, 12, 381. doi: 10.1002/smll.201503133
(87) Zhou, L.; Lin, X.; Huang, T.; Yu, A. J. Mater. Chem. A 2014, 2, 5117. doi: 10.1039/c3ta15175a
(88) Wang, Z.; Dong, Y.; Li, H.; Zhao, Z.; Wu, H. B.; Hao, C.; Liu, S.; Qiu, J.; Lou, X. W. Nat. Commun. 2014, 5, 5002. doi: 10.1038/ncomms6002
(89) Zhou, G.; Paek, E.; Hwang, G. S.; Manthiram, A. Adv. Energy Mater. 2016, 6, 1501355. doi: 10.1002/aenm.201501355
(90) Xie, Y.; Meng, Z.; Cai, T.; Han, W. Q. ACS Appl. Mater. Inter. 2015, 7, 25202. doi: 10.1021/acsami.5b08129
(91) Qiu, Y. C.; Li, W. F.; Zhao, W.; Li, G. Z.; Hou, Y.; Liu, M. N.; Zhou, L. S.; Ye, F. M.; Li, H. F.; Wei, Z. H.; Yang, S. H.; Duan, W. H.; Ye, Y. F.; Guo, J. H.; Zhang, Y. G. Nano Lett. 2014, 14, 4821. doi: 10.1021/nl5020475
(92) Niu, S.; Lv, W.; Zhang, C.; Li, F.; Tang, L.; He, Y.; Li, B.; Yang, Q. H.; Kang, F. J. Mater. Chem. A 2015, 3, 20218. doi: 10.1039/c5ta05324b
(93) Song, J.; Yu, Z.; Gordin, M. L.; Wang, D. Nano Lett. 2016, 16, 864. doi: 10.1021/acs.nanolett.5b03217
(94) Li, L.; Zhou, G. M.; Yin, L. C.; Koratkar, N.; Li, F.; Cheng, H. M. Carbon 2016, 108, 120. doi: 10.1016/j.carbon.2016.07.008
(95) Yin, L. C.; Liang, J.; Zhou, G. M.; Li, F.; Saito, R.; Cheng, H. M. Nano Energy 2016, 25, 203. doi: 10.1016/j.nanoen.2016.04.053
(96) Ma, Z.; Dou, S.; Shen, A.; Tao, L.; Dai, L.; Wang, S. Angew. Chem. Int. Ed. 2015, 54, 1888. doi: 10.1002/anie.201410258
(97) Yuan, X. Q.; Liu, B. C.; Hou, H. J.; Zeinu, K.; He, Y. H.; Yang, X. R.; Xue, W. J.; He, X.L.; Huang, L.; Zhu, X. L.; Wu, L. S.; Hu, J. P.; Yang, J. K.; Xie, J. Rsc Adv. 2017, 7, 22567. doi: 10.1039/c7ra01946g
(98) Xing, L. B.; Xi, K.; Li, Q.; Su, Z.; Lai, C.; Zhao, X.; Kumar, R. V. J. Power Sources 2016, 303, 22. doi: 10.1016/j.jpowsour.2015.10.097
(99) Li, F.; Su, Y.; Zhao, J. J. Phys. Chem. Chem. Phys. 2016, 18, 25241. doi: 10.1039/c6cp04071c
(100) Yu, M.; Yuan, W.; Li, C.; Hong, J. D.; Shi, G. J. Mater. Chem. A 2014, 2, 7360. doi: 10.1039/c4ta00234b
(101) Xiao, Z.; Yang, Z.; Wang, L.; Nie, H.; Zhong, M. e.; Lai, Q.; Xu, X.; Zhang, L.; Huang, S. Adv. Mater. 2015, 27, 2891. doi: 10.1002/adma.201405637
(102) Yu, M.; Wang, A.; Tian, F.; Song, H.; Wang, Y.; Li, C.; Hong, J. D.; Shi, G. Nanoscale 2015, 7, 5292. doi: 10.1039/c5nr00166h
(103) Zhao, M. Q.; Liu, X. F.; Zhang, Q.; Tian, G. L.; Huang, J. Q.; Zhu, W. C.; Wei, F. ACS Nano 2012, 6, 10759. doi: 10.1021/nn304037d
(104) Ding, Y. L.; Kopold, P.; Hahn, K.; van Aken, P. A.; Maier, J.; Yu, Y. Adv. Funct. Mater. 2016, 26, 1112. doi: 10.1002/adfm.201504294
(105) Niu, S.; Lv, W.; Zhang, C.; Shi, Y.; Zhao, J.; Li, B.; Yang, Q. H.; Kang, F. J. Power Sources 2015, 295, 182. doi: 10.1016/j.jpowsour.2015.06.122
(106) Zhu, L.; Peng, H. J.; Liang, J.; Huang, J. Q.; Chen, C. M.; Guo, X.; Zhu, W.; Li, P.; Zhang, Q. Nano Energy 2015, 11, 746. doi: 10.1016/j.nanoen.2014.11.062
(107) Yuan, S.; Guo, Z.; Wang, L.; Hu, S.; Wang, Y.; Xia, Y. Adv. Sci. 2015, 2, 1500071. doi: 10.1002/advs.201500071
(108) Zhou, X.; Xie, J.; Yang, J.; Zou, Y.; Tang, J.; Wang, S.; Ma, L.; Liao, Q. J. Power Sources 2013, 243, 993. doi: 10.1016/j.jpowsour.2013.05.050
(109) Wang, B.; Wen, Y.; Ye, D.; Yu, H.; Sun, B.; Wang, G.; Hulicova-Jurcakova, D.; Wang, L. Chem. Eur. J. 2014, 20, 5224. doi: 10.1002/chem.201400385
(110) Liu, S.; Xie, K.; Chen, Z.; Li, Y.; Hong, X.; Xu, J.; Zhou, L.; Yuan, J.; Zheng, C. J. Mater. Chem. A 2015, 3, 11395. doi: 10.1039/c5ta00897b
(111) Yang, Y.; Risse, S.; Mei, S. L.; Jafta, C. J.; Lu, Y.; Stöcklein, C.; Kardjilov, N.; Manke, I.; Gong, L.; Kochovski, Z.; Ballauff, M. Energy Storage Materials 2017, 9, 96. doi: 10.1016/j.ensm.2017.06.008
(112) Bao, W.; Zhang, Z.; Chen, W.; Zhou, C.; Lai, Y.; Li, J. Electrochim. Acta 2014, 127, 342. doi: 10.1016/j.electacta.2014.02.043
(113) Yang, X.; Zhang, L.; Zhang, F.; Huang, Y.; Chen, Y. S. ACS Nano 2014, 8, 5208. doi: 10.1021/nn501284q
(114) Wu, F.; Lee, J. T.; Zhao, E.; Zhang, B.; Yushin, G. ACS Nano 2016, 10, 1333. doi: 10.1021/acsnano.5b06716
(115) Li, Z.; Li, C.; Ge, X.; Ma, J.; Zhang, Z.; Li, Q.; Wang, C.; Yin, L. Nano Energy 2016, 23, 15. doi: 10.1016/j.nanoen.2016.02.049

[1] 王海燕, 石高全. 层状双金属氢氧化物/石墨烯复合材料及其在电化学能量存储与转换中的应用[J]. 物理化学学报, 2018, 34(1): 22-35.
[2] 许利刚, 邱伟, 陈润锋, 张宏梅, 黄维. ZnO电极修饰层在钙钛矿太阳能电池中的应用[J]. 物理化学学报, 2018, 34(1): 36-48.
[3] 申海波, 江浩, 刘易斯, 郝佳瑜, 李文章, 李洁. 氮、硫共掺杂的碳负载的钴@碳化钴:一种高效的非贵金属氧还原电催化剂[J]. 物理化学学报, 2017, 33(9): 1811-1821.
[4] 钱慧慧, 韩潇, 肇研, 苏玉芹. 柔性Pd@PANI/rGO纸阳极在甲醇燃料电池中的应用[J]. 物理化学学报, 2017, 33(9): 1822-1827.
[5] 鄢慧君, 李彪, 蒋宁, 夏定国. 阴离子硫氧化还原与Li1-xNiO2-ySy的结构稳定性:第一性原理研究[J]. 物理化学学报, 2017, 33(9): 1781-1788.
[6] 杜惟实, 吕耀康, 蔡志威, 张诚. 基于三维多孔石墨烯/含钛共轭聚合物复合多孔薄膜的柔性全固态超级电容器[J]. 物理化学学报, 2017, 33(9): 1828-1837.
[7] 蒙延双, 王琛, 王磊, 王功瑞, 夏军, 朱福良, ZHANG Yue. 微波辅助裂解离子液体制备硫氮共掺杂多孔碳材料[J]. 物理化学学报, 2017, 33(9): 1915-1922.
[8] 陈驰, 张雪, 周志有, 张新胜, 孙世刚. S掺杂促进Fe/N/C催化剂氧还原活性的实验与理论研究[J]. 物理化学学报, 2017, 33(9): 1875-1883.
[9] 郭云鹏, 冯杰, 李文英. Ni掺杂对Ni/MgO体系中电荷分配影响[J]. 物理化学学报, 2017, 33(9): 1796-1802.
[10] 田爱华, 魏伟, 瞿鹏, 夏修萍, 申琦. SnS2纳米花/石墨烯纳米复合物的一步法合成及其增强的锂离子存储性能[J]. 物理化学学报, 2017, 33(8): 1621-1627.
[11] 杨翼, 罗来明, 陈迪, 刘洪鸣, 张荣华, 代忠旭, 周新文. 石墨烯负载PtPd纳米催化剂的合成及其电催化氧化甲醇性能[J]. 物理化学学报, 2017, 33(8): 1628-1634.
[12] 廖友好, 李伟善. 锂离子电池凝胶聚合物隔膜的研究进展[J]. 物理化学学报, 2017, 33(8): 1533-1547.
[13] 程若霖, 金锡雄, 樊向前, 王敏, 田建建, 张玲霞, 施剑林. 氮掺杂还原氧化石墨烯与吡啶共聚g-C3N4复合光催化剂及其增强的产氢活性[J]. 物理化学学报, 2017, 33(7): 1436-1445.
[14] 周洋, 李杲. 金原子簇催化碳——碳偶联反应的研究进展[J]. 物理化学学报, 2017, 33(7): 1297-1309.
[15] 王雷, 于飞, 马杰. 石墨烯基电极材料的设计和构建及其在电容去离子中的应用[J]. 物理化学学报, 2017, 33(7): 1338-1353.